
S-TunExSPEM: Towards an Extension of
SPEM 2.0 to Model and Exchange Tunable
Safety-oriented Processes

Barbara Gallina, Karthik Raja Pitchai and Kristina Lundqvist

Abstract Prescriptive process-based safety standards (e.g. EN 50128, DO-178B,
etc.) incorporate best practices to be adopted to develop safety-critical systems or
software. In some domains, compliance with the standards is required to get the
certificate from the certification authorities. Thus, a well-defined interpretation of
the processes to be adopted is essential for certification purposes. Currently, no
satisfying means allows process engineers and safety managers to model and ex-
change safety-oriented processes. To overcome this limitation, this paper proposes
S-TunExSPEM, an extension of Software & Systems Process Engineering Meta-
Model 2.0 (SPEM 2.0) to allow users to specify safety-oriented processes for the
development of safety-critical systems in the context of safety standards according
to the required safety level. Moreover, to enable exchange for simulation, monitor-
ing, execution purposes, S-TunExSPEM concepts are mapped onto XML Process
Definition Language 2.2 (XPDL 2.2) concepts. Finally, a case-study from the avion-
ics domain illustrates the usage and effectiveness of the proposed extension.

Key words: DO-178B, safety-oriented processes, process modelling, SPEM 2.0,
process exchange, XPDL 2.2, process reuse.

1 Introduction

The increasing awareness of software development being a complex task has since
the 1980’s received increased attention from the research community working on

Barbara Gallina
Mälardalen University, P.O. Box 883, SE-72123 Västerås, Sweden. e-mail: barbara.gallina@mdh.se

Karthik Raja Pitchai
Mälardalen University, P.O. Box 883, SE-72123 Västerås, Sweden. e-mail: kpi10001@student.mdh.se

Kristina Lundqvist
Mälardalen University, P.O. Box 883, SE-72123 Västerås, Sweden. e-mail: kristina.lundqvist@mdh.se



engineering software processes [11]. Software processes can be defined as coherent
sets of policies, organizational structures, technologies, procedures, and artefacts
that are needed to conceive, develop, deploy, and maintain a software product [11].
The research motivation surrounding software processes is based on the assumption
that there is a correlation between the quality of the process and the quality of the
software developed. According to what is stated in [15], each life-cycle phase may
represent a source of faults that if not handled lead to system failures causing se-
rious incidents. To avoid such failures, processes must be enhanced by preventing
or removing potential faults. To enhance processes, in the context of safety stan-
dards, best systems and software development practices have been collected and
prescriptive processes have been defined. More specifically, these processes man-
date the activities to be executed, the work-products to be provided, the qualifica-
tions needed to execute the activities, the tools to be used to execute the activities,
and the guidelines to be followed. DO-178B [22], for instance, is the de facto stan-
dard for software development in civilian aircraft and its adoption is considered to
be beneficial in contributing to the excellent record with remarkably few failures of
avionics software [24]. Even though no strong correlation between the process and
the product can be claimed in the context of dependable (safety-critical) systems, the
enhancement of the processes permits the development of a deeper safety culture,
leading the development team to act cautiously [16].

For certification purposes, in some domains, compliance with the processes de-
fined within safety standards is mandatory. As investigated in [5], DO-178B leaves
room for interpretation. In some cases, due to its lack of specificity in the guide-
lines, different users may come to different conclusions regarding the acceptability
of a particular document or artefact based on their particular experience. Thus, as
nicely put in [6] “for companies seeking a first-time certification, preparation for
DO-178B can be a daunting challenge”.

To ensure process understanding and thus eliminate inconsistencies in the pro-
cess specification, a Process Modelling Language (PML) is necessary. Besides un-
derstanding, an adequate PML should permit users to document and exchange pro-
cess models. In the literature, several PMLs are at disposal, e.g. Software & Systems
Process Engineering Meta-Model 2.0 (SPEM 2.0). As recently reviewed in [23],
SPEM 2.0 has obtained a significant acceptance and the research community is very
active to propose extensions towards SPEM 3.0 in order to enhance its modelling
capabilities, its executability, and its tool support. Thus, we decide to join this active
research community to propose an extension, called S-TunExSPEM, to support the
modelling as well as the exchange of safety-oriented processes. Our focus is limited
to core process elements since our goal is to ease the adoption of S-TunExSPEM by
providing an easy-to-digest PML. To define the set of core elements we have ana-
lyzed DO-178B to extract a list of key safety-related concepts. For these concepts we
have defined: the abstract syntax by extending the SPEM 2.0 meta-model, the con-
crete syntax by providing new safety-oriented icons. Then, to enable process models
interchange towards the usage of existing execution as well as monitoring and sim-
ulation engines, we have provided a mapping between S-TunExSPEM concepts and
corresponding concepts of XML Process Definition Language 2.2 (XPDL 2.2). Fi-



nally, we have used S-TuneExSPEM to model processes for the development of
avionics software.

The rest of the paper is organized as follows. In Sect. 2, we provide essen-
tial background information. In Sect. 3, we present S-TunExSPEM the proposed
SPEM 2.0 extension that targets safety-oriented processes. In Sect. 4, we illustrate
the usage and effectiveness of S-TunExSPEM by modelling a process taken from the
avionics domain. In Sect. 5, we discuss related work. Finally, in Sect. 6 we present
some concluding remarks and future work.

2 Background

In this section, we present the background information on which we base our work.
In particular, in Sect. 2.1 we provide general information on safety-oriented pro-
cesses and their role in the certification process. In Sect. 2.2 we provide essential
information concerning the software development process defined in DO-178B. In
Sect. 2.3, we briefly present SPEM 2.0, the process modelling language from which
stems our extension. Finally, in Sect. 2.4, we briefly present XPDL 2.2, the process
definition language onto which we map our SPEM 2.0 extension.

2.1 Safety-oriented processes and their role in certification

Prescriptive safety-oriented processes also known as safety life-cycles are systems
(or software) development processes that prescribe best practices to be followed to
achieve systems capable of managing safety by addressing the causes of accidents,
namely hazards. Generally, a safety process requires safety analysts to identify and
categorize the hazards according to domain-specific levels and risk assessment pro-
cedures. These levels, whose determination is not straightforward due to potential
misconception/misuse/abuse [21], are called Design Assurance Levels (DALs) in
the avionics domain in the context of DO-178B, Automotive Safety Integrity Levels
(ASILs) in the automotive domain in the context of ISO 26262, and Safety Integrity
Levels (SILs) in other domains that inherit the levels from IEC 61508. These levels
(four or five depending on the specific standard) span from negligible to catastrophic
hazards and they determine the number of objectives to be satisfied (eventually with
independence) during the system (or software) development. Once hazards are clas-
sified, safety managers elicit safety requirements aimed at reducing risk. Then, they
verify and validate the correct implementation and deployment of the elicited safety
requirements throughout the safety life-cycle. It must be noted that it is not always
possible to show that the systems developed meet the safety requirements.

Certification refers to the “process of assuring that a product or process has cer-
tain stated properties, which are then recorded in a certificate” [16]. Thus, for safety
certification purposes, product and process-based arguments are needed to claim an



acceptable level of safety. Process-based arguments are of particular value whenever
confidence in product-based arguments is limited.

To provide convincing process-based arguments claiming for compliance, first
of all it is necessary to achieve a well-defined and agreed-upon interpretation of the
processes mandated within the standards [19]. Thus, adequate process modelling
means are necessary and should be developed.

2.2 DO-178B

DO-178B [22] has been the de facto standard in the avionics domain. Currently, it is
being replaced by a revised version (DO-178C), which addresses the inconsistencies
of the previous document but preserves its basic and valuable principles. DO-178B
provides guidance for the development of software for airborne systems and equip-
ment. Its purpose is to guarantee a level of confidence in the correct functioning of
the software developed in compliance with airworthiness requirements.

In this subsection, we provide a brief description of the software development
process. This description is then used in Sect. 3 to extract process models. The soft-
ware development process is constituted of four phases (requirements, design, cod-
ing and integration), which can be chained, if a waterfall process model is selected.
The standard, however, does not impose a specific process model. In what follows,
for each phase we provide its characteristics in terms of input/output, guidelines
and roles. For sake of clarity, it must be noted that no role is explicitly assigned
in DO-178B. Roles, however, can be inferred from the skills that are required and
mentioned in the standard.

The requirements phase is characterized by:
Input: System requirements, hardware interface, system architecture, Software

Development Plan, Software Requirements Standards.
Output: Software Requirements Data that include functional as well as non func-

tional requirements.
Roles: requirement engineers in charge of functional requirements and quality

(safety) experts in charge of non-functional requirements.
Guidelines: guidelines, defined in Section 5.1.2 of the standard, contain general

as well as safety specific information.
The design phase is characterized by:
Input: Software development plan, Software Requirements Data, Software De-

sign Standards.
Output: Design description.
Roles: designers in charge of the design decision related to functional require-

ments and quality (safety) experts in charge of the design decision related to non-
functional requirements.

Guidelines: guidelines, defined in Section 5.2.2 of the standard, contain general
as well as safety specific information.

The coding phase is characterized by:



Input: Software development plan, Design description, Software Code Standards.
Output: Source code and object code.
Roles: programmers in charge of the implementation decisions related to func-

tional aspects of the design and quality (safety) experts in charge of the implemen-
tation decision related to non-functional aspects of the design.

Guidelines: guidelines, defined in Section 5.3.2 of the standard, contain general
as well as safety specific information.

The integration phase is characterized by:
Input: Source code and object code, target computer, linking and loading data.
Output: Executable Object Code.
Roles: integration experts.
Guidelines: guidelines, defined in Section 5.4.2 of the standard, contain general

as well as safety specific information.
With respect to the outputs that characterize the phases, a general remark is that

for reuse purposes, outputs (e.g. Software Requirements Data) should be split to
take into consideration the different views.

Details concerning how to break down the work within each phase are not pro-
vided in the standard. For sake of simplicity, we consider that each phase is con-
stituted by a single task. Similarly, no specific tool is mentioned. However, at the
organization-specific level, tools have to be planned (indeed a specific section called
Software development environment is expected within the Software Development
Plan) and used. The standard however recommends to guarantee traceability among
the phases thus an additional task aimed at checking traceability can be considered.

2.3 SPEM 2.0

As recalled in the introduction, a software process can be defined as a coherent set
of policies, organizational structures, technologies, procedures, and artefacts that
are needed to conceive, develop, deploy, and maintain a software product. From this
definition, it emerges that the core conceptual elements that are necessary to define
a process are: guidelines, roles, tools, artefacts, and finally the breakdown structure
to define the work to be executed.

In the literature, several PMLs that support those concepts are available [28, 1, 4].
SPEM 2.0 (Software & Systems Process Engineering Meta-Model 2.0) [18] is one
of them and since it has appealing features in terms of standardization, reuse, tool-
support, etc. (as surveyed in [4]) as well as in terms of an active community working
towards its enhancement [23], it answers our expectations. SPEM 2.0 is the OMG’s
standard for systems and software process modelling and it is defined as a MOF-
based meta-model. SPEM 2.0 meta-model is composed of seven main packages,
which are briefly recalled in what follows.

The Core package defines concepts allowing for the foundation of the other pack-
ages. The Method Content package defines concepts allowing for the specification
of a knowledge base of reusable process elements, as partially depicted in Fig. 1.



Fig. 1 Taxonomy of MethodContentElement.

Fig. 2 Taxonomy of BreakDownElement.

The Process Structure package defines concepts allowing for the representation of
process models composed of inter-related activities, roles (actual performers, called
RoleUse), work-products (actual data, called WorkProductUse). The Managed Con-
tent package defines concepts such as Guidance allowing for the addition of descrip-
tions in natural language to be attached to other process elements defined in other
packages. The Process with Method package defines concepts such as Method Con-
tent Use elements for the integration of processes defined by using the concepts
available in Process Structure with the instances of concepts available in Method
Content. Fig. 2 depicts a sub-set of these concepts. The Method Plugin package de-
fines mechanisms allowing for the reuse and management of method content and
processes. The Process Behaviour package defines mechanisms and concepts (i.e.
proxy meta-classes) allowing process elements to be linked to external models (e.g.
UML 2.0 Activity Diagrams) for behavioural specification.

For a subset of the concepts that belong to the meta-model, graphical modelling
elements (icons) are at disposal. In Table 1, we recall those elements for which we
propose a safety-oriented decoration in Sect. 3.1. Tasks, roles and work-products
(shortened as WP in Table 1) are commonly considered as process core elements [4].
Beside these elements, since we are focusing our work on safety-oriented processes,
tools and guidances are also considered being core elements.

Table 1 Icons denoting Method Content (MC) and Method Content Use (MCU) elements

MC Elements MCU Elements
Task Definition Role Definition Tool WP Definition Guidance TaskUse RoleUse WPUse



2.4 XPDL 2.2

XML Process Definition Language 2.2 (XPDL 2.2) [27] is the current version of
the XPDL specification recently issued by the Workflow Management Coalition
(WfMC). XPDL 2.2 is a standard that defines an interchange format for process
models. XPDL 2.2 syntax is specified by an XML schema. A process description
in XPDL 2.2 is an XML document, which includes core modelling elements such
as: Process, Activity, Transition, Participant, DataObject, and DataAssociation, and
Application, Annotation. Below we recall the informal semantics of these elements
and in Fig. 3 we provide the cut of XPDL 2.2 meta-model that includes them.

Annotation represents a piece of textual information that can be attached to ac-
tivities or lanes. Application is used to specify the applications/tools invoked by the
process. Activity represents a logical, self-contained unit of work. Transition rep-
resents the sequence-flow that relates two activities. Each individual transition has
three elementary properties: the from-activity, the to-activity and the condition un-
der which the transition is made. Activities and transitions are the key elements that
form the process, which consists of an oriented graph composed of nodes (activ-
ities) and edges (transitions). Participant is used to specify the participants in the
workflow, i.e., the entities that can execute work. There are six types of partici-
pant: ResourceSet, Resource, Role, OrganizationalUnit, Human, and System. Pool
acts as the container for activities and transitions. Lane represents a performer in-
formation at the activity level. A lane is used to subdivide a pool and thus model
who does what. DataObject (and related concepts such as DataInputs and DataOut-
puts) belongs to the set of new concepts, which have been introduced in XPDL 2.2.
DataObject represents the primary construct for modelling data within a process and
opens the possibility to model global as well as local variables and to model that data
objects are transformed during the process execution [25]. DataInputs and DataOut-
puts are used to specify the I/O parameters needed by e.g. activities. DataAssocia-
tion represents a mapping between a data object on one end and a data input or data
output on the other end. XPDL also offers extensibility mechanisms supported by
the extended attribute modelling element. This element can be used to customize all
the other XPDL 2.2 concepts.

Fig. 3 Cut of XPDL 2.2 meta-model.



Currently, several commercial and open-source tools (e.g. process execution /
monitoring / simulation engines) take XPDL descriptions in input and it is likely
that soon new releases will be provided to support XPDL 2.2. This is why in Sect. 3
we propose a mapping onto XPDL 2.2 and not onto older versions. Moreover, we
select XPDL 2.2 and not one specific execution language (e.g. Business Process
Execution Language - BPEL) because by focusing on the exchangeability we can
take advantage of the existing and various engines.

3 S-TunExSPEM

As discussed in the previous sections, development processes defined within safety
standards exhibit safety-related concepts, which should be better supported by
PMLs in order to allow process engineers and assessors to better communicate
and easily identify process-based evidence. Thus, in this section we introduce S-
TunExSPEM, the SPEM 2.0 extension aimed at supporting the modelling as well as
the exchange of safety-oriented processes. In particular, in Sect. 3.1 we focus on the
modelling aspect and in Sect. 3.2 we focus on the exchangeability aspect.

3.1 Modelling Safety-oriented Information

In this subsection, we focus on one aspect of our SPEM 2.0 extension: its safety-
tunability (recalled in the first part of its name S-Tune). Our extension involves
mainly four SPEM 2.0 packages, namely Method Content, Process with Method,
Managed Content and Process Structure.

To provide safety-tunability, we add an attribute to the Activity meta-class to
allow process engineers to set the safety level. We only consider four levels since
in case of negligible (e.g. no effect, level E in D0-178B) consequences related to
the hazards, no specific safety-related process elements are needed. Moreover, we
extend each meta-class pertaining to the definition of the core process elements
(namely, RoleDefinition/etc. as depicted in Fig. 1) with a corresponding safety-
related meta-class (SafetyRole/etc.). Similarly to what proposed for the core process
elements-related meta-classes, we extend the Method Content Use-related meta-
classes (recalled in Fig. 2) with corresponding safety-related meta-classes, as par-
tially depicted in Fig. 4 (e.g. SafetyWorkProductUse, SafetyRoleUse, etc.). Finally,
the extension of the WorkSequence meta-class permits process engineers to high-
light safety-related flows within the process.

Whenever DO-178B provides information to further classify the core process el-
ements, we add an attribute to the corresponding meta-classes to allow the kind to
be set. For sake of clarity, in what follows we provide some examples. According
to DO-178B, a safety activity (task) can be further characterized by setting its kind
(check, review, or audit). Thus, as shown in Fig. 4, we add an attribute called S-



Fig. 4 Cut of S-TunExSPEM meta-model.

ActivityKind to the SafetyActivity class and an appropriate enumeration to allow the
kind to be set. As seen in Sect. 2.2, workproducts that flow through the tasks belong
to different kinds (Plans e.g. Software Development Plan, Standards e.g Software
Design Standards, or other software life-cycle data e.g. code). Thus, an attribute is
added to the SafetyWorkProduct meta-class and an additional enumeration is avail-
able to allow the kind to be set (Plan, Standards, OtherData). This characterization
is possible also for Method Content Use-related meta-classes, as shown in Fig. 4
for SafetyWorkProductUse. DO-178B also allows guidances to be further charac-
terized (namely, checklists to guide for example reviews, guidelines and additional
supporting material). Thus, also in this case, even if not shown in Fig. 4, we add an
attribute to the SafetyGuidance meta-class and an enumeration.

To the meta-classes, we associate intuitive icons. Table 2 shows some of the
S-TunExSPEM icons to be used to model safety-related tasks, roles, tools, work-
products and guidelines. Except for the Safety Work Sequence, which is represented
as a yellow/black line, the remaining elements are obtained by adding a safety hat
to the original Method Content SPEM 2.0 icons presented in Table 1. Similarly, a
safety hat is added for the Method Content Use SPEM 2.0 icons. According to the
safety level, a different colour for the hat can be used (i.e. red for the most critical
safety level, followed by orange, yellow and bitter lemon). In case of sub-processes
related to non-safety functions, no hat is needed.

3.2 Exchangeability of safety-related processes

In this subsection, we focus on the other aspect of our SPEM 2.0 extension: its ex-
changeability (recalled in the second part of its name Ex). In particular, we present



Table 2 Graphical core elements of S-TunExSPEM

Task Definition Role Definition Tool Definition Work Product Definition Guidance

Safety Work Sequence

the mapping between some S-TunExSPEM concepts and corresponding XPDL 2.2
concepts. We focus our attention on the safety-related concepts. The interested
reader may find details concerning the entire mapping as well as a pseudo-code
version of the transformation algorithm in [20]. The aim of this mapping is to sup-
port exchangeability of process models and thus enable the exploitation of engines
(available off the shelf) for execution, simulation, monitoring purposes.

Table 3 shows our rather self-explanatory mapping which further develops what
was presented in [10] to take into consideration the beneficial changes (introduced in
XPDL 2.2), which allow for a better semantic mapping. As mentioned in Sect. 2.4,
XPDL 2.2 provides modelling elements for the data/artefacts that flow within a pro-
cess, thus instead of mapping a work-product onto an extended attribute as authors
did in [10], we are able to map a work-product onto a closer semantic element.
Similarly, we map the concept of guidance onto the concept of textual annotation.
Moreover, we also preserve the distinction between RoleDefinition and RoleUse,
by mapping these elements onto more appropriate XPDL 2.2 elements. We indeed
map the reusable method content element role onto the concept of participant and
we map the process-specific task-role (method content use element) onto the con-
cept of lane. Then, to model the safety concern, we make an extensive usage of the
extensibility mechanisms of XPDL.

Table 3 Concepts mapping

S-TunExSPEM XPDL 2.2
SafetyRoleDefinition Participant +extended attribute
SafetyTaskUse Activity +extended attribute
SafetyWorkProductUse DataObject+ extended attribute
SafetyRoleUse Lane in a pool + extended attribute
SafetyGuidance Annotation +extended attribute
SafetyTool Application+extended attribute
SafetyWorkSequence Transition + extended attribute. Remark: from-activity or to-activity

must be an activity representing a SafetyTaskUse



4 Case Study

In this section, we show the usage of S-TunExSPEM by modelling the software
development process defined in DO-178B, which was briefly recalled in natural
language in Sect. 2.2. The purpose is not to provide a detailed model but to pro-
vide evidence with respect to the richer expressiveness of the language as well as
its potential in terms of exchangeability. For sake of clarity, it must be highlighted
that S-TunExSPEM only aims at offering usable and expressive modelling capabil-
ities targeting safety-oriented processes. Its usage should allow process engineers
to model safety concerns in a more straightforward way and to communicate with
safety assessors more easily. S-TunExSPEM does not contribute to safer code di-
rectly. If the process mandated by the standard contributes to safer code and if this
process is properly understood, S-TunExSPEM may help in spreading and formal-
izing its understanding as well as graphically recalling what should be done.

Fig. 5 shows the design phase modelled by using S-TunExSPEM. From the figure
it is straightforward to grasp that this phase is dealing with some design decisions re-
lated to some safety concerns of major (yellow hat) relevance. Moreover, in case of
need, it is straightforward to detect the roles that are responsible of safety related de-
cisions. Hanna is the only human being in charge of the design. Hanna however has
all the skills that are needed since she acts as safety expert as well as designer. Hanna
is in charge of: checking that all the work-products in input are available, following
the guidances and using the appropriate tools to provide all the work-products in
output. It is also straightforward to identify safety-related work-products and thus
be aware about the deliverables that are involved in the certification process.

Fig. 5 DO-178B design phase in S-TunExSPEM.

Fig. 6 shows the dynamics of the entire software development process. For space
reasons, however, in Fig. 6 we do not provide in S-TunExSPEM all the character-
istics of the phases as done textually in Sect. 2.2 and graphically in Fig. 5 for the
design phase. For the same reason, we do not show the usage of the safety-oriented
flow that takes place whenever an output from the traceability check tasks is avail-
able as a feedback to the preceding task. Fig. 6 is simply aimed at showing that S-



TunExSPEM permits process engineers to intuitively separate safety concerns from
functional concerns.

Fig. 6 DO-178B software development process in S-TunExSPEM.

In what follows, we provide the essential XPDL 2.2 snippets corresponding to
some S-TunExSPEM process elements, depicted in Fig. 5. We do not provide the
entire code but only significant parts needed to highlight our mapping related to
safety concerns and our timely and pertinent exploitation of the current release of
XPDL. In bold, we highlight the first-class entities for readability purposes.

<!-Input data of Activity (TaskUse) "Design" -->
<xpdl:Artifact ArtifactType="DataObject" FormalParameterRef="IN"
Id="DO1" Name="SW development Plan"></xpdl:Artifact>
<xpdl:Artifact ArtifactType="DataObject" FormalParameterRef="IN"
Id="DO2" Name="SW Requirements Data (functional)"></xpdl:Artifact>
<xpdl:Artifact ArtifactType="DataObject" FormalParameterRef="IN"
Id="DO3" Name="SW Requirements Data (Safety-related)"> </xpdl:Artifact>
<xpdl:Artifact ArtifactType="DataObject" FormalParameterRef="IN"
Id="DO4" Name="SW Design Standards"> </xpdl:Artifact>

<!-Output data of Activity (TaskUse) "Design" -->
<xpdl:Artifact ArtifactType="DataObject" FormalParameterRef="OUT"
Id="DO5" Name="SW design Description (Functional)"> </xpdl:Artifact>
<xpdl:Artifact ArtifactType="DataObject" FormalParameterRef="OUT"
Id="DO6" Name="SW design Description (Safety-related)"></xpdl:Artifact>

As the above snippets show, work-products involved in the design phase are defined
as Artifacts of type DataObject. Moreover, if artefacts are provided in input (out-
put, respectively), the attribute FormalParameterRef must be set to ”IN” (”OUT”
respectively).
<!-Guidance attached to Activity (TaskUse) "Design" -->
<xpdl:Artifact ArtifactType="Annotation" Id="AN1" Name="Safety guidance">
</xpdl:Artifact>
<xpdl:Artifact ArtifactType="Annotation" Id="AN2" Name="guidance">
</xpdl:Artifact>

As the above snippets show, guidances involved in the design phase are defined as
Artifacts of type Annotation.
<!-Participants of Activity (TaskUse) "Design" -->
<xpdl:Participants>
<xpdl:Participant Id="RO1" Name="Designer"><xpdl:ParticipantType Type=""/)
<xpdl:Description>In charge of design decision related to functional
requirements </xpdl:Description></xpdl:Participant>
<xpdl:Participant Id="RO2" Name="Safety Expert"><xpdl:ParticipantType Type=""/)
<xpdl:Description>In charge of design decision
related to non-functional (safety) requirements
</xpdl:Description> </xpdl:Participant></xpdl:Participants>

As the above snippets show, the involved roles are defined as Participants.



<!-Pool and Lane containing TaskUse "Design" -->
<xpdl:Pools>
<xpdl:Pool BoundaryVisible="true" Id="RO1" MainPool="true"
Name="PARTICIPANT NAME" Orientation="HORIZONTAL" Process="SW Life Cycle">
<xpdl:Lanes>
<xpdl:Lane Id="" Name="Hanna">
<xpdl:Performers>
<xpdl:Performer>RO1</xpdl:Performer><xpdl:Performer>RO2</xpdl:Performer>
</xpdl:Performers>
</xpdl:Lane></xpdl:Lanes></xpdl:Pool></xpdl:Pools>

As the snippets concerning the pool specification states, Hanna, consistently with
what modelled in Fig. 5, is the only human being in charge of the design. Hanna is
the actual role responsible of acting as designer as well as safety expert.
<!-extended attributes for the safety-oriented customization -->
<xpdl:ExtendedAttributes>
<xpdl:ExtendedAttribute Name="Safety Role" Value="Safety Expert">
<xpdl:ExtendedAttribute Name="Safety Data object" Value="SW Development Plan">
<xpdl:ExtendedAttribute Name="Safety Data object"
Value= "SW Requirements Data (Safety-related)">
<xpdl:ExtendedAttribute Name="Safety Data object" Value="SW Design Standards">
<xpdl:ExtendedAttribute Name="Safety Data object"
Value= "SW Design Description (Safety-related)">
<xpdl:ExtendedAttribute Name="Safety Guidelines" Value="Safety Guidance">
</xpdl:ExtendedAttributes>

As the above snippets show, extended attributes customize/specialize the XPDL 2.2
concepts towards safety. As presented in Table 3, an extended attribute is used to
customize each safety-related process element.

5 Related Work

In this section, we discuss those related works that contribute to either provide mod-
elling capabilities for safety-oriented processes or transform process models into
other models for execution purposes. To support the modelling of safety-oriented
processes, a new meta-model, called Repository-Centric Process Metamodel is pro-
vided in [13, 29, 14]. Besides, meta-classes aimed at representing generic process
concepts (e.g. activity), RCPM includes one safety related meta-class (check point),
which specializes a generic meta-class. RCPM also includes one meta-class to rep-
resent safety-related relationships (safety relationship). Finally, a safety level can
be specified for a process. Thus, in principle, safety process engineers are enabled
to model safety-related activities and how these activities are related from a safety-
related flow point of view.

Similarly to what is proposed in [13, 29, 14], we also provide a meta-class to
represent safety-related activities as well as a meta-class to represent safety-related
flows. However, our work highly differs from [13, 29, 14] since we do not introduce
a new meta-model but propose to extend an existing one. Moreover, we broaden our
focus on other conceptual elements that are crucial in the context of safety critical
systems development. The concept of role, for instance is of paramount importance
to stress that every piece of information produced during the development process
requires the appropriate set of skills. Similarly, the way in which an activity is per-



formed is of paramount importance. Thus guidelines represent first-class modelling
elements. Finally, we also propose a rather intuitive safety-oriented concrete syntax.

Another related work which was aimed at modelling DO178B processes by using
OpenUp is presented in [6]. This work is of interest for its pioneering intention of
exploiting existing process modelling capabilities to document safety-related pro-
cesses. Authors conclude that customization of the existing capabilities is needed.

When quality attributes (e.g. safety) are crucial for the systems development, it
becomes relevant to model the techniques that target that attribute. In [7], authors in-
vestigate how safety analysis techniques could be modelled in SPEM. They explore
two alternatives: the usage of step eventually combined with guidance or the usage
of task eventually combined with guidance. In our case, we also model the tech-
niques but we only use guidance since we model the remaining and conceptually
different information onto other modelling elements.

Concerning process models interchange or simulation/execution/monitoring, sev-
eral works exist. Some of these works have investigated approaches for mapping
process models onto interchangeable models others have provided SPEM 2.0 exten-
sions to enhance its support for executability.

In [10], authors provide a mapping as well as a transformation algorithm to trans-
form SPEM1.0 models into XPDL (draft 1.0) models. As a running example they
use a review process. As mentioned in Sect. 3.2, our approach borrows from this
one and goes beyond it since we transform S-TunExSPEM models into XPDL 2.2
models and thus we provide support for safety concerns and a more suitable seman-
tic mapping. In [3], authors make a critical analysis of SPEM 2.0 support for exe-
cutability and then propose a SPEM 2.0 extension, called xSPEM. Their extension
includes a set of concepts and behavioural semantics aimed at enhancing SPEM 2.0
executability. Similarly, in [8, 9], authors propose a tool-supported SPEM 2.0 ex-
tension, called eSPEM to enhance the support for executability. eSPEM is defined
as CMOF meta-model and is based on both SPEM 2.0 and UML Superstructure.
Authors replace the Process Behaviour package recalled in Sect. 2.3 with a new one
defining fine-grain concepts for behaviour specification.

To provide our contribution, we have focused our attention on the textual de-
scriptions of safety-related processes available in safety standards. We have not yet
tried to model real processes and thus the mechanisms for behavioural specifica-
tion, provided within the SPEM 2.0 Process Behaviour package, were enough for
our purposes. So, we have not integrated the above extensions within our proposal.

6 Conclusion and Future Work

To ensure the safety of safety-critical systems, compulsory as well as advisory safety
standards have been issued. Some of these standards define (prescriptive) safety-
oriented processes. Modelling processes in compliance with the standards is rele-
vant to provide process-based evidence for certification purposes. To support safety-
oriented process engineers in these activities, in this paper we have proposed a PML,



called S-TunExSPEM, obtained by extending SPEM 2.0 with safety-specific con-
structs extracted by examing safety standards (mainly DO-178B). Moreover, besides
offering modelling capabilities for safety-related concepts, S-TunExSPEM provides
the first tile to pave the road towards process models exchangeability aimed at ex-
ploiting existing simulation, monitoring and execution engines.

In the immediate future, first of all, we aim at validating the effectiveness of
our proposal in supporting process modelling activities in industrial settings. We
are currently in contact with some military as well as civil organizations responsi-
ble for software development of avionics software. Then, we aim at investigating
model transformation approaches to automatize the generation of XPDL 2.2 models
from S-TunExSPEM models. In a long-term future, we plan to provide a tool-chain
support for modelling and monitoring / executing / etc. safety-processes.

Finally, since safety-oriented processes can be considered as a process line [12],
safety-related process elements of S-TunExSPEM could be considered as variabil-
ity elements and divided into commonalities, partial commonalities, and variabili-
ties either by reusing the current SPEM 2.0 support for variability modelling or by
adopting the in-progress SPEM 2.0 extension for process lines, called vSPEM [17].
The intention would be to contribute to pushing towards a SPEM 3.0 version al-
lowing for richer modelling support as well as exchangeability/execution targeting
safety.

Acknowledgements This work has been partially supported by the European Project ARTEMIS
SafeCer [2] and by the Swedish SSF SYNOPSIS project [26].

References

1. Acuña, S.T., Ferré, X.: Software Process Modelling. In: Proceedings of the World Multicon-
ference on Systemics, Cybernetics and Informatics, Orlando, FL, pp. 237–242 (2001)

2. ARTEMIS-JU-269265: SafeCer-Safety Certification of Software-Intensive Systems with
Reusable Components. http://www.safecer.eu/ (2013)

3. Bendraou, R., Combemale, B., Cregut, X., Gervais, M.P.: Definition of an Executable SPEM
2.0. In: Proceedings of the 14th Asia-Pacific Software Engineering Conference, Nagoya,
Japan, APSEC, pp. 390–397 (2007)

4. Bendraou, R., Jezequel, J., Gervais, M.P., Blanc, X.: A Comparison of Six UML-Based Lan-
guages for Software Process Modeling. Software Engineering, IEEE Transactions 36, 662–
675 (2010)

5. Berk, R.H.: An Analysis of Current Guidance in Certification of Airborne Software. Master’s
thesis, Massachusetts Institute of Technology, Cambridge, USA (2009)

6. Bertrand, C., Fuhrman, C.P.: Towards Defining Software Development Processes in DO-178B
with Openup. In: Proceedings of 21st IEEE Canadian Conference on Electrical and Computer
Engineering, CCECE, pp. 851–854. Niagara Falls, Ontario, Canada (2008)

7. Chiam, Y.K., Staples, M., Zhu, L.: Representation of Quality Attribute Techniques Using
SPEM and EPF Composer. In: European Software Process Improvement, EuroSPI. Springer,
Spain (2009)

8. Ellner, R., Al-Hilank, S., Drexler, J., Jung, M., Kips, D., Philippsen, M.: eSPEM-A SPEM
Extension for Enactable Behavior Modeling. In: Proceedings of 6th European Conference
Model Foundation and Appliation, Paris, France, ECFMA, pp. 116–131. Springer (2010)



9. Ellner, R., Al-Hilank, S., Jung, M., Kips, D., Philippsen, M.: Integrated Tool Chain for Meta-
model-based Process Modelling and Execution. In: Proceedings of First Workshop on Aca-
demics Modeling with Eclipse, Lyngby, Denmark, ACME (2012)

10. Feng, Y., Mingshu, L., Zhigang, W.: SPEM2XPDL-Towards SPEM Model Enactment. Soft-
ware Engineering. Front. Comput. Sci. China, Higher Education Press, Bejing, China pp. 1–11
(2008). Co-published with Springer-Verlag GmbH

11. Fuggetta, A.: Software Process: A Roadmap. In: Proceedings of the International Conference
on Software Engineering, New York, USA, ICSE, pp. 25–34 (2000)

12. Gallina, B., Sljivo, I., Jaradat, O.: Towards a Safety-oriented Process Line for Enabling Reuse
in Safety Critical Systems Development and Certification. In: Post-proceedings of the 35th
IEEE Software Engineering Workshop, SEW-35. Greece (2012)

13. Hamid, B., Geisel, J., Ziani, A., Gonzalez, D.: Safety Lifecycle Development Process Mod-
delling for Embedded Systems - Example of Railway Domain. In: Proceedings of Software
Engineering for Resilient Systems, SERENE, pp. 63–75. Pisa, Italy (2012)

14. Hamid, B., Zhang, Y., Geisel, J., Gonzalez, D.: First Experiment on Modeling Safety Life-
Cycle Process in Railway Systems. International Journal of Dependable and Trustworthy
Information Systems, IGI Global, Hershey - USA 2, 17–39 (2011)

15. Health and Safety Executive (HSE): Out of Control. Why Control Systems Go Wrong and
How to Prevent Failure (2003)

16. Jackson, D., Thomas, M., Limmet, L.I.: Software for Dependable Systems: Sufficient Evi-
dence? National Academy Press, Washington DC, USA (2007)

17. Martı́nez-Ruiz, T., Garcı́a, F., Piattini, M., Münch, J.: Modeling Software Process Variability:
An Empirical Study. IET Software 5, 172–187 (2011)

18. Object Management Group: Software & Systems Process Engineering Meta-Model (SPEM),
v2.0. Full Specification formal/08-04-01 (2008)

19. Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L.: Using Model-Driven Engineering for
Managing Safety Evidence: Challenges, Vision and Experience. In: Proceedings of the 1st
International Workshop on Software Certification, WoSoCER, pp. 7–12. Hiroshima, Japan
(2011)

20. Pitchai, K.R.: An Executable Meta-model for Safety-oriented Software and Systems Develop-
ment Processes within the Avionics Domain in Compliance with RTCA DO-178B. Master’s
thesis, Mälardalen University, School of Innovation, Design and Engineering, Sweden (2013)

21. Redmill, F.: Safety Integrity Levels - Theory and Problems. Lessons in System Safety. In:
Proceedings of the Eighth Safety-critical Systems Symposium, Southampton (2000)

22. RTCA Inc: Software Considerations in Airborne Systems and Equipment Certification, RTCA
DO-178B (EUROCAE ED-12B). Washington DC (1992)

23. Ruiz-Rube, I., Dodero, J.M., Palomo-Duarte, M., Ruiz, M., Gawn, D.: Uses and Applications
of SPEM Process Models. A Systematic Mapping Study. Journal of Software Maintenance
and Evolution: Research and Practice pp. 1–32 (2012)

24. Rushby, J.: New Challenges in Certification for Aircraft Software. In: Proceedings of the
ninth ACM International Conference on Embedded software, New York, USA, EMSOFT, pp.
211–218 (2011)

25. Shapiro, R.M.: XPDL 2.2: Incorporating BPMN2.0 Process Modeling Extensions. Extracted
from BPM and Workflow Handbook, Future Strategies (2010)

26. SYNOPSIS-SSF-RIT10-0070: Safety Analysis for Predictable Software Intensive Systems.
Swedish Foundation for Strategic Research

27. Workflow Management Coalition: Workflow Management Coalition Workflow Standard- Pro-
cess Definition Interface - XML Process Definition Language, WfMC-TC-1025, v2.2, (2012)

28. Zamli, K.Z., Lee, P.A.: Taxonomy of Process Modeling Languages. In: Proceedings of
the ACS/IEEE International Conference on Computer Systems and Applications, Beirut,
Lebanon, AICCSA, pp. 435–437 (2001)

29. Zhang, Y., Hamid, B., Gouteux, D.: A metamodel for representing safety lifecycle develop-
ment process. In: Proceedings of the Sixth International Conference on Software Engineering
Advances (ICSEA), IEEE Computer Society press, Barcelona, Spain, pp. 550–556 (2011)


