Using Argumentation to Evaluate
Software Assurance Standards

Patrick J. Graydon®®, Tim P. Kelly*

“University of York, Department of Computer Science, Heslington, YO10 5GH, United Kingdom
bSchool of Innovation, Design and Engineering, Mdlardalen University, Viisterds, Sweden

Abstract

Context: Many people and organisations rely upon software safety and security
standards to provide confidence in software intensive systems. For example, peo-

ple rely upon the Common Ceriteria for Information Technology Security Evalua-
tion to establish justified and sufficient confidence that an evaluated information
technology product’s contributions to security threats and threat management are
acceptable. Is this standard suitable for this purpose?

Objective: We propose a method for assessing whether conformance with a soft-
ware safety or security standard is sufficient to support a conclusion such as ade-
quate safety or security. We hypothesise that our method is feasible and capable
of revealing interesting issues with the proposed use of the assessed standard.

Method: The software safety and security standards with which we are concerned
require evidence and discuss the objectives of that evidence. Our method is to
capture a standard’s evidence and objectives as an argument supporting the desired
conclusion and to subject this argument to logical criticism. We have evaluated
our method by case study application to the Common Criteria standard.

Results: We were able to capture and criticise an argument from the Common Cri-
teria standard. Review revealed 121 issues with the analysed use of the standard.
These range from vagueness in its text to failure to require evidence that would
substantially increase confidence in the security of evaluated software.

Conclusion: Our method was feasible and revealed interesting issues with using
a Common Criteria evaluation to support a conclusion of adequate software secu-
rity. Considering the structure of similar assurance standards, we see no reason to
believe that our method will not prove similarly valuable in other applications.

Keywords: Safety standards, Security standards, Assessing standards, Assurance
arguments, Common Criteria

Preprint submitted to Information and Software Technology February 22, 2013

1. Introduction

Many people and organisations depend upon software assurance standards to
provide justified and adequate confidence that systems possess safety or security
properties. For example, people rely on evaluations conforming to the Common
Criteria for Information Technology Security Evaluation [1, 2, 3] to show that a
hardware, software, or mixed information technology product’s contributions to
security threats and their management are acceptable. Software safety and secu-
rity assurance standards are typically evaluated using ad hoc review. While these
reviews catch some errors, we will show that they miss others. It is important
to ensure that conformance with a standard justifies the confidence we place in
conforming systems. Our thesis is that a more structured method of determin-
ing whether conformance with a standard supports a conclusion such as adequate
safety or security is both feasible and capable of identifying issues of interest. In
this paper, we contribute:

1. A discussion of the features of software assurance standards that demand
evaluation more rigorous than ad hoc review provides

2. A structured method for evaluating software assurance standards

3. An evaluation of our method by case study application to the internationally-
recognised Common Criteria standard

In section 2, we discuss why ad hoc review is unsuited to software assurance
standards. In section 3 we discuss related work, including assurance argumen-
tation. In section 4, we present our method, which builds upon argumentation
technology. In section 5, we discuss our case study evaluation method. In sec-
tion 6, we describe how we applied our method to the Common Criteria standard.
In section 7, we present the results of our case study, including examples that
illustrate the kinds of issues that our method identified. Finally, we discuss the
significance and limitations of our findings in section 8 and conclude in section 9.

2. Software Assurance Standards Demand a Different Approach

Software standards are frequently written by standards committees and sub-
jected to ad hoc review by interested parties. In many cases, this process serves
the community well. However, software assurance standards — typically focused
on safety or security — have distinctive features that make ad hoc review an un-
suited to evaluating them. Table 1 illustrates these differences by comparing two

2

Table 1: W3C XML Versus RTCA DO-178B

W3C XML RTCA DO-178B

Purpose Ensure compatibility Ensure suitability for a
safety-critical application

Strategy Specify externally-visible Specify aspects of the software
aspects of conforming and development process
documents

Properties Boolean A matter of degree

Specification =~ Mainly formal or semi-formal = Mainly informal

The standard It clearly distinguishes Conforming software’s
is fit for conforming documents from contributions to hazards and
purpose if non-conforming documents their management are

and achieves buy-in acceptable

specimen standards: the W3C Extensible Markup Language (XML) standard [4]
and the RTCA DO-178B standard for airborne software [5].

The W3C XML standard aims to ensure compatibility between producers and
consumers of documents. To achieve this, it specifies externally-visible attributes
of conforming documents. For example, the standard specifies the syntax of tags,
attributes, identifiers, and escape sequences. In contrast, RTCA DO-178B aims
to ensure that airborne software is fit for use from a safety perspective. Software
contributions to safety — like software contributions to security — cannot be di-
rectly measured. Accordingly, the standard instead uses an indirect approach: it
specifies properties of both the software and the process used to produce it. For ex-
ample, RTCA DO-178B requires developers to decompose software requirements
over the software structure and conduct requirements-based functional testing that
achieves a specified level of coverage [S]. (For flight-critical software, the stan-
dard requires Modified Condition/Decision Coverage [6].)

Standards like the W3C XML standard are fit for purpose if they are suffi-
ciently clear and if there is enough interest in producing or consuming the speci-
fied thing. Ad hoc review is useful as a means of identifying vagueness (or at least
failure to use formalisms where appropriate). Moreover, the reviewers’ comments
will identify concerns that might preclude wide adoption. In contrast, software

assurance standards are fit for purpose if conformance to them helps assessors to
determine that the software’s contributions to system hazards or threats and their
management are adequate. It is not clear that ad hoc review is the best practical
way to make this determination. Just as structured software reviews are more ef-
fective than ad hoc reviews [7], we contend that a structured review process will
be a more effective way of evaluating software assurance standards than current
practice.

3. Related Work

This work builds upon existing assurance argument technology. Assurance
arguments have been used to show that systems are adequately safe or secure
to operate. Researchers have used arguments to model standards. Researchers
and practitioners have also criticised standards, including the Common Criteria
standard that we used to evaluate our method. However, we are aware of no other
effort to assess this or any other software safety or security standard through a
process of argument capture and criticism.

3.1. Safety And Security Arguments

A safety argument is an assurance argument intended to demonstrate that a
system is adequately safe to operate [8]. This argument and the evidence it ref-
erences form a complete safety case. Both the argument and evidence are neces-
sary: without evidence, the conclusion of safety is not grounded, while without
argument, the evidence is not explained. Figure 1 in subsection 3.2 presents an
example safety argument fragment.

In some domains, developers are required to produce safety arguments be-
fore their systems are deployed. For example, the UK Defence Standard 00-56
contains the following requirement [9, §9.1]:

The Contractor shall produce a Safety Case for the system on behalf of the
Duty Holder. The Safety Case shall consist of a structured argument, sup-
ported by a body of evidence, that provides a compelling, comprehensible
and valid case that a system is safe for a given application in a given envi-
ronment.

Some researchers have suggested using assurance arguments to demonstrate
security rather than safety [10]. While industry adopted safety arguments more
broadly than security arguments, there is significant research interest in security
arguments and security cases [11, 12, 13].

4

3.2. The Goal Structuring Notation

Assurance arguments can be recorded in a number of notations, including
natural-language text. However, many people find it easier to perceive the logical
structure of an assurance argument when it is rendered in graphical form. Two
prominent graphical notations are commonly used to record safety arguments: the
Claims Argument Evidence (CAE) notation and the Goal Structuring Notation
(GSN) [14, 15].

Figure 1 presents a fragment of an example safety argument recorded in GSN.
This argument is for a hypothetical parts delivery robot for use in a factory. At the
top, rectangular goal element GSafety represents the main claim of the argument,
namely that the parts robot is adequately safe to operate. This claim is offered
in a context defined by three rounded context elements: CSystem references a
description of the parts courier robot; CEnvironment defines the factory-floor op-
erating environment; and CSafety explains what is meant by ‘adequate safety’ in
this system.

This example argument uses a typical safety argument strategy: strategy par-
allelogram GHazard42AM represents an argument over identified hazards. One
subgoal supporting GSafety through this strategy is GStopsShort. To show that
the courier robot stops short of a human worker in its path, we cite test evidence
represented by circular solution SSTesting. In a full argument, we would probably
supplement this test evidence with the results of reviews, analysis, and testing of
the system components (including its software).

3.3. Capturing Standards’ Arguments

Other researchers have captured standards’ arguments. For example, Ankrum
and Kromholz modelled the arguments of three standards — RTCA DO-178B [5],
ISO 14971 [16], and the Common Criteria [1, 2, 3] — as a pattern for safety and
security arguments [17]. Galloway et al. modelled the argument underlying DO-
178B to justify substituting formal analysis evidence in the place of the testing
evidence required by the standard [18].

Researchers have also captured parts of the Common Criteria standard to serve
purposes other than criticising the standard. For example, Schumacher has ex-
tracted design patterns from the Common Criteria’s security functional require-
ments [19]. Morimoto et al. have formalised the standard’s security functional
requirements to facilitate formal verification [20].

CSystem
Description
of parts
courier robot

GSafety CEnvironment

The parts courier Definition of oper-
robot is adequately ating environment
safe to operate

CSafety
Definition of
adequately safe

StArgOverHazards
Argument over
identified hazards

CHazardLog
Hazard log

GHazard42AM
The hazard of collision with a human
worker is adequately managed

v

GStopsShort CHumanSpeed

The parts courier robot Human workers will
stops short of a human not move at a speed
worker in its path greater than 20 MPH

SSTesting
Safety test
results

Goal Structurin
Notation Key 9 [JGoal [stategy —» Supportedby
Q Context O Solution = —> In the context of

Figure 1: An Example Safety Argument Rendered In GSN

Standard :> Argument

Argument Capture

Obijective of
Standard

Objective of _/

Requirements

Requirements

Argument
Criticism
Issue Sentencing

Standard Argument
Issues Issues

Figure 2: Method For Evaluating Software Assurance Standards

3.4. Criticism of the Common Criteria Standard

Others have criticised the Common Criteria standard that we used to evaluate
our method. For example, Barnum has called for a more objective and consistent
assessment of vulnerabilities [21]. We do not claim that all of the issues we re-
port are novel. Our contribution lies instead in demonstrating the feasibility and
efficacy of our method of analysing standards.

4. A Method for Evaluating Standards

Figure 2 illustrates our method for evaluating software assurance standards.
The method comprises three steps: argument capture, argument criticism, and
issue sentencing.

4.1. Argument Capture

The analyst begins by identifying the claim that the standard’s users want con-
formance to support. For example, users of a software safety standard might want
conformance to support a claim that the software’s contributions to system-level
hazards and their management are acceptable. This claim need not be stated in
the standard’s text; the objective is to evaluate the standard as it will be used. If

a standard is used in multiple ways, it must be evaluated again for each new use.
The analyst records this claim as the main claim of the captured argument.

Next, the analyst identifies the standard’s requirements, the evidence discussed
in or implied by those requirements, and the specific claims that the requirements
make of that evidence. The analysts records these as claims and evidence sup-
porting those claims. For example, consider RTCA DO-178B’s requirement for
“reviews and analyses” of the source code that cover (among other things) the “use
of uninitialized variables or constants” [5, §6.3.4f]. This requirement corresponds
both to a claim that no variables or constants are used before they are initialised
and to review or analysis evidence supporting that claim.

Finally, the analyst identifies the objectives of each group of requirements.
Even when standards do not include statements of the form “the objective of
{group of requirements} is ...”, they are often divided into sections or subsec-
tions, each with explanatory text. The analyst determines what the requirements
are meant to accomplish and represents this as a both a set of intermediate claims
and the argument structure linking low-level claims to the main claim.

While there are many notations for recording arguments, we have used the
Goal Structuring Notation (GSN) in our case study evaluation [8]. In GSN, rect-
angular goal elements represent claims and circular solution elements can be used
to cite evidence. The analyst records the argument structure by linking each claim
to the sub-claims or evidence that supports it using arrows. Figure 3 gives an
example.

Throughout this process, the standard should be captured as accurately as pos-
sible. The standard’s text should be used in the captured argument as much as
practical, especially where it is confusing. Where the standard’s text describes
several objectives of several requirements without identifying which is satisfied
by which, the argument should do likewise. Where the reasoning in the text skips
steps, so should the argument. In this way, flaws in the standard become flaws in
the argument so that these can be identified, reported, and redressed.

4.2. Argument Criticism

The analyst reviews the captured argument much as one would a safety ar-
gument [22]. The review proceeds in phases, each focused on a fragment of ar-
gument containing a few related reasoning steps. For each such fragment, the
analyst:

1. Considers ways in which (in his or her experience) the argument might be
vague or subject to misinterpretation

2. Attempts to draw out implicit assumptions

3. Judges the necessity and reasonableness of each assumption (implicit or
explicit)

4. Searches the argument for well-known fallacies [23]

5. Identifies where ‘independent’ lines of reasoning depend upon common
sub-arguments

6. Considers expected but omitted practice to see if the argument could prac-
ticably be strengthened

7. Determines whether negative experience with similar systems might pro-
vide counterevidence

8. Judges (subjectively) the strength of the argument

To determine whether the standard should required additional evidence, the
analyst should rely upon the As Confident As Reasonably Practicable (ACARP)
paradigm first proposed by Brian Randell. That is, analysts should first judge
whether evidence is manifestly sufficient or grossly insufficient based on the risk
addressed. In the broad grey area between those absolute limits, analysts should
weigh the costs and benefits of additional evidence in the context of the system
in question. Every useful form of evidence is obligatory unless the cost of its
provision would be grossly disproportionate to the product of remaining risk and
the expected gain in confidence. The ACARP paradigm is not universally recog-
nised or practiced. However, it is the only reasonable, general-purpose means of
determining how much evidence a standard should require.

It might be feasible to provide a certain form of evidence in some cases and
not in others. The analyst should raise an issue wherever, in his or her judgment,
provision of evidence might be reasonable in at least a large proportion of cases.
Standards can be modified to accommodate the remaining cases by requiring the
developers to either supply each form of evidence (or its equivalent) or show that
the cost of providing it would be grossly disproportionate to the gain in confi-
dence. Some standards already use this mechanism [9].

4.3. Issue Sentencing

Analysts might err when capturing an argument. After criticising the captured
argument, the analyst re-examines each identified issue to determine what defect

9

in the standard, if any, it reflects. For example, if the argument uses a term without
defining it, the analyst should determine whether this term is defined in the stan-
dard or its normative references. If an issue reflects any deficiency in the standard
(even if it also reflects an argument capture error), the analyst should clarify its
description as needed and then report it as a finding.

5. Case Study Assessment

Our thesis is that a structured method of determining whether conformance
with a standard supports a conclusion such as adequate safety or security is both
feasible and capable of identifying issues of interest. To test this, and to collect
observations that would help us refine the method, we conducted a case study. The
subject of our study is the internationally-recognised Common Criteria security
standard [1, 2, 3]. We selected this standard for two reasons:

1. It is a subject of interest for a broad, international community

2. It is representative of the indirect approach used by software safety and
security standards

5.1. Case Study Method

To determine whether our method was feasible and capable of identifying in-
teresting issues with the assumed use of the specified standard, we counted and
characterised the identified issues. Our method might be infeasible if capturing
the argument forces the analyst to speculate to such a degree that issues in the
argument reflect mainly erroneous speculation. To assess the noise added during
argument capture, we counted issues both before and after issue sentencing. We
would consider fewer than 10% of issues stemming from mis-capture to indicate
excellent performance, and more than 90% to indicate that argument capture is
infeasible.

Our method might be incapable of identifying interesting issues if criticising
the standard’s logic provided no more insight than ad hoc review of the standard’s
text. The Common Criteria is an established standard and has been reviewed and
revised several times. As a result, we consider our method capable of revealing
interesting defects if it finds any such issues in this well-reviewed standard.

10

6. Capturing the Common Criteria Standard

The Common Ceriteria is a three-part standard for evaluating the security of
information technology products. Part 1 defines the security model and the terms
used in the standard [1]. Parts 2 and 3 define template security requirements and
their objectives [2, 3].

The Common Criteria standard is complemented by the separate Common
Methodology for Information Technology Security Evaluation [24]. The Com-
mon Methodology “defines the minimum actions to be performed by an evaluator
in order to conduct a Common Criteria evaluation, using the criteria and evalua-
tions defined in the Common Criteria” [24, {3]. Its statement of scope anticipates
readers using the Common Methodology in order to clarify their understanding of
the Common Ceriteria.

Readers of a standard should seek clarification where necessary. However,
standards should be written as clearly as practicable to minimise the need for
such clarification. Consequently, we did not include material from the Common
Methodology in our captured argument. While we discuss the Common Method-
ology alongside the sample issues presented in sections section 7, this discussion
is for completeness only: our evaluation was of the Common Criteria standard in
isolation.

6.1. The Common Criteria Security Model

The Common Criteria standard describes a security model [1, §7]. In this
model, a hardware, software, firmware, or mixed Target Of Evaluation (TOE)
must meet its security objectives by satisfying its security functional requirements
in the context of assumptions about the operational environment. Separate secu-
rity assurance requirements describe the assurance properties that the TOE, the
process of its development, and/or its development artefacts must have to estab-
lish adequate confidence that the security functional requirements have been met.
The TOE implements TOE Security Functionality (TSF) that enforces the security
functional requirements. The standard also uses the term TSF to identify the por-
tion of the TOE that implements the TSE. Access to the TSF is through the TSF
interface.

Each TOE is evaluated against a security target prepared for that TOE. The
security target includes [1, §A.2]:

e A description of the TOE

e A definition of the security problem to be addressed

11

The security objectives for the TOE

The security objectives for the operational environment

A statement of the TOE’s security functional requirements

A statement of the TOE’s security assurance requirements

Common Criteria-style templates for any requirements that cannot be de-
rived from the templates in Parts 2 and 3 of the standard

The security target and TOE are evaluated separately [1, §10]. An security
target evaluation shows that an security target is sound and internally consistent
and that it correctly instantiates any templates it is based upon. A TOE evaluation
shows that the TOE conforms to its security target.

Some security targets are derived from a protection profile [1, §9]. A protec-
tion profile serves a template for security targets for a class of systems. Writing
a security target that conforms to a protection profile contributes to evaluation re-
sults that enable comparisons across systems in that class. However, the use of a
protection profile is optional and contributes no direct evidence of security. Ac-
cordingly, we have elected not to model or analyse the standard security assurance
requirements related to protection profile evaluation (i.e. class APE).

6.2. The Common Criteria’s Requirements

The Common Criteria’s requirements are embodied in the template security
assurance requirements presented in Part 3. These requirements are organised
into the eight classes shown in Table 2. Each class is further divided into families.
Each family comprises a number of individual requirements, called elements. The
standard defines three kinds of elements:

e Developer Action Elements specify things that the developer must do. For
example, developers must supply design documentation to the evaluators [3,
ADV_TDS.1.1D].

o Content and Presentation Elements specify properties of development arte-
facts that assessors must check. For example, the design must identify all
subsystems of the TSF [3, ADV_TDS.1.2C].

12

Table 2: Template Security Assurance Requirement Classes (From [3])

Identifier Description

APE “Protection profile evaluation”

ASE “Security target evaluation”

ADV “Development” of the TOE

AGD “Guidance documents” for preparation and operation of the TOE
ALC Development “life-cycle support™

ATE “Tests” of the TOE

AVA “Vulnerability assessment” of the TOE

ACO “Composition”

e Evaluator Action Elements specify things that the evaluator must do. For
example, most families require the evaluator to “confirm that the informa-
tion provided meets all requirements for context and presentation of evi-
dence” [3, ASE_INT.1.1E]. (That is, evaluators must confirm that the re-
quirements specified by the content and presentation elements have been
met.)

Many families are defined at a number of levels, with each level adding addi-
tional rigour to the level below. For example, level 6 of family ADV _FSP (“func-
tional specification”) adds rigour to the lower levels by requiring that the func-
tional specification required by those levels also be presented in a formal style [3,
ADV_FSP.6.2C].

Security target authors select a set of security assurance requirements for a
given TOE by choosing choosing levels from a subset of the template require-
ments, taking care to satisfy dependency requirements. In order to make security
assurance requirement choices consistent across applications (and the resulting
assurance comparable), the standard includes seven pre-defined Evaluation As-
surance Levels (EALs). Each EAL comprises a set of security assurance require-
ments. For example, EAL 7 includes the requirements of the ATE_FUN family
(“functional tests”) at level 2 [3, Table 8]. The EALs are are numbered from 1
to 7, with higher-numbered EALs meant to represent more assurance than lower-
numbered EALs [3, §8.1].

Class ACO provides a mechanism for evaluating systems composed of com-
ponents that have been evaluated in isolation. Because the argument for composite

13

Table 3: Extract From Security Assurance Requirement Family ALC_DVS (From [3])

Element Text

ALC_DVS.1.1D The developer shall produce and provide development
security documentation

ALC_DVS.1.1C The development security documentation shall describe all the
physical, procedural, personnel, and other security measures
that are necessary to protect the confidentiality and integrity
of the TOE design and implementation in its development
environment

ALC_DVS.2.2E The evaluator shall confirm that the security measures are
being applied

TOEs differs significantly from that of TOEs evaluated all at once, we elected not
to capture class ACO. Our evaluation thus excludes that part of the standard.

6.3. Capturing the Common Criteria Argument

We identified the standard’s discussion of its security model (presented in
Chapter 7 of Part 1 [1]) as indicative of the claims that users of the standard would
like to be able to make. We synthesised the main claim of our captured argument
from Figure 3 of Part 1 of the standard. This claim reads:

The TOE correctly implements countermeasures sufficient to min-
imise risk to assets.

For each developer action element or evaluator action element requiring pro-
duction of an artefact, we captured a solution representing that artefact. For exam-
ple, Figure 3 shows the argument fragment we captured from family ALC_DVS
(“development security”), which is summarised in Table 3. The solution SDSDoc
represents the artefact introduced by element ALC_DVS.1.1D.

For each evaluator action element requiring confirmation of a specific prop-
erty, we captured a goal solved by the developer’s report. For example, GDSPAp-
plied and solution SERonSV represent element ALC_DVS.2.2E.

For each content and presentation element dictating a property of an artefact,
we captured a goal solved by the relevant artefact. For example, goal GDSPCom-
plete and solution SDSDoc represent element ALC_DVS.1.1C.

14

GDevelSec

CDevelSecDoc Measures to remove or
Development security reduce threats existing at the
documentation developer’s site are adequate

(ALC_DVS, EALs 3-7)

GDSPComplete GDSPApplied GDSPAdequate
The development security policies The development The development
describe all the physical, proce- security policies security

dural, personnel, and other security are being applied measures provide
measures that are necessary to (ALC_DVS.1.2E) the necessary
protect the confidentiality and level of protection
integrity of the TOE design and its (ALC_DVS.2.2C,
implementation in its development EALs 6-7)
environment

(ALC_DVS.1.10)

SDSPRtnl

SDSDoc SERonSV The rationale
Development The given in the
security evaluators’ development
i report on site security
ooumentation visit(s) documentation

Figure 3: Argument Fragment Capturing Family ALC_DVS

We captured each standard’s objectives as intermediate goals. The objectives
statements for some standards do not explicitly name an objective. For example,
the objectives statement of family ALC_DVS reads [3]:

Development security is concerned with physical, procedural, person-
nel, and other security measures that may be used in the development
environment to protect the TOE and its parts. It includes the physi-
cal security of the development location and any procedures used to
select development staff.

15

In such cases, we derived goal text either from other text in the standard or
paraphrased our understanding of the objectives. For example, the text of goal
GDevelSec is taken from a sentence in the application notes for family ALC_DVS
that reads, “this family deals with measures to remove or reduce threats existing
at the developer’s site” [3, {373].

We modelled modelled the security assurance requirements included in all
seven EALs as shown in Figure 3. Annotations in parenthesis describe the EALSs
at which parts of the argument apply. Circle annotations like the one between goal
GDevelSec and subgoal GDSPAdequate indicate subgoals that do not apply at the
same EALs as the goals they solve. We did not model requirements such as family
ALC_FLR and class ACO that do not appear in any EAL.

6.4. The Captured Argument Is Not a Security Argument

The argument we captured is not a security argument. A security argument
would focus on a single TOE and include details such as security objectives, se-
curity functional requirements, and product design features. Ideally, a security
argument would be organised so as to trace each threat to security objectives, se-
curity functional requirements, and finally to evidence. This organisation permits
more attention to be paid to the parts of the argument that concern the greatest
threats.

Because the argument captured from a standard is not a safety or security argu-
ment, it seems to focus on procedural rather than technical aspects. For example,
consider our captured argument’s treatment of testing. Figure 4 presents part of
argument we captured from class ATE. Because the Common Criteria standard is
not TOE-specific, the captured argument argues about the testing procedure rather
than over test results.

The captured argument’s focus on procedural rather than technical details
makes it ill-suited to be a specific system’s security argument. However, this
focus is precisely what is needed to facilitate criticising a standard that will be
applied to many systems. The details of the procedures used are precisely what
determines the strength of conclusions about a system’s properties.

6.5. Criticising the Common Criteria Argument

We reviewed the Common Criteria argument using the process described in
subsection 4.2, with one exception. The analyst (Graydon) has a general back-
ground in high-integrity systems development but cannot claim a particular ex-
pertise in software security issues. As a result, he could not systematically exam-

16

GTOEOpAccDesDesc

to its design description
(ATE)

The TOE operates according

GTestDepth

The risk of missing an error in
the development of the TOE
has been adequately mitigated
(ATE_DPT, EALs 3-7)

GFuncTests

The tests in the test documenta-
tion have been performed and
documented correctly
(ATE_FUN, EALs 2-7)

GIndTesting

The developer has carried out the
planned test programme on the TSF
and correctly recorded the results

r

CTestDoc
Test
documentation

3

(ATE_IND)

GTestCoverage

its functional specification
(ATE_COV, EALs 2-7)

The TSF has been tested against

CHazardLog
>\ Hazard log

v

GTSFlsTested

{Some [EAL 2]/ All [EALs 3-7]} of the TSFls
have been {exhaustively [EALs 6 & 7]} tested

GTestCorresp

The correspondence
between the tests in the test
documentation and the TSFls
in the functional specification
has been shown

(ATE_COV.1.1C, EALs 2-7)

GTSFICvgAnalyzed
Analysis demonstrates
that all TSFIs have
been {completely
[EALs 6 & 7]} tested
(ATE_COV.2.2C,
EALs 3-7)

STCTSFIsE
Evidence (e.g.
table) of Test
Coverage in the
test documentation
(EAL 2)

STSFICVgAR

CCompleteCovg

Complete coverage can be demon-
strated by a statement of corre-
spondence, perhaps using a table,
but in addition the developer is
required to demonstrate that the
tests exercise all of the parameters
of all TSFls. This additional re-
quirement includes bounds testing
... and negative testing . . . This
kind of testing is not, strictly speak-
ing, exhaustive because not every
possible value of the parameters is
expected to be checked.

TSFI coverage
analysis results
(EALs 3-7)

Goal Structuring
Notation Key
(Continued)

4@ Choice
A Requires instantiation
O Optional

Figure 4: Argument Fragment Capturing Part Of Class ATE

17

Table 4: Classification of Issues Found

Missing or inadequate evidence 60
Misleading or inadequate explanation 28
Other issues (mainly vagueness) 33
TOTAL 121

ine the argument for ways in which negative experience might call its claims into
question.

7. Results of the Case Study

During argument criticism, we identified 173 issues. We discarded 52 (30%)
of these during issue sentencing, suggesting that a significant but not overwhelm-
ing amount of noise was added during argument capture.

The following subections present 15 examples selected from the remaining
121 issues. We consider these issues among the most serious we found. We know
of no objective metric for security standard issues. As a result, we cannot prove
that these are “interesting”. We present these examples so that readers can form
their own opinions.

We describe each issue and suggest a potential improvement to the standard.
We do not claim to suggest the best improvements practicable: identifying an issue
requires showing that it could be improved, not determining how best to improve
it. We present these potential improvements mainly to illustrate the issues we
found but also in the hope that users of the Common Criteria standard might find
them useful.

We did not precisely measure the time needed to evaluate the standard. Nev-
ertheless, the case study activities were conducted by one researcher over several
weeks. Considering the importance of standards, such effort is not prohibitive.

7.1. Example Issues of Missing or Inadequate Evidence

Table 4 presents a breakdown of the 121 issues we found. Of these, 60 are
issues of missing or inadequate evidence. That is, either: (a) the reasoning in
the standard’s argument is invalid because it omits an entire premise by failing to
demand appropriate evidence; or (b) providing additional evidence could practi-
cably increase confidence for systems of the criticality signified by each EAL. In
this section, we present ten example issues of missing or inadequate evidence.

18

7.1.1. Issue: System-Level Testing With Requirements Coverage

The Common Criteria does not require system-level testing that complements
lower-level testing. The standard requires testing evidence showing that the TOE
satisfies its specification [3, ATE_COV.1.1C]. It also requires the evaluator to de-
termine (using an unspecified procedure) that “the functional specification is an
accurate and complete instantiation of the [security functional requirements]” [3,
ADV _FSP.1.2E]. These forms of evidence, taken together, support a claim that
the security functional requirements are satisfied. However, indirect support gives
rise to uncertainty: if either the testing or the specification evaluation is flawed, a
defective implementation might pass unnoticed.

Potential Improvement: The Common Criteria standard should require software
testing at the unit, integration, and system levels. Standards for safety-critical
software typically this evidence because each form imperfect: traceability and
specification review evidence might miss errors, unit testing is based on derived
requirements that might be incorrect, and system tests typically exercise fewer
paths through the software than unit tests do. Together, each form compensates
for the others’ weaknesses.

7.1.2. Issue: Adequacy of Structural Coverage

The Common Criteria does not require evidence of structural (code) coverage
in the case of software TOEs. As the standard notes, it is imperative that functional
tests exercise the implementation’s internals [3, {415]:

The objective [of test depth requirements] is to counter the risk of
missing an error in the development of the TOE. Testing that exercises
specific internal interfaces can provide assurance not only that the
TSF exhibits the desired external security behaviour, but also that this
behaviour stems from correctly operating internal functionality.

However, the Common Criteria requires only minimum coverage of the de-
sign. At EALs 3-7, functional tests must cover “all subsystems in the TOE de-
sign” [3, ATE_DPT.1.2C]. At EALs 5-7, analysis must also show that “all TSF
modules in the TOE design have been tested” [3, ATE_DPT.3.3C]. There is no
reason to believe that tests covering subsystems or modules would in all cases ad-
equately exercise all parts of the code implementing those subsystems or modules.

Potential Improvement: The Common Criteria standard should require analysis
of structural coverage of software tests and prescribe minimum coverage levels at

19

each EAL. Developers of software in safety applications routinely analyse struc-
tural coverage. For example, DO-178B calls for testing of flight-critical software
that achieves modified condition / decision coverage [5, 6]. Even in the case of
less-critical software, testing must achieve statement coverage [S5]. Automated
tools for analysing test suite structural coverage are readily available [25, 26].
Demonstrably achieving basic levels of coverage — such as statement coverage —
should be practical even in less-critical applications (e.g. EAL 3).

7.1.3. Issue: Adequacy of Formal Proofs

The Common Criteria requires no evidence of the adequacy of formal proofs.
At EAL 7, the standard requires developers to prove that the TOE design refines
its formal specification [3, ADV_TDS.6.10C]:

The proof of correspondence between the formal specifications of the
TSF subsystems [given in the design documentation] and of the func-
tional specification shall demonstrate that all behaviour described in
the TOE design is a correct and complete refinement of the [TSF in-
terface] that invoked it.

Seemingly-simple hand-written and checked proofs might contain errors. Hu-
mans or software tools might mistranslate formal representations. Software proof
checking tools might be imperfect [27]. In an informative appendix, standard
suggests using tools when hand proofs would be “long winded and incomprehen-
sible” [3, 605]. However, it does not require or even advise evaluating whether
any proof checker or translation tool is fit for use.

Potential Improvement: The Common Criteria standard should require formal
proofs to be checked using an automated proof checker. The standard should also
require evidence that any tools used are fit for purpose.

7.1.4. Issue: Sufficiency of the Security Assurance Requirements

The Common Criteria requires no evidence that security assurance require-
ments are adequate to demonstrate acceptable security. Other assurance standards
such as DO-178B prescribe a package of assurance requirements based on the
consequences of a failure [5]. In contrast, the Common Criteria takes a more
goal-oriented approach. Security target authors first select a subset of the tem-
plate requirements captured in our argument and augment these with any num-
ber of custom requirements. The authors then write a rationale explaining these
choices [3, ASE_REQ.2.8C]. However, this explanation need not be compelling.

20

As the Common Methodology interprets the standard, “any explanation is cor-
rect, as long as ... [there are no] obvious inconsistencies with the remainder of
the [security target]” [24, {305].

One could take the view that those deploying the TOE, not those evaluating
it, should judge the adequacy of the security assurance requirements. After all,
TOEs might be built for a range of applications and only users know the risks in
each application. However, the standard requires evaluation of a security target
that must contain a rationale for the assurance requirements. This creates the
(false) impression that the assurance requirements have been judged appropriate
for applications similar to those described by the target.

Potential Improvement: The Common Criteria standard should require evidence
that the chosen security assurance requirements provide as much confidence as is
reasonably practicable. To provide this evidence, the evaluators might review
the rationale to determine whether adding a security assurance requirement from
Part 3 of the standard would practicably justify greater confidence. If developers
supplied the rationale in the form of a structure argument, it could be criticised
using a process similar to that presented in subsection 4.2.

7.1.5. Issue: Correctness of the Security Policy Model

The Common Criteria does not require evidence sufficient to show that the
formal security policy model is correct. This model, required at EALs 6 and 7, is
meant to formalise a part of the security functional requirements [3, 269]:

Inadequacies in a TOE can result ... from a failure in understand-
ing the [security functional requirements] ... Throughout the design,
implementation, and review processes, the modelled security require-
ments may be used as precise design and implementation guidance,
thereby providing increased assurance that the modelled security re-
quirements are satisfied by the TOE. The precision of the model and
resulting guidance is significantly improved by casting the model in
a formal language and verifying the security requirements by formal
proof.

The developer must “identify the relevant portions of the statement of security
functional requirements that make up” each modelled policy [3, ADV_SPM1.2D].
However, the standard requires no evidence that the model both correctly encodes
the identified requirements.

21

Potential Improvement: The Common Criteria standard should require evidence
showing that the security policy model correctly models the selected security func-
tional requirements. The standard should also require evidence showing that the
security policy model covers all portions of the security functional requirements
amenable to such modelling. Moreover, if developers are to use the security pol-
icy model throughout development, the standard should require evidence showing
that they have done so.

7.1.6. Issue: Clarity of the Security Problem Definition

The Common Criteria requires no evidence that the security problem defini-
tion is clear. Clarity is essential because differing interpretations of the security
problem might lead to misplaced confidence in a purported solution. Perhaps
recognising this, the standard sets clarity as an objective (emphasis ours) [3, {167]:

Evaluation of the security problem definition is required to demon-
strate that the security problem intended to be addressed by the TOE
and its operational environment, [sic] is clearly defined.

The evaluator is required to confirm that the security problem description
contains specified elements. For example, the security problem definition must
“describe the assumptions about the operational environment of the TOE” [3,
APE_SPD.1.4C]. However, the evaluator is not required to analyse the clarity of
the statement.

Potential Improvement: The Common Criteria standard should require evalua-
tors to confirm that the security problem statement is acceptably clear. The stan-
dard’s writers might have chosen not to require a subjective judgement that might
be inconsistent across reviewers. However, imperfect evidence is more convincing
than no evidence.

7.1.7. Issue: Appropriateness of the Architecture

The Common Criteria provides no guidance on how completely the securi-
ty-related portion of the TOE must “protec[t] itself from tampering” and “pre-
ven[t] bypass of the security functional requirement-enforcing functionality” [3,
ADV_ARC.1.4C, ADV_ARC.1.5C]. These properties of the architecture are cru-
cial: “without a sound architecture, the entire TOE functionality would have to be
examined” [3, 216]. However, while these properties are a matter of degree, the
standard is written in absolute terms.

22

To illustrate this problem, suppose that a cryptographic function computed by
a smart card chip must remain secret. Is hiding the implementation under ob-
scuring layers of silicon enough? Given that researchers have reverse-engineered
chips by shaving layers off the chip and photographing each [28], is obfuscation
of the transistor-level design required?

Potential Improvement: The Common Criteria standard might address this is-
sue by dictating an evaluation process, thus operational defining the required de-
gree. Additionally or alternatively, the standard could require the use of well-
understood, ‘best practice’ architectural solutions wherever practicable.

7.1.8. Issue: The Implementation Representation Must Match the TOE

The Common Criteria does not require complete evidence that the TOE was
generated from the given implementation representation (e.g. source code). It
is imperative that these artefacts correspond; if they do not, evidence based on
testing, analysis, or review of the implementation representation tells us nothing
about the delivered TOE.

At EALs 4-7, the implementation representation must “define the TSF to a
level of detail such that [it] can be generated without further design decisions” [3,
ADV _AIMP.1.1C]. However, knowing that an implementation can be generated
without further design decisions is not the same as knowing that it was.

At EALs 3-7, the implementation representation must “describe how the [con-
figuration management] system is used for the development of the TOE” [3, ALC_-
CMC.3.5C]. It is not clear that such a description would adequately detail how the
TOE was produced from the implementation representation.

At EALSs 4-7, the configuration management system must “support the pro-
duction of the TOE by automated means” [3, ALC_CMC.4.5C]. Because develop-
ers might fail to follow directions, we agree that build processes should automated
to the degree practicable. However, knowing that the configuration management
system supports automated production is not the same as knowing that the pro-
duction was automated.

At EALs 6 and 7, the evaluator must “determine that the application of the
production support procedures results in a TOE as provided by the developer for
testing activities” [3, ALC_.CMC.5.2E]. However, the evaluator might overlook
subtle differences.

Potential Improvement: The Common Criteria standard should require evidence
showing that a given software TOE was produced from given source code. This

23

evidence could be provided practicably, even at lower EALs. For example, devel-
opers could automate build and source control processes and collect build logs.
Where a build step is difficult or impossible to automate, developers could initial
steps on a detailed checklist.

7.1.9. Issue: Adequacy of Implementation Guidelines

The Common Criteria requires no evidence showing that implementation guide-
lines are fit for purpose. Developers must identify and use implementation guide-
lines at EALs 5-7, presumably to help forestall the introduction of defects. In
an application note, the standard defines acceptable implementation guidelines [3,
1398]:

Implementation guidelines may be accepted as an implementation
standard if they have been approved by some group of experts (e.g.
academic experts, standards bodies). Implementation standards are
normally public, well accepted and common practise in a specific in-
dustry, but developer-specific implementation guidelines may also be
accepted as a standard; the emphasis is on the expertise.

Despite presenting this definition, the standard does not require evidence that
the implementation guidelines were developed by experts. Moreover, a group of
experts might define a standard that does not minimise or even markedly reduce
implementation defects [29, 30].

Potential Improvement: The Common Criteria standard should require the use
of implementation guidelines that preclude software practices that are known to
be risky. These include, but are not limited to [31, 32]:

e The use of implementation-defined code constructs
e Unchecked array accesses

e The use of unfiltered input in SQL queries

7.1.10. Issue: Evidence of Tool Correctness

The Common Criteria does not require adequate evidence showing that devel-
opment tools are fit for purpose. A defective tool might either introduce a security
defect or fail to detect one. Recognising this, one of the standard’s objectives is
to ensure that tools “used to develop, analyse and implement the TOE” are not
“ill-defined, inconsistent or incorrect” [3, {394]. To achieve this, it requires tools

24

used at EALSs 4-7 to be “well-defined” [3, ALC_TAT.1.1C]. The standard defines
well-defined tools as [3, {[396]

tools that are clearly and completely described. For example, pro-
gramming languages and computer aided design (CAD) systems that
are based on a standard published by standards bodies are considered
to be well-defined.

The standard also requires the documentation of each tool to “unambiguously
define the meaning of all statements as well as all conventions and directives used
in the implementation” [3, ALC_TAT.1.2C]. This requirement “is especially appli-
cable to programming languages so as to ensure that all statements in the source
code have an unambiguous meaning” [3, {397].

This evidence shows that a tool’s inputs and outputs are unambiguous. How-
ever, it cannot show that the tool produces the correct output for each given input.

Potential Improvement: The Common Criteria standard should require evidence
that each tool is fit for the purpose for which it is used. The strength of this
evidence should be commensurate with the risk posed by a tool failure.

7.2. Example Issues of Missing or Inadequate Explanation

Twenty-eight of the issues we found are issues of misleading or inadequate
explanation of the purpose of an item or items of evidence. That is, the standard’s
objectives statements present a claim about what the evidence shows that is either:
(a) broader than what the evidence shows; or (b) narrower than what the argument
as a whole requires. In this section, we present three example issues of missing or
inadequate explanation.

7.2.1. Issue: Objectives for the Functional Specification

The Common Criteria does not clearly state the properties that must be es-
tablished by analysis of the functional specification. The standard defines the
following objectives for the functional specification [3, 225]:

[The functional specification] provides assurance directly by allowing
the evaluator to understand how the TSF meets the claimed security
functional requirements. It also provides assurance indirectly ...:

e The [TSF interfaces] may be used to gain better understanding
of how the TSF is protected against corruption ... and/or by-
pass;

25

e [As] an important input for ... testing;

e [As an input] to search for vulnerabilities.

The Common Criteria requires more attention to the TSF than to the remainder
of the TOE. Given this strategy, it is crucial to identify all interfaces to security
functionality as such. It is also crucial to establish that the specified behaviour
implements the security functional requirements.

Potential Improvement: The Common Criteria standard should more clearly
specify the objectives of analysis of the functional specification.

7.2.2. Issue: Objectives of Testing

The Common Criteria does not accurately describe the objectives of testing.
The standard defines the objective of testing as “confirmation that the TSF oper-
ates according to its design descriptions” [3, [401]. This objective is misleading
because testing is based on the functional specification, not (solely) the design
description artefact. This objective is also insufficient. As described in subsub-
section 7.1.1, testing should confirm that the TOE meets its high-level security
functional requirements.

Potential Improvement: The Common Criteria standard should more clearly
specify the objectives of testing.

7.2.3. Issue: Objective of “Exhaustive” Testing

The Common Criteria specifies “exhaustive” testing as an objective but explic-
itly does not require it. At EALs 6 and 7, one objective of testing is “to confirm
that the developer performed exhaustive tests of all interfaces in the functional
specification” [3, J411]. However, the standard requires only that these interfaces
be “completely” tested [3, ATE_COV.3.2C]. The standard’s application notes clar-
ify (emphasis in the original):

The developer is required to show how tests in the test documentation
correspond to all of the [TSF interfaces] in the functional specifica-
tion. This can be achieved by a statement of correspondence, perhaps
using a table, but in addition the developer is required to demonstrate
that the tests exercise all of the parameters of all [interfaces]. This ad-
ditional requirement includes bounds testing ... and negative testing
... This kind of testing is not, strictly speaking, exhaustive because
not every possible value of the parameters is expected to be checked.

26

Potential Improvement: The Common Criteria standard should clearly specify
the coverage that testing is required to achieve. The text in the application notes
is a good start, but the text of the element itself must be clarified to call for this
coverage, rather than a coverage that cannot be achieved practically.

7.3. Example Other Issues (e.g. Issues of Vagueness)

We could not classify 33 of the 121 issues we found as either issues of missing
or inadequate evidence or issues of misleading or inadequate explanation. Most
of these 33 issues are issues of vagueness in the standard’s language. We also
identified a questionable assumption and text with an intended meaning that con-
tradicts its literal meaning. In this section, we present two example example issues
classified as “other”.

7.3.1. Issue: “Tested” Is Undefined

The Common Criteria does not precisely define the test coverage required at
EALs 3-5. At these EALSs, “analysis of the test coverage shall demonstrate that all
[TSF interfaces] in the functional specification have been tested” [3, ATE_COV.-
2.2C]. However, no definition of “tested” is supplied or referenced. The Common
Methodology interprets “tested” in the least-rigorous possible way: “All [TSF
interfaces] that are described in the functional specification have to be present in
the test coverage analysis and mapped to tests in order for completeness to be
claimed” [24, q1275]. In many EAL 3-5 applications, additional testing rigour
would practicably provide increased confidence.

Potential Improvement: The standard should be revised to clarify the test cover-
age required at EALs 3-5.

7.3.2. Issue: “Focused” and “Methodical” Vulnerability Analysis

The Common Criteria uses undefined terms to describe the rigour required
with which the evaluator must analyse the TOE for vulnerabilities. At EALs 2
and 3, the evaluator must perform [3, AVA_VAN.2.3E]

an independent vulnerability analysis of the TOE using the guidance
documentation, functional specification, TOE design and security ar-
chitecture description to identify potential vulnerabilities in the TOE.

AtEAL 5, the analysis must also be “focused” [3, AVA_VAN.3.3E]. AtEALs 6
and 7, the analysis must be “methodical” rather than focused [3, AVA_VAN.4.3E].
The standard does not define either term. Without a precise definition of these

27

terms, it is impossible to know how much confidence a focused or methodical
analysis would inspire.

The standard similarly fails to define the terms it uses to define attack poten-
tials. After conducting the vulnerability analysis, evaluators must “conduct pen-
etration testing based on the identified potential vulnerabilities to determine that
the TOE is resistant to attacks” by an attacker possessing “Basic” attack potential
at EALs 1-3, “Enhanced-Basic” attack potential at EAL 4, “Moderate” attack po-
tential at EAL 5, and “High” attack potential at EALs 6 and 7 [3, AVA_VAN.1.3E,
etc.]. Neither the text of ADV_VAN nor Part 1 defines “resistant” or “Basic”,
“Enhanced-Basic”, “Moderate”, or “High” attack potential.

Potential Improvement: Lack of expertise in vulnerability analysis precludes us
from suggesting better criteria for vulnerability analysis. However, it might be
helpful to require analysts to have appropriate experience with similar systems. It
might also be helpful to require the analyst to consider the TOE from appropriate
perspectives at multiple levels of abstraction. Definitions for “Basic”, “Enhanced-
Basic”, “Moderate”, and “High” attack potential should be provided.

8. Discussion

The Common Criteria standard has already been subjected to multiple rounds
of ad hoc review and revision. As a result, our study is not a head-to-head compar-
ison of the efficacy of ad hoc review and our structured method. Instead, our study
should be interpreted as showing that our method can find issues that remain even
after multiple rounds of review and revision conducted using current practices.

No review process is perfect, and we do not claim that analysts using our
method will never report spurious issues or fail to report real ones. For instance,
an analyst who is not familiar with a particular practice might fail to call for its
use. In this respect, our analyst’s relative lack of security experience should have
made him less likely to find interesting issues, not more likely. Analysts might
also err in judgments of cost, feasibility, or the confidence inspired by particular
evidence. However imperfect our method, our experience shows that it can find
issues that existing techniques have apparently missed.

While we have evaluated our method on only one standard, we aim for it to be
applicable to standards with the characteristic approach used by software safety
and security standards. To determine whether other standards would be amenable
to our argument capture process, we briefly examined the structure of RTCA DO-
178B [5] and the IEC 61508 Part 3 software safety standard [33]. Both RTCA

28

DO-178B and IEC 61508 describe in detail the evidence that they require. How-
ever, while IEC 61508 goes into detail about the significance of this evidence,
RTCA DO-178B says comparatively less about this than either IEC 61508 or the
Common Criteria. For example, RTCA DO-178B requires configuration manage-
ment to ensure that changes are “recorded, approved, and implemented”, but does
not say why they must be [5, §7.1e]. This might force the analyst capturing its
argument to make reasoned guesses about the purpose of evidence. Others have
reported extracting the argument from this standard, suggesting that this problem
is surmountable [18]. Moreover, the lack of explanation should itself be viewed
as an issue requiring redress. Indeed, one might hypothesise that this lack of ex-
planation is one of the reasons why RTCA DO-178B is viewed as a standard that
requires much interpretation by developers and assessors [17].

9. Conclusion

We have defined a method for assessing software safety and security standards
by capturing and criticising their arguments. To demonstrate the feasibility and
efficacy of this method, we have conducted a case-study application of it to the
Common Criteria standard. Our results indicate both that the method is feasi-
ble and that it can reveal significant issues in a standard that has already been
subjected to several rounds of ad hoc review. Some of the 121 issues that we iden-
tified negatively affect the confidence that can be justified by conformance to the
standard.

We do not claim that the Common Criteria is without merit or utility. It might
be argued that experienced evaluators would apply a standard correctly despite
its flaws. However, the issues identified both highlight areas in which the stan-
dard might be improved and aid judgment of how much confidence is justified by
evaluations following the standard as written.

We hope that future versions of the Common Criteria will include both revised
security assurance requirement templates and EALSs that address evidence short-
falls and clarified objective statements. However, users of the standard need not
wait. Extended elements can be used to mandate the missing evidence before the
standard is revised.

Acknowledgement

We thank John Knight for inspiring this work. We thank Howard Chivers,
Karsten Nohl, and the anonymous reviewers for their constructive criticism. We

29

also thank the Swedish Foundation for Strategic Research (SSF) for supporting
this work as part of the SYNOPSIS project.

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

CCMB-2009-07-001, Common Criteria for Information Technology Secu-
rity Evaluation, Part 1: Introduction and general model, Version 3.1, Revi-
sion 3, Final, Common Ceriteria, 2009.

URL http://www.commoncriteriaportal.org/cc/

CCMB-2009-07-002, Common Criteria for Information Technology Secu-
rity Evaluation, Part 2: Security functional components, Version 3.1, Revi-
sion 3, Final, Common Criteria, 2009.

URL http://www.commoncriteriaportal.org/cc/

CCMB-2009-07-003, Common Criteria for Information Technology Secu-
rity Evaluation, Part 3: Security assurance components, Version 3.1, Revi-
sion 3, Final, Common Criteria, 2009.

URL http://www.commoncriteriaportal.org/cc/

World Wide Web Consortium (W3C). Extensible Markup Language (XML)
1.0 (fifth edition) [online] (November 2008).

DO-178B, Software Considerations in Airborne Systems and Equipment
Certification, RTCA, Inc., Washington, DC, USA, 1992.

K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, L. K. Rierson, A practical
tutorial on modified condition / decision coverage, Technical Memorandum
TM-2001-210876, NASA, Hampton, VA, USA (May 2001).

URL http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/
20010057789_2001090482 . pdf

J. C. Knight, E. A. Myers, An improved inspection technique, Communica-
tions of the ACM 36 (11) (1993) 51-61. doi:10.1145/163359.163366.

T. Kelly, R. Weaver, The Goal Structuring Notation — a safety argument
notation, in: Proc. of Dependable Systems and Networks 2004 Workshop on
Assurance Cases, 2004.

URL http://www-users.cs.york.ac.uk/tpk/dsn2004.pdf

30

http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789_2001090482.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789_2001090482.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789_2001090482.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789_2001090482.pdf
http://dx.doi.org/10.1145/163359.163366
http://www-users.cs.york.ac.uk/tpk/dsn2004.pdf
http://www-users.cs.york.ac.uk/tpk/dsn2004.pdf
http://www-users.cs.york.ac.uk/tpk/dsn2004.pdf

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Defence Standard 00-56, Safety Management Requirements for Defence
Systems, Issue 4, Part 1: Requirements, Ministry of Defence, UK, 2007.

S. Lautieri, D. Cooper, D. Jackson, SafSec: Commonalitites between safety
and security assurance, in: Proc. of the 13" Safety-critical Systems Sympo-
sium (SSS), Springer-Verlag, Southampton, UK, 2005, pp. 66-75.

R. Alexander, R. Hawkins, T. Kelly, Security assurance cases: Motivation
and the state of the art, issue 1.1, Technical Report CESG/TR/2011/1, Uni-
versity of York, York, UK (April 2011).

J. L. Vivas, I. Agudo, J. Lopez, A methodology for security assurance-driven
system development, Requirements Engineering 16 (1) (2011) 55-73. doi:
10.1007/s00766-010-0114-8.

URL http://www.nics.uma.es/biblio/citekey/vivas2010

J. Goodenough, H. Lipson, C. Weinstock, Arguing security — creating secu-
rity assurance cases, Electronic document: https://buildsecurityin.
us—cert.gov/bsi/articles/knowledge/assurance/643-BSI.html
(2007).

P. G. Bishop, R. E. Bloomfield, A methodology for safety case development,
in: F. Redmill, T. Anderson (Eds.), Industrial Perspectives of Safety-critical
Systems: Proc. of the 6 Safety-Critical Systems Symposium, Springer-
Verlag, Birmingham, UK, 1998, pp. 194-202.

URL http://www.adelard.com/papers/sss98web.pdf

K. Attwood, et al., GSN Community Standard Version 1, Origin Consulting
Limited, York, UK, 2011.

URL http://www.goalstructuringnotation.info/documents/GSN_
Standard.pdf

ISO 14971:2007, Medical devices — Application of risk management to
medical devices, International Organization for Standardization, 2007.

T. S. Ankrum, A. H. Kromholz, Structured assurance cases: Three common
standards, Proc. of the 9" Int’l Symposium on High-Assurance Systems En-
gineering (HASE)doi:10.1109/HASE.2005. 20.

A. Galloway, R. Paige, N. Tudor, R. Weaver, 1. Toyn, J. McDermid, Proof
vs testing in the context of safety standards, in: Proc. of the 24™ Digital

31

http://www.nics.uma.es/biblio/citekey/vivas2010
http://www.nics.uma.es/biblio/citekey/vivas2010
http://dx.doi.org/10.1007/s00766-010-0114-8
http://dx.doi.org/10.1007/s00766-010-0114-8
http://www.nics.uma.es/biblio/citekey/vivas2010
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance/643-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance/643-BSI.html
http://www.adelard.com/papers/sss98web.pdf
http://www.adelard.com/papers/sss98web.pdf
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
http://dx.doi.org/10.1109/HASE.2005.20

[19]

[20]

[21]

[22]

[23]

[24]

Avionics Systems Conference (DASC), 2005, pp. 10.E.1-10.E.14. doi:10.
1109/DASC.2005.1563405.

M. Schumacher, Security patterns and security standards, in:
A. O’Callaghan, J. Eckstein, C. Schwanninger (Eds.), Proc. of the 7t
European Conference on Pattern Languages of Programms (EuroPLoP),
Universitaetsverlag Konstanz (UVK), 2002, pp. 289-300.

S. Morimoto, S. Shigematsu, Y. Goto, J. Cheng, Classification, formal-
ization and verification of security functional requirements, in: V. Geffert,
J. Karhumaiki, A. Bertoni, B. Preneel, P. Navrat, M. Bielikova (Eds.), SOF-
SEM 2008: Theory and Practice of Computer Science, Vol. 4910 of Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, 2008, pp. 622—
633.

URL http://dx.doi.org/10.1007/978-3-540-77566-9_54

S. Barnum, Refining the Common Criteria for objective and predictable
security measurement, Presentation to Software Assurance Working Group
Session (2010).

URL https://buildsecurityin.us-cert.gov/swa/wg_
presentations_dec2010/sean%20barnum20IS0%2020004%
200verview’,20-%20SwA%20Working%20Groups%2012-20107%

20 (Barnum) x.pdf

P. Graydon, J. Knight, M. Green, Certification and safety cases, in: Proc.
of the 28™ International Systems Safety Conference (ISSC), Minneapolis,
MN, USA, 2010.

URL http://www.cs.virginia.edu/~jck/publications/ISSC.
2010.pdf

W. Greenwell, J. C. Knight, C. M. Holloway, J. J. Pease, A taxonomy of
fallacies in system safety arguments, in: Proc. of the 24" International
System Safety Conference (ISSC), Albuquerque, NM, USA, 2006, pp.
430-4309.

URL http://www.cs.virginia.edu/~cmh7p/
paper-isscO6-fallacies-as-printed.pdf

CCMB-2009-07-004, Common Methodology for Information Technology
Security Evaluation, Version 3.1, Revision 3, Common Criteria, 2009.
URL http://www.commoncriteriaportal.org/cc/

32

http://dx.doi.org/10.1109/DASC.2005.1563405
http://dx.doi.org/10.1109/DASC.2005.1563405
http://dx.doi.org/10.1007/978-3-540-77566-9_54
http://dx.doi.org/10.1007/978-3-540-77566-9_54
http://dx.doi.org/10.1007/978-3-540-77566-9_54
https://buildsecurityin.us-cert.gov/swa/wg_presentations_dec2010/sean%20barnum%20ISO%2020004%20Overview%20-%20SwA%20Working%20Groups%2012-2010%20(Barnum)x.pdf
https://buildsecurityin.us-cert.gov/swa/wg_presentations_dec2010/sean%20barnum%20ISO%2020004%20Overview%20-%20SwA%20Working%20Groups%2012-2010%20(Barnum)x.pdf
https://buildsecurityin.us-cert.gov/swa/wg_presentations_dec2010/sean%20barnum%20ISO%2020004%20Overview%20-%20SwA%20Working%20Groups%2012-2010%20(Barnum)x.pdf
https://buildsecurityin.us-cert.gov/swa/wg_presentations_dec2010/sean%20barnum%20ISO%2020004%20Overview%20-%20SwA%20Working%20Groups%2012-2010%20(Barnum)x.pdf
https://buildsecurityin.us-cert.gov/swa/wg_presentations_dec2010/sean%20barnum%20ISO%2020004%20Overview%20-%20SwA%20Working%20Groups%2012-2010%20(Barnum)x.pdf
https://buildsecurityin.us-cert.gov/swa/wg_presentations_dec2010/sean%20barnum%20ISO%2020004%20Overview%20-%20SwA%20Working%20Groups%2012-2010%20(Barnum)x.pdf
http://www.cs.virginia.edu/~jck/publications/ISSC.2010.pdf
http://www.cs.virginia.edu/~jck/publications/ISSC.2010.pdf
http://www.cs.virginia.edu/~jck/publications/ISSC.2010.pdf
http://www.cs.virginia.edu/~cmh7p/paper-issc06-fallacies-as-printed.pdf
http://www.cs.virginia.edu/~cmh7p/paper-issc06-fallacies-as-printed.pdf
http://www.cs.virginia.edu/~cmh7p/paper-issc06-fallacies-as-printed.pdf
http://www.cs.virginia.edu/~cmh7p/paper-issc06-fallacies-as-printed.pdf
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Gceov intro — using the GNU Compiler Collection (GCC) [online, cited
March 2012].

Rapicover | Rapita Systems [online, cited July 2012].
PVS bugs list [online, cited April 2012].

K. Nohl, D. Evans, S. Plotz, H. Pl6tz, Reverse-engineering a cryptographic
RFID tag, in: Proc. of the USENIX Security Symposium, USENIX Associ-
ation, Berkeley, CA, USA, 2008, pp. 185-193.

URL http://www.cs.virginia.edu/~evans/pubs/usenix08/
usenix08.pdf

L. Hatton, Safer language subsets: an overview and a case history, MISRA
C, Information and Software Technology 46 (7) (2004) 465—-472. doi:10.
1016/j.infsof .2003.09.016.

C. Boogerd, L. Moonen, Assessing the value of coding standards: An empir-
ical study, in: Proc. of the IEEE International Conference on Software Main-
tenance (ICSM), 2008, pp. 277-286. doi:10.1109/ICSM.2008.4658076.

2011 CWE/SANS top 25 most dangerous software errors, Web page
(November 2011).
URL http://cwe.mitre.org/top25/

International Organization for Standardization, Information technology —
Programming languages — Guidance to avoiding vulnerabilities in pro-
gramming languages through language selection and use, Technical Report
24772:2010, ISO/IEC (2010).

IEC 61508, Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems — Part 3: Software requirements, International
Electrotechnical Commission (IEC), 2008.

URL http://webstore.iec.ch/Webstore/webstore.nsf/Artnum_
PK/43984

33

http://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html
http://www.rapitasystems.com/products/RapiCover
http://pvs.csl.sri.com/cgi-bin/pvs-bug-list/?status=open&status=analyzed
http://www.cs.virginia.edu/~evans/pubs/usenix08/usenix08.pdf
http://www.cs.virginia.edu/~evans/pubs/usenix08/usenix08.pdf
http://www.cs.virginia.edu/~evans/pubs/usenix08/usenix08.pdf
http://www.cs.virginia.edu/~evans/pubs/usenix08/usenix08.pdf
http://dx.doi.org/10.1016/j.infsof.2003.09.016
http://dx.doi.org/10.1016/j.infsof.2003.09.016
http://dx.doi.org/10.1109/ICSM.2008.4658076
http://cwe.mitre.org/top25/
http://cwe.mitre.org/top25/
http://webstore.iec.ch/Webstore/webstore.nsf/Artnum_PK/43984
http://webstore.iec.ch/Webstore/webstore.nsf/Artnum_PK/43984
http://webstore.iec.ch/Webstore/webstore.nsf/Artnum_PK/43984
http://webstore.iec.ch/Webstore/webstore.nsf/Artnum_PK/43984

	Introduction
	Software Assurance Standards Demand a Different Approach
	Related Work
	Safety And Security Arguments
	The Goal Structuring Notation
	Capturing Standards' Arguments
	Criticism of the Common Criteria Standard

	A Method for Evaluating Standards
	Argument Capture
	Argument Criticism
	Issue Sentencing

	Case Study Assessment
	Case Study Method

	Capturing the Common Criteria Standard
	The Common Criteria Security Model
	The Common Criteria's Requirements
	Capturing the Common Criteria Argument
	The Captured Argument Is Not a Security Argument
	Criticising the Common Criteria Argument

	Results of the Case Study
	Example Issues of Missing or Inadequate Evidence
	Issue: System-Level Testing With Requirements Coverage
	Issue: Adequacy of Structural Coverage
	Issue: Adequacy of Formal Proofs
	Issue: Sufficiency of the Security Assurance Requirements
	Issue: Correctness of the Security Policy Model
	Issue: Clarity of the Security Problem Definition
	Issue: Appropriateness of the Architecture
	Issue: The Implementation Representation Must Match the TOE
	Issue: Adequacy of Implementation Guidelines
	Issue: Evidence of Tool Correctness

	Example Issues of Missing or Inadequate Explanation
	Issue: Objectives for the Functional Specification
	Issue: Objectives of Testing
	Issue: Objective of ``Exhaustive'' Testing

	Example Other Issues (e.g. Issues of Vagueness)
	Issue: ``Tested'' Is Undefined
	Issue: ``Focused'' and ``Methodical'' Vulnerability Analysis

	Discussion
	Conclusion

