

Challenges of Component-based Development
 Ivica Crnkovic Magnus Larsson
 Department of Computer Engineering Research and Development
 Mälardalen University ABB Automation Products AB
 Box 883, 721 23 Västerås, Sweden 721 59 Västerås, Sweden
 +46 21 103183 +46 21 342666

 Ivica.Crnkovic@mdh.se Magnus.Larsson@mdh.se

Ivica Crnkovic

Ivica Crnkovic is professor in Industrial Software Engineering at the Mälardalen University, Sweden. He received a MSc
in Computer Science 1979, a MSc in Theoretical Physics 1984, and a Ph.D. in Computer Science 1991, all at University of
Zagreb, Croatia. He worked at ABB 1985-1997, where he was responsible for software development environments. He was a
project leader and manager of a group who developed Software Development Environment tools and methods for distributed
development and maintenance of real-time systems. He is Computer Science Laboratory leader at the Mälardalen University
and he leads the Industrial IT research group at Mälardalen University. He is co-organizer and a member of program
committee of several workshops related to Software Engineering and Configuration Management. His main research interests
are Software Configuration Management, Component-based Development and in general Software Engineering.

Magnus Larsson

Magnus Larsson is an industrial Ph.D. student employed by ABB Automation Products at the research and development
department since 1993. He received a BSc at Mälardalen University 1993 and a MSc in computer science at Uppsala
University 1995. He is interested in Component-based development, Software Configuration Management and real-time
systems. He is member of the Configuration Management group at the association of Swedish Engineering Industries. The
licentiate thesis "Applying Configuration Management Techniques to Component-based Systems" presented he in December
2000.

Challenges of Component-based Development
 Ivica Crnkovica Magnus Larssonb

a Department of Computer Engineering Mälardalen University Box 883, 721 23 Västerås, Sweden
b Research and Development ABB Automation Products AB 721 59 Västerås, Sweden

Abstract

It is generally understood that building software systems with components has many advantages but the difficulties of this
approach should not be ignored. System evolution, maintenance, migration and compatibilities are some of the challenges
met with when developing a component-based software system. Since most systems evolve over time, components must be
maintained or replaced. The evolution of requirements affects not only specific system functions and particular components
but also component-based architecture on all levels. Increased complexity is a consequence of different components and
systems having different life cycles. In component-based systems it is easier to replace part of system with a commercial
component. This process is however not straightforward and different factors such as requirements management, marketing
issues, etc., must be taken into consideration. In this paper we discuss the issues and challenges encountered when
developing and using an evolving component-based software system. An industrial control system has been used as a case
study.

Keywords
Reuse, component-based development, development environment, architecture, commercial components

1 Introduction

Systems that live over a longer period of time tend to be
updated and changed many times during this period. Reuse
and an open component-based architecture are the keys to
the success of systems with a long lifecycle. Designing a
system that supports this approach, requires more effort in
the design phase and the time to market might be longer,
but in the long run, the reusable architecture will prove
profitable. The reuse concept can be used on different
levels: On a low level it is a reuse of source-code, and
small-size components. More reuse is obtained with larger
components encapsulating business functions. Finally, the
integration of complete products in complex systems can be
seen as the highest level of reuse. On each level of reuse
there are specific demands on the reusable components, on
the component management and on the integration process.

This paper describes important issues related to the
development and maintenance of reusable components and
as an example uses the ABB Advant industrial process
control system. In section 2 we give an overview of the
Advant system design and the main characteristics of
Advant reusable components. Section 3 outlines all the
development and maintenance aspects of a component
based system which must comply with customer
requirements. During evolution of the system new
technologies were developed which resulted in the
appearance on the market of many components with the
same functionality as the proprietary ones. The fact that
new components must be incorporated into the existing
systems introduces new demands on the system

development process. These new issues are discussed in
section 4.

2 CASE Study of an Industrial Automation System

Overview
ABB is a global electrical engineering and technology

company, serving customers in power generation,
transmission and distribution, in industrial automation
products, etc. The ABB group is divided into companies,
one of which, ABB Automation Products AB, is
responsible for development of industrial automation
products. The automation products encompass several
families of industrial process-control systems including
both software and hardware.

The main characteristics of these products are
reliability, high quality and compatibility. These features
are results of responses to the main customers
requirements: The customers require stable products,
running around the clock, year after year, which can be
easily upgraded without impact on the existing process. To
achieve this, ABB uses a component-based system
approach to design extendable and flexible systems.

The Advant Open Control System (OCS) (ABB, 2000)
is component-based to suit different industrial applications.
The range includes systems for Power Utilities, Power
Plants and Infrastructure, Pulp and Paper, Metals and
Minerals, Petroleum, Chemical and Consumer Industries,
Transportation systems, etc. An overview of the Advant
system is shown in Figure 1.

Figure 1. An overview of the conceptual architecture of
the Advant open control system.

Advant OCS performs process control and provides
business information by assembling a system of different
families of Advant products. Process information is
managed at the level of process controllers. The process
controllers are based on a real-time operating system and
execute the control loops. The Operator Station (OS) and
Information Management Station (IMS) gather and
supervise product information, while the business system
provides analysis information for optimization of the entire
processes. Advant products use standard and proprietary
communication protocols to satisfy real-time requirements.

Advant OCS therefore includes information
management functions with real-time insight into all
aspects of the process controlled. Advant Information
Management has an SQL-based relational database
accessible to resident software and all connected
computers. Historical data acquisition reports, versatile
calculation packages and an application programming
interface (API) for proprietary and third party applications
are examples of the functionality provided. Advant
components have access to process, production and quality
data from any Process Control unit in a plant or in an
Intranet domain.

Designing with Reuse
Designing with reuse of existing components has many

advantages (Sommerville, 1996). The software
development time can be reduced and the reliability of the
products increased. These were important prerequisites for
the Advant OCS development.

Advant OCS products can be assembled in many
different configurations for use in various branches of
industry. Specific systems are designed with the reuse of
Advant OCS products and other external products. This
means customers get a tailor-made system that meets their
needs. External products and components can be used
together with the Advant OCS due to the openness of the
system. For example a satellite communication component,
which is used to transmit data from the offshore station to
the supervision system inland, can be integrated with the

Advant OCS.

The Advant system architecture is designed for reuse.
Different products such as Operator and Information
Management Stations are used as system components in
assembling complete systems. The two operator station
versions, Master OS and MOD OS are used in building
different types of operator applications.

Scalability
Advant OCS can be configured in a multitude of ways,

depending on the size and complexity of the process. The
initial investment can consist of stand-alone process
controllers and, optionally, local operator stations for
control and supervision of separate machines and process
sections. Subsequently, several process controllers can be
interconnected and, together with central operator and
information management stations build up a control
network. Several control networks can be interconnected to
give a complete plant network which can share centrally
located operator, information and engineering workplaces.

Openness
The system is further strengthened by the flexibility to

add special hardware and software for specific applications
such as weighing, fixed- and variable-speed motor drives,
safety systems and product quality measurements and
control in for example the paper industry. Second- and third
party administrative, information, and control can also be
easily incorporated.

Cost-effectiveness
The step-by-step expansion capability of Advant OCS

allows users to add new functionality without making
existing equipment obsolete. The system’s self-
configuration capability eliminates the need for engineers
to enter or edit topology descriptions when new stations are
physically installed. New units can be added while the
system is in full operation. With Advant OCS, system
expansion is therefore easy and cost-effective.

Reusable Components
The Advant OCS products are component based to

minimize the cost of maintenance and development. Figure
2 shows the component architecture of the operator station
assembled from components.

Business System

Process
Controller

Process
Controller

Process
Controller

Information
Management

Station
Operator Station

Figure 2. The operator station is assembled from

components.

The operator station consists of a specific number of
functional components and of a set of standard Advant
components. These components use the User Interface
System (UIS) component. Object Management Facility
(OMF) is a component which handles the infrastructure and
data management. OMF is similar to CORBA (OMG,
2000) in that it provides a distributed object model with
data, operation and event services. The UxBase component
provides drivers and other specific operating system
functions. Helper classes for strings, lists, pointers, maps
and other general-purpose classes are available in the
C++_complib library component. The components are built
upon operating systems, one, a standard system(such as
Unix or Windows), and the other a proprietary real-time
system.

To illustrate different aspects of component-based
development and maintenance, we shall further look at two
components:

- Object Management Facility (OMF), a business type of
component with a high-level of functionality and a
complex internal structure;

- C++_complib is a basic and a very general library
component.

Object Management Facility (OMF)
OMF (Nübling et al., 1999) is object-oriented middle-

ware for industrial process automation. It encapsulates real-
time process control entities of almost every conceivable
description into objects that can be accessed from
applications running on different platforms, for example
Unix and Windows NT. Programming interfaces are
available for many languages such as C, C++, Visual Basic,
Java, Smalltalk and SQL while interfaces to the IEC 1131-3
(IEC, 1992) process control languages are under
development. OMF is also adapted to Microsoft
Component Object Model (COM) via adapters and another
component called OMF COM aware. The adapters for OPC
(OLE for Process Control) (OPC, 1998) and OLE
Automation are also implemented. Thanks to all these
software interfaces, OMF makes process and production
data available to the majority of computer programmers
and users i.e. even to those not necessarily involved in the
industrial control field. For instance, it is easy to develop
applications in Microsoft Word, Excel and Access to access
process information. OMF has been developed for
demanding real-time applications, and incorporates
features, such as real-time response, asynchronous
communications, standing queries and priority scheduling
of data transfers. On one side OMF provides industry-
standard interfaces to software applications, and on the
other, it offers interfaces to many important communication
protocols in the field including MasterNet, MOD DCN,
TCP/IP and Fieldbus Foundation. These adapters make it
possible to build homogeneous control systems out of
heterogeneous field equipment and disparate system nodes.

OMF reduces the time and cost of software
development by providing frameworks and tools for a wide
range of platforms and environments. These utilities are
well integrated into their respective surroundings, allowing
developers to retain the tools and utilities they prefer to
work with.

C++_complib
C++_complib is a class library that contains general-

purpose classes, such as containers, string management
classes, file management classes, etc. The C++_complib
library was developed when no standard libraries, such as
STL (Austern, 1999), were available on the market. The
main purpose of this library was to improve the efficiency
and quality, and promote the uniform usage of the basic
functions.

C++_complib is not a component according to the
definition in (Szyperski, 1998), where a component is a unit
of composition deployed independently of the product.
However, in a development process C++_complib is treated
in a very similar way as binary components with some
restrictions, such dynamic configuration.

Experience
The Advant system is a successful system and the main

reasons for its success are its component-based architecture
giving flexibility, robustness, stability and compatibility,

Operator Station

Functional Components

User Interface

Object Management
OMF

C++ Component
Library

OS-Base functions
(UxBase)

Real-time operating
System

Standard Operating
System

and effective build and integration procedures. This type of
architecture is similar to product line architectures (Bass et
al., 1999). Some case studies (Bosch, 1999) have shown
that product-line architectures are successfully applied in
small- and medium-sized enterprises although there exists a
number of problems and challenges issues (organization,
training, information distribution, product variants, etc.).
The Advant experience shows that applying of product-line
architectures can be successful for large organizations.

However, the cost of achieving these features has been
high. To suit the requirements of an open system, new ABB
products have always to be backward compatible. It would
have been easier to develop a new system that not required
being compatible with the previous systems. A guarantee
that the system is backward compatible is a warranty that
an existing system will work with new products and this
makes the system trustworthy.

Development with large components which are easy to
reuse increases the efficiency significantly as compared
with reusing a smaller component that could have been
developed in-house at the same cost as its purchase price.
Advant OCS products are examples of large components
which have been used to assemble process automation
systems.

3 Different Reuse Challenges

Component generality and efficiency
Reuse principles place high demands on reusable

components. The components must be sufficiently general
to cover the different aspects of their use. At the same time
they must be concrete and simple enough to serve a
particular requirement in an efficient way. Developing a
reusable component requires three to four times more
resources than developing a component, which serves a
particular case (Szyperski, 1998). The fact that the
requirements of the components are usually incomplete and
not well understood (Sommerville, 1996) brings additional
level of complexity. In the case of C++_complib, the
situation was simpler, because the functional requirements
were clear. It was relatively easy to define the interface,
which was used by different components in the same way.
The situation was more complicated with complex
components, such as OMF. Although the basic concept of
component functionality was clear, the demands on the
component interface and behavior were different in
different components and products. Some components
required a high level of abstraction, others required the
interface to be on a more detailed level. These different
types of requirements have led to the creation of two levels
of components: OMF base, including all low-level
functions, and OMF framework, containing only a higher
level of functions and with more pre-defined behavior and
less flexibility. In general, requirements for generality and
efficiency at the same time lead to the implementation of
several variants of components which can be used on a

different abstraction level. In some specific cases, a
particular solution must be provided. This type of solution
is usually beyond the object-oriented mechanisms, since
such components are on the higher abstraction level.

System Evolution
Long-life products are most often affected by evolution

of different kinds:

- Evolution of system requirements, functional and non-
functional. A consequence of a continually competitive
market situation is a demand for continually improved
system performance. The systems controlling and
servicing business, industrial, and other processes
should permanently increase the efficiency of these
processes, improve the quality of the products,
minimize the production and maintenance costs etc.

- Evolution of technology related to different domains.
The advance of technology in the different fields in
which software is used requires improved software.
The improvements may require a completely new
approach to or new functions in software.

- Evolution of technology used in software products.
Evolution in computer hardware and software
technology is so fast that an organization
manufacturing long-life and complex products must
expect significant technology changes during the
product life cycle. From the reliability and risk point of
view, such organizations prefer not to use the latest
technology, but because of the demands of a highly
competitive market, are forced to adopt new
technology as it appears. . The often unpredictable
changes which must be made in products cause
delivery delays and increased production costs.

- Evolution of technology used for the product
development. As in the case of products themselves,
new technology and tools used in the development
process appear frequently on the market.
Manufacturers are faced with a dilemma – to adopt the
new technology and possibly improve the development
process at the risk of short term higher costs (for
training and migration), or to continue using the
existing technology and thereby miss an opportunity to
lower development costs in the long run.

- Evolution of society. Changes in society (for example
environmental requirements, or changes in the
relations between countries - as in the EU) can have a
considerable impact on the demands on products (for
example new standards, new currency, etc.) and on the
development process (relations between employers and
employees, working hours, etc.).

- Business Changes. We face changes in government
policies, business integration processes, deregulation,
etc. These changes have an impact on the nature of

business, resulting, for examples, in a preference for
short-term planning rather than long-term planning and
more stringent time-to-market requirements.

- Organizational Changes. Changes in society and
business have direct effects on business organizations.
We can see a globalization process, more abrupt
changes in business operations and a demand for more
flexible structures and management procedures, “just-
in-time” deliveries of resources, services and skills.
These changes require another, fast and flexible
approach to the development process.

All these changes have a direct or indirect impact on the
product life cycle. The ability to adapt to these changes
becomes the crucial factor in achieving business success
(Brown, 2000). In the following sections we discuss some
of these changes and their consequences in the
development process and product life cycle.

Evolution of Functional Requirements
The development of reusable components would be

easier if functional requirements did not evolve during the
time of development. As a result of new requirements for
the products, new requirements for the components will be
defined. The more reusable a component is, the more
demands are placed on it. A number of the requirements
coming from different products, may be the same or very
similar, but this is not necessarily the case for all
requirements passed to the components. This means that the
number of requirements of reusable components grow
faster than of particular products or of a non-reusable piece
of software. The relation between component requirements
and the requirements from the products is expressed with
the following equation:

 RC = RC0 + Σ ai Rpi 0 ≤ ai ≤ 1

RC0 denotes direct requirements of the component, Rpi
requirements of the products Pi , ai impact factors to the
component and RC is the total number of the component
requirements.

To satisfy these requirements the components must be
updated more rapidly and the new versions must be
released more frequently than the products using them.

The process of the change of components is more
dynamic in the early stage of the components lives. In that
stage the components are less general and cannot respond
to the new requirements of the products without being
changed. In later stages, their generality and adaptability
increase, and the impact of the product requirements
become less significant. In this period the products benefit
from combinatorial and synergy effects of components
reuse. In the last stage of its life, the components are
getting out-of-date, until they finally become obsolete,

because of different reasons: Introduction of new
techniques, new development and run-time platforms, new
development paradigms, new standards, etc. There is also a
higher risk that the initial component cohesion degenerates
when adding many changes, which in turn requires more
efforts.

This process is illustrated in Figure 3. The first graph
shows the growing number of requirements for certain
products and for a component being used by these products.
The number of requirements of a common component
grows faster in the beginning, saturates in the period [t0–
t1], and grows again when the component features become
inadequate. Some of the product requirements are satisfied
with new releases of products and components, which are
shown as steps on the second graph. The component
implements the requirements by its releases, which
normally precede the releases of the product if the
requirements originated from the product requirements.

Figure 3. To satisfy the requirements the reusable
component must be modified more often in the beginning
of their life.

Indeed this was the case with both components we are
analyzing here: New functions and classes were required
from C++_complib, and new adapters and protocol support
were required from OMF. The development time for these
components was significantly shorter than for products:
While new versions of a product are typically released
every six months, new versions of components are released
as least twice as often. After several years of intensive

Product P1

Product P2

Component

Time

Accumulated Requirements

t-0 t-1

Product P1

Product P2

Component

Time

Requirements satisfied in the releases

t-0 t-1

development and improvement, the components became
more stable and required less effort for new changes. In that
period the frequency of the releases has been lowered, and
especially the effort has been significantly lower.

New efforts for further development of components
appeared with migration of products on different platforms
and newer platforms versions. Although the functions of
the products and components did not changed significantly
a considerable amount of work was done on the component
level.

Migration Between Different Platforms
During their several years of development, Advant

products have been ported to different platforms. The
reasons for this were the customer requirement, that the
products should run on specific platforms, and general
trends in the growing popularity of certain operating
systems. Of course, at the same time, new versions and
variants of the platform already used appeared, supporting
new, better and cheaper hardware. The Advant products
have migrate through different platforms: Starting on Unix
HP-UX 8.x and continuing trough new releases (HP-UX
9.x, 10.x), they have been ported to other Unix platforms,
such as Digital Unix, and also to complete different
platforms, such as Open VMS and Windows NT family
(NT 3.5, NT 4.0 and Windows 2000). The products have
been developed and maintained in parallel. The challenge
with this multi-platform development was to keep the
compatibility between the different variants of the products,
and to maintain and improve them with the minimal efforts.

As an important part of the reuse concept was to keep
the high-level components unchanged as far as possible, it
was decided to encapsulate the differences between
operating systems in low-level components. This concept
works, however, only to some extent. The minimal activity
required for each platform is to rebuild the system for that
platform. To make it possible to rebuild the software on
every platform, standard-programming languages C and
C++ have been used. Unfortunately, different
implementations of the C++ standard in different
compilers, caused problems in the code interpretation and
required the rewriting of certain parts of the code. To
ensure that standard system services are available on all
platforms, the POSIX standard has been used. POSIX
worked quite well on different Unix platforms, but much
less so on Windows NT. The second level of compatibility
problem was Graphical User Interface (GUI). The main
dilemma was whether to use exactly the same GUI on
every platform, or to use the standard "look and feel" GUI
for each platform. This question applied particularly on NT
in relation to Unix platforms. Experience has shown that it
is not possible to give a definitive answer. In some cases it
was possible to use the same GUI and the same graphical
packages, but in general, different GUIs were implemented.

The main work regarding the reuse of code on different

platforms was performed on low-level components, such as
UxBase and OMF. While UxBase provides different low-
level packages for every platform (for example different
drivers), OMF capsulated the differences directly in the
code using conditional compilation. OMF itself is designed
in such a way that it was possible to divide the code into
two layers. One layer is specific for each operating system,
and the other layer, with the business logic, is implemented
for all of the supported platforms. Reuse issues on different
platforms for C++_complib were easier, strictly the
package contains general algorithms, which are not
depending on specific operating system. Some problems
appeared however, related to different characteristics of
compilers on different platforms.

Compatibility
One of the most important factors for successful

reusability is the compatibility between different versions
of the components. A component can be replaced easily or
added in new parts of a system if it is compatible with its
previous version. The compatibility requirements are
essential for Advant products, since smooth upgrading of
systems, running for many years, is required. Compatibility
issues are relative simple when changes introduced in the
products are of maintenance and improvement nature only.
Using appropriate test plans, including regression tests,
functional compatibility can be tested to a reasonable
extent. More complicated problems occur when new
changes introduced in a reusable component eliminate the
compatibility. In such a case, additional software, which
can manage both versions, must be written.

A typical example of such an incompatible change, is a
change in the communication protocol between OMF
clients and servers. All different versions of OMF must be
able to talk to each other to make the system flexible and
open. It is possible to have different combinations of
operating systems and versions of OMF and it still works.
This has been solved with an algorithm that ensures the
transmission of correct data format. If two OMF nodes
have the same version, they talk in their native protocol.

If an old OMF node talks with a new, the new OMF is
responsible for converting the data to the new format, this
being designated RMIR ("receiver makes it right"). If a
new OMF sends data to an older, the older OMF can not
convert the data since it is unaware of the new protocol. In
this case the newer OMF must send in the old protocol
format, SMIR ("sender makes it right"). This algorithm
builds on that fact all machines know about each other and
that they also know what protocol they talk. However, if an
OMF-based node does not know of the other node then it
can always send in a predefined protocol referred to as
“well known format”. All nodes do recognize this protocol
and can translate from it. This algorithm minimizes the
number of data conversions between the nodes.

In the case of C++_complib the problems with

compatibility were somewhat different. New demands on
the same classes and functions appeared because of new
standards and technology. One example is the use of C++
templates. When the template technology became
sufficiently mature, the new requirements were placed for
C++_complib: All the classes were to be re-implement as
template classes. The reason for this was the requirement
for using basic classes in a more general and efficient way.
Another example is Unicode support in addition to ASCII-
support. These new functions were added by new member-
functions in the existing classes and by adding new classes
using the inheritance mechanism for reusing the already
existing classes. The introduction of the same functions in
different format have led to additional efforts in reusing
them. In most of the cases the old format has been replaced
by new one, with help of simple tools built just for this
purpose. In some other cases, due to non-proper planning
and prioritizing the time-to-market requirements, both old
and new formats have been used in the same source
modules which have led to lower maintainability and to
some extend to lower quality of the products.

Development Environment
When developing reusable components several

dimensions of the development process must be considered:

- Support for development of components on different
platforms;

- Support for development of different variants of
components for different products;

- Support for development and maintenance of different
versions of components for different product versions.

- Independent development of components and products.

To cope with these types of problems, it is not sufficient
to have appropriate product architecture and component
design. Development environment support is also essential.
The development environment must permit an efficient
work in the project - editing, compiling, building,
debugging and testing. Parallel and distributed development
must also be supported, because the same components are
to be developed and maintained at the same time on
different platforms. This requires the use of a powerful
Configuration Management (CM) tool, and definition of an
advanced CM-process.

The CM process support exists on two levels. First on
the source-code level, where source-code files are under
version management and binary files are built. The second
level is the product integration phase. The product built
must contain a consistent set of the component versions.
For example, Figure 4 shows an inconsistent set of
components. The product version P1-V2 uses the
component versions C1-V2 and C2-V2. At the same time
the component version C1-V2 uses the component version
C2-V1, an older version. Integrating different versions of

the same component may cause unpredictable behavior of
the product.

Figure 4. An example of inconsistent component
integration.

Another important aspect of CM in developing reusable
components is Change Management. Change management
keeps track of changes on the logical level, for example
error reports, and manages their relations with implemented
physical changes (i.e. changes of documentation, source
code, etc.). Because change requests (for example
functional requirements or error reports) come from
different products, it is important to register information
about the source of change requests. It is also important to
relate a change request from one product to other products.
The following questions must be answered: What impact
can the implemented change have on other products? If an
error appears in one product, does it appear in other
products? Possible implications must be investigated, and if
necessary, the users of the products concerned must be
informed.

The development environment designated Software
Development Environment (SDE) (Crnkovic, 1997) is used
in developing Advant products. It is an internally-built
program package which encapsulates different tools, and
provides support for parallel development. The CM tool,
based on RCS (Tichy, 1985), provides support for all CM
disciplines, such as change management, works pace
management, build management, etc. SDE runs on different
platforms, with slightly modified functions. For example,
the build process is based on Makefiles and autoconf on
Unix platforms, while Microsoft Developer Studio with
additional Project Settings is used on Windows NT. The
main objective of SDE is to keep the source-code in one
place under version control. Different versions of
components are managed using baselines, and change
requests. Change requests are also under version control,
which gives a possibility of acquiring information useful

P1 Version V1

C1 Version V2 C1 Version V1

C2 Version V2 C2 Version V1

P2 Version V2

for project follow-up, for every change from registration to
implementation and release (Crnkovic and Willför, 1998).

Independent Component Development
Component development independent of the products

gives several advantages. The functions are broken down in
smaller entities that are easier to construct, develop and
maintain. The independent component development
facilitates distributed development, which is common in
large enterprises. Development of components
independently of product or other component development
introduces also a number of problems. The component and
product test become more difficult. On the component
level, a proper test environment must be built, which often
must include a number of other components or even maybe
the entire product.

Another problem is the integration and configuration
problem. A situation shown on Figure 4 must be avoided.
When it is about complex products, it is impossible to
manually track dependencies between the components, but
a tool support for checking consistency must exist.

In the Advant development the components were treated as
separate products even if they were developed within the
enterprise. To have this approach helped when third party
components were used since they all were managed in a
uniform way. Every component contained a file called
import file that included a specification of all component
versions used to build the component. When the final
product was assembled from the components, the import
file has been used for integration and checking if the
consistent sets of the components have been selected. The
development environment, based on make, was set up to
use the import files and the common product structure. All
released components were stored in the product structure
for availability to others. Another structure was used during
development of a component. The component was exported
to the product structure when the development was
finished. Using this approach it was shown that the
architecture design plays a crucial role. A good architecture
with clear and distinguish relations between components
facilitate the development process.

The whole development process is complex and
requires organized and planned support, which is essential
for efficient and successful development of reusable
components and of applications using these.

The Maintenance Process
The maintenance process is also complex, because it

must be handled on different levels: On the system level,
where customers report their problems, on the product
level, where errors detected in a specific product version
are reported, and finally on the component level, where the
fault is located. The modification of the component can
have an impact on other components and other products,
which can lead to an explosion of new versions of different

products which already exist in several versions. To
minimize this cumbersome process, ABB adopted a policy
of avoiding the generation of and supply of specific patches
to selected customers. Instead, revised products
incorporating sets of patches were generated and delivered
to all customers with maintenance contracts, to keep
customer installations consistent.

The relations between components, products and
systems must be carefully registered to make possible the
tracing of errors on all levels. A systematic use of Software
Configuration Management has a crucial role in the
maintenance process.

To support the maintenance process, Advant products
and component specifications together with error reports
are stored in several classes of repositories (see Figure 5).

Figure 5. Different levels of error report management

On the highest level, the repository managing customers
reports (CCRP) makes it possible for service personnel to
provide customers with prompt support. Information saved
on this level is customer and product oriented. Reports
indicating a product problem are registered in the product
maintenance report repository (PMR) where all known
problems related to products and components are filed.
Also, product structure information is stored on this level.
The product structure, showing dependencies between
products and components provides product and component
developers with assistance in relating error reports to the
source of the problem, on both product and component
level. A similar error management process is defined for
products in the beta phase i.e. not yet released. All of the
problems identified in this phase (typically by test groups)
are registered in the form of pre-release problem reports
(PPR). These problems are either solved before the product
is released, or are reclassified as product error reports and
saved in PMR. Any change applied in code or
documentation is under change control, and each change is

CCRP
Customer complaints

PMR

CCRP

Report to Customers

Direct Action

Direct Action

PPR

CR Development

Beta release

Released products

External Customers

PMR

PPR

initiated by a Change Request. If a change required comes
from an error report, a Change Request will be generated
from a PMR. When a change made in a component is tested
and verified, the action description is exported to the
correlating PMR, propagated to the products involved and
finally returned to the customer via the CCRP repository.

This procedure is not unique to component-based
development. It is a means of managing complex products
and of maintaining many products. What is specific to the
component-based approach is the mapping between
products and components and the management of error
reports on product and component level, the most difficult
part of the management. In this case the entire procedure is
localized on the PMR level, i.e. product level. On the
customer side, information with the highest priority is
related to products and customers. On the development
level, all changes registered are related primarily to
components. Information about both products and
components is stored on the development level. Error
management on this level is the most complex. An error
may be detected in a specific product version, but may also
be present in other products and other product versions.
The error may be discovered in one component, but it can
be present in different versions of that component. The
problem can be solved in one component version, but it
also may be necessary to solve it in several. The revised
component versions are eventually subsequently integrated
in new versions of one or several products. This
multidimensional problem (many error reports, impact on
different versions of components and products, the solution
included in different components and product versions) is
only partially managed automatically, as many steps in the
process require direct human decisions (for example a
decision if a solution to a problem will or will not be
included in the next product release). Although the whole
procedure is carefully designed and rigorously followed, it
has happened on occasions that unexpected changes have
been included, and that changes intended for inclusion were
absent from new product releases. For more details of the
entire maintenance process see (Kajko-Mattson, 1999a,
Kajko-Mattson, 1999b)).

 Another important subject is the maintenance of
external components. It has been shown that external
components must be treated in the same way as internal
components. All known errors and the complete error
management process for internal and external components
are treated in similar way. The list of known, and corrected
errors in external components is important for developers,
product managers and service people. The cost of
maintaining components, even those maintained by others,
must be taken into consideration.

4 Integrating Standard Components

In recent years the demands of customers on systems
have changed. Customers require integration with standard

technologies and the use of standard applications in the
products they buy. This is a definite trend on the market but
there is little awareness of the possible problems involved.
An improper use of standard components can cause severe
problems, especially in distributed real-time and safety-
critical systems, with long-period guarantees. In addition to
these new requirements, time-to-market demands have
become a very important factor.

These factors and other changes in software and
hardware technology (Aoyama, 1998) have introduced a
new paradigm in the development process. The
development process is focused now on the use of standard
and de-facto standard components, outsourcing, COTS and
the production of components. At the same time, final
products are no longer closed, monolith systems, but are
instead component-based products that can be integrated
with other products available on the market.

This new paradigm in the development process and
marketing strategy has introduced new problems and raised
new questions (McKinney, 1999):

- The development process has been changed. Developers
are now not only designers and programmers, they are
also integrators and marketing investigators. Are the
new development methods established? Are the
developers properly educated?

- What are the criteria for the selection of a component?
How can we guarantee that a standard component
fulfills the product requirements?

- What are the maintenance aspects? Who is responsible
for the maintenance? What can be expected of the
updating and upgrading of components? How can we
satisfy the compatibility and reliability requirements?

- What is the trend on the market? What can we expect to
buy not only today but also on the day we begin
delivering our product?

- When developing a component, how can we guarantee
that the "proper" standard is used? Which standard will
be valid in five, ten years?
All these questions must be considered before

beginning a component-based development project.
Josefsson (Josefsson, 1999) presents certain
recommendations to the component integrator for use as
guidelines: Test the imported component in the
environment where it is to run and limit the practical
number of component suppliers to minimize the
compatibility problems. Make sure that the supplier is
evaluated before a long-term agreement is signed.

The focus of development environment support should
be transferred from the “edit-build-test” cycle to the
“component integration-test” cycle. Configuration
management must give more consideration to run-time

phase (Larsson and Crnkovic, 1999).

Replacing Internal Components with Standard
Components

In the middle of the eighties, ABB Advant products
were completely proprietary systems with internally
developed hardware, basic and application software. In the
beginning of the nineties, standard hardware components
and software platforms were purchased while the real-time
additions and application software were developed
internally. The system is now developed further using
components based on new, standard technologies.

During this development, further new components
become available on the market. ABB faced this issue more
than once. At one point in time, it was necessary to
abandon the existing solutions in a favor of new solutions
based on existing components and technologies. To
illustrate the migration process we discuss the possibility of
replacing OMF and C++_complib with standard
components.

Experience from these examples showed that it is easier
to replace a component if the replacement process is made
in small incremental steps. Allowing the new component to
coexist with the old one makes it easier to be backward
compatible and the change will be smooth.

Replacing OMF with DCOM
Moving from a UNIX based system to a system based

on Windows NT had serious effect on the system
architecture. Microsoft components using a new object
model were available, namely COM/DCOM (Box, 1998).
DCOM has functionality similar to that of OMF and this
became a new issue when DCOM was released. Should
ABB continue to develop its proprietary OMF or change to
a new standard component? The problem was that DCOM
did not have all the functionality of OMF and vice versa.
The domains overlap only partially.

A subscription of data with various capabilities can be
made in OMF, and this subscription functionality is not
supported by DOCM. On the other hand, DCOM can create
objects when they are required and not like OMF where
objects are created before the actual use of them. Both
technologies support object communication and in this area
it is easier to replace OMF with DCOM.

If the decision was made to continue with OMF, all the
new components that run on top of COM could not be used,
which would drastically reduce the possibilities of
integration with other, third-party components. On the other
hand, it would require considerable work to make the
current system run on top of COM. This was the dilemma
of COM vs. OMF.

To begin with, OMF was adapted to COM with an
adapter designated OMF COM aware. This functionality
helped COM developers access OMF objects and vice

versa. However, this solution to the problem using two
different object models was not optimal since it added
overhead in the communication. Nor was it possible to
match the data types one to one, which made the solution
limited. A decision was taken to build the new system on
COM technologies with proprietary extensions adding the
functions missing from COM. All communication with the
current system was to be through the OMF COM. This
solution made it easy to remove the old OMF and replace it
with COM in small steps over time. Adapters are very
useful when a new component is to used in parallel with an
existing one (Rine et al., 1999). More adapters to other
systems such as Orbix(CORBA) and Fieldbus Foundation
were constructed. If the external systems have similar data
types it is fairly straightforward to build a framework for
adapters where the parts that take care of the proprietary
system can be reused. New systems can be accessed by
adding a server and client stub to the adapter framework.
To be able to build functional adapters between two
middleware components it is important to have the
capability to create remote calls dynamically. For instance
the Dynamic Invocation Interface (DII) in CORBA can be
used. If the middleware does not have this possibility it
might be possible to generate code automatically that takes
care of the different types of calls which are going to be
placed through the adapter to the other system.

Replacing C++_complib with STL
To switch from C++_complib to STL (Austern, 1999)

was much easier because STL covers almost all the
C++_complib functions and provides additional
functionality. Still, much work reminded to be done, since
all the code using C++_complib had to be changed to be
able to use STL instead. The decision was taken to continue
using both components and to use STL whenever new
functionality was added. After a time the use of old
components was reduced and the internal maintenance cost
reduced. In some cases in the same components both
libraries were used, which gave some disadvantages,
especially in the maintenance process.

Managing Evolution of Standard Components
Use of standard components implies less control on

them (Larsson and Crnkovic, 1999, Larsson and Crnkovic,
2000, Cook and Dage, 1999), especially if the components
are updated at run-time. A system of components is usually
configured once only during the build-time when known
and tested versions of components are used. Later, when
the system evolves with new versions of components, the
system itself has no mechanism to detect if new
components have been installed. There might be a check
that the version of replacement component is at least the
same as or newer than the original version. This approach
prevents the system from using old components, but it does
not guarantee its functionality when new components are
installed. Applying ideas from configuration management,
such as version and change management, in managing

components is an approach which can be used to solve
some of the problems.

A certain level of configuration control will be achieved
when it is possible to identify components with their
versions and dependencies to other components.
Information about a system can be placed under version
control for later retrieval. This makes it possible to compare
different baselines of a system configuration. To manage
dependencies, a graphic representation of the configuration
is introduced. The graphs are then placed under version
control. This information can be used to predict which
components will be affected by a replacement or
installation of a new component.

It is generally difficult to identify components during
run-time and to obtain their version information. When the
components are identified it is possible to build graphs of
dependencies, which can be represented in various ways
and placed under configuration control (Larsson, 2000).

To improve the control of external components, they
can be placed under change management to permit the
monitoring of changes and bugs. Instead of attaching
source code files to change requests, which is common in
change management, the name and version of the
component can be used to track changes. When a problem
report is analysed, the outcome can be a change request for
each component involved. Each such change request can
contain a list of all the changed source files or a description
of the patches if the component is external. Patches from
the component vendor must be stored to permit recreation
of the same configuration later. In cases where the high
quality of products must be assured, the enterprise
developing products must have special, well-defined
relations to the component vendors for the support and
maintenance.

5 Conclusion

We have presented the ABB Advant Control Systems
(OCS) as a successful example of the development of a
component-based system. The success of these systems on
the market has been primarily the result of appropriate
functionality and quality. Success in development,
maintenance and continued improvement of the systems
has been achieved by a careful architecture design, where
the main principle is the reuse of components. The reuse
orientation provides many advantages, but it also requires
systematic approach in design planning, extensive
development, support of a more complex maintenance
process, and in general more consideration being given to
components. It is not certain that an otherwise successful
development organization can succeed in the development
of reusable components or products based on reusable
components. The more a reusable component is developed,
the more complex is the development process, and more
support is required from the organization.

Even when all these requirements are satisfied, it can
happen that there are unpredictable extra costs. One
example illustrate this: In the early stage of the ABB
Advant OCS development, insufficient consideration was
given to Windows NT and ABB had to pay the price for
this oversight when it suddenly became clear that Windows
NT would be the next operating platform. The new product
versions on the new platform have been developed by
porting the software from the old platform, but the costs
were significantly greater than if the design had been done
more independent from the first platform.

Another problem we have addressed, is the question of
moving to new technologies which require the re-creation
of the components or the inclusion of standard components
available on the market. In both cases it can be difficult to
keep or achieve the same functionality as the original
components had. However, it seems that the process of
replacing proprietary components by standard components
available from third parties is inevitable and then it is
important to have a proper strategy for migrating from old
components to the new ones.

6 References

ABB, ABB Automation Products, Advant,
http://www.advantocs.com.

Aoyama M., 1998, New Age of Software Development:
How component-based Software Engineering Changes
the way of Software Development, In Proceedings of 1st
workshop on Component Based Software Engineering.

Austern M., 1999., Generic Programming and STL,
Addison-Wesley.

Bass, L., Campbell, G., Clements, P., Northrop, L., and
Smith, D., 1999., Third Product Line Practice Report,
report Technical Report CMU/SEI-99-TR.003, Software
Engineering Institute.

Bosch J., 1999, Product-Line Architectures in Industry: A
Case Study, In Proceedings of 21st International
Conference on Software Engineering, ACM Press.

Box D., 1998., Essential COM, Addison-Wesley.

Brown A, 2000, Large-scale Component-based
Development, Prentice Hall

Cook J. E. and Dage J. A., 1999, Highly Reliable
Upgrading of Components, In Proceedings of 21st
International Conference on Software Engineering, ACM

Press.

Crnkovic I., 1997, Experience with Change-oriented SCM
Tools, In Proceedings of 7th Symposium on Software
Configuration Management, Lecture notes in Computer
Science, nr 1235 , Springer Verlag.

Crnkovic I. and Willför P., 1998, Change Measurements in
an SCM Process, In Proceedings of 8th Symposium on
Software Configuration Management, Lecture Notes in
Computer Science, Springer Verlag.

IEC, 1992., Programmable Controllers Part 3,
Programming Languages, IEC 1131-3, IEC Geneva.

Josefsson, M., 1999., Programvarukomponenter i praktiken
-att köpa tid och prestera mer, report V040078, Sveriges
Verkstadsindustrier.

Kajko-Mattson M., 1999a, Maintenance at ABB (I):
Software Problem Administration Processes, (the state of
practice), In Proceedings of IEEE International
Conference on Software Maintenance, ACM Press.

Kajko-Mattson M., 1999b, Maintenance at ABB (II):
Change execution processes, (the state of practice), In
Proceedings of IEEE International Conference on
Software Maintenance, ACM Press.

Larsson M., 2000. Applying Configuration Management
Techniques to Component-Based Systems Licentiate
Thesis Dissertation 2000-007, Deparment of Information
Technology Uppsala University.

Larsson M. and Crnkovic I., 1999, New Challenges for
Configuration Management, In Proceedings of 9th
Symposium on System Configuration Management,
Lecture Notes in Computer Science, nr 1675, Springer
Verlag.

Larsson M. and Crnkovic I., 2000, Component
Configuration Management, In Proceedings of 5th
Workshop on Component Oriented Programming.

McKinney D., 1999, Impact of Commercial Off-The-Shelf
(COTS) Software on the Interface Between systems and
Software Engineering, In Proceedings of 21st
International Conference on Software Engineering, ACM
Press.

Nübling M., Popp C., and Zeidler C., 1999, OMF - an
Object Request Broker for the Process Control
Application Domian, In Proceedings of 3rd international
conference on enterprise distributed object computing
EDOC, IEEE Computer Society.

OMG, 2000., The Common Object Request Broker:
Architecture And Specification, report v2.4, OMG
Standards Collection, OMG.

OPC, 1998., OLE for Process Control, report v1.0, OPC
Standards Collection, OPC Foundation.

Rine D., Nada N., and Jaber K., 1999, Using Adapters to
Reduce Interaction Complexity in reusable Component-
Based Software Development, In Proceedings of 5th
symposium on software reusability, ACM Press.

Sommerville I., 1996., Software Engineering, Addison-
Wesley.

Szyperski C., 1998., Component Software Beyond Object-
Oriented Programming, Addison-Wesley.

Tichy W., 1985., RCS - A System for Version Control,
IEEE Software and Practice Experience, volume 15,
issue 7.

