
Mode Switch Handling for the ProCom Component Model

Yin Hang, Jan Carlson, Hans Hansson
Mälardalen Real-Time Research Centre,
Mälardalen University, Västerås, Sweden
{young.hang.yin, jan.carlson,
hans.hansson}@mdh.se

Hongwan Qin
Lund University
Lund, Sweden

mas09hqi@student.lu.se

ABSTRACT
Component-Based Software Engineering has been deemed a
suitable technique for the development of complex embed-
ded systems, as component reuse makes it easier to man-
age software complexity. Another way of reducing software
complexity is by partitioning system behavior into different
operational modes. Such a multi-mode system can change
its behavior by switching between modes. For a multi-mode
system built by components, a challenge is its mode switch
handling.

In this paper, a novel approach is presented to integrate
our mechanism for handling mode switch (the Mode Switch
Logic), in ProCom, which is a component model designed
for the development of real-time embedded systems. The
outcome is a slightly extended version of ProCom which not
only supports the development of multi-mode applications,
but also is able to handle mode switch.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems—Real-time and

embedded systems; D.2.13 [Software Engineering]:
Reusable Software

Keywords
ProCom; component; mode switch

1. INTRODUCTION
The growing complexity of the software of embedded sys-

tems entails new techniques for the development of com-
plex embedded systems, as traditional techniques are be-
coming less suitable. Component-Based Software Engineer-
ing (CBSE) [4] is a promising paradigm for developing com-
plex systems by virtue of its benefits such as the manage-
ment of software complexity, reduced time to market and
improved software quality. CBSE allows a system to be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for prof t or commercial advantage and that copies
bear this notice and the full citation on the f rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specif c
permission and/or a fee.
CBSE’13, June 17–21, 2013, Vancouver, BC, Canada.
Copyright 2013 ACM 978-1-4503-2122-8/13/06 ...$15.00.

built by reusable components which are independently de-
veloped so that the system does not have to be developed
from scratch. The success of CBSE has been evidenced by a
variety of component models proposed both in industry and
academia [5] [13]. Among these component models, and in
the focus of this paper, ProCom [3] is a component model
for real-time and embedded systems, particularly targeting
vehicular, automation and telecommunication applications.

In contrast to CBSE, another common approach to reduc-
ing software complexity of embedded systems is to partition
system behavior into different operational modes. A multi-
mode system can start running in a default mode and switch
to another mode under certain circumstances. A represen-
tative example is the control software of an airplane, which
could run in the modes taxi (the initial mode), taking off,
flight and landing. Different subsystems are running in dif-
ferent modes. For instance, the subsystem for controlling
the wheels only runs in taxi mode whereas the navigation
subsystem may only run in flight mode. Combining CBSE
and multi-mode systems, we get a Component-Based Multi-
Mode System (CBMMS), i.e. a multi-mode system devel-
oped in a component-based manner. Figure 1 illustrates a
conceptual CBMMS, with its component hierarchy on the
left and its component connections on the right. The sys-
tem, i.e. Component Top, consists of three components: a,
b and c. Component b is composed by d and e. Compo-
nents a, c, d and e are primitive components because they
cannot be further decomposed. Components Top and b are
composite components because they are both compositions
of other components. Since the component hierarchy has a
tree structure, a composite component and its subcompo-
nents have a parent-and-children relationship. For instance,
b is the parent of d and e, which in turn are the children of
b. Moreover, the system can run in two modes: m1

Top and

m2

Top. When the system is in m1

Top , Component c is deacti-
vated (i.e. not running), shown in the component hierarchy
in Figure 1 by not displaying c in mode m1

Top. In contrast,

when the system is in m2

Top, c is activated whilst e is deac-
tivated. Besides, Component a has different mode-specific
behaviors represented by black and grey colors in Figure 1.

A key issue of a CBMMS is its mode switch handling.
A mode switch may amount to the joint mode switches of
many different components. For instance, a system mode
switch from m1

Top to m2

Top in Figure 1 requires the activation
of c, the deactivation of e and the behavior change of a.
The mode switches of different components must be well
synchronized and coordinated to guarantee a correct system
mode switch. For that reason, we have developed the Mode

Figure 1: A component-based multi-mode system

Switch Logic (MSL) [8] [7], a mechanism for handling the
mode switch of CBMMSs.

With the ProCom component model and MSL as two
background techniques, this paper provides a theoretical
guidance for implementing MSL in ProCom. Currently, Pro-
Com does not support multi-mode systems. However, the
approach presented in this paper realizes the development
of CBMMSs together with their mode switch handling in
ProCom. The remainder of the paper is organized as fol-
lows: Section 2 introduces the ProCom component model.
Section 3 gives a brief introduction of MSL. As the main
contribution of the paper, Section 4 describes how MSL is
implemented in ProCom. In Section 5, an example is used
to illustrate the major elements in Section 4. Related work
is reviewed in Section 6. Finally, Section 7 concludes the
paper and discusses some future work.

2. THE PROCOM COMPONENTMODEL
ProCom [3] is a component model for the development of

distributed real-time and embedded systems software. Com-
pared with other existing component models, the most dis-
tinctive feature of ProCom is its two layers: ProSave—the
lower layer, and ProSys—the higher layer. With different
concerns, these two layers allow a system to be modeled at
different levels of granularity. Next we shall give a brief
introduction of each layer.

2.1 The ProSave layer
The ProSave layer is used to design subsystems allocated

to a single physical node. It is based on a pipe-and-filter
architectural style and has clear separation between control
flow and data flow. A component belonging to this layer
is called a ProSave component. A ProSave component can
provide one or more services, each of which realizes a par-
ticular functionality. Each service has a single input port
group and one or more output port groups. A port group
consists of a trigger port and one or more data ports, with
the trigger port dedicated to control flow and the data ports
dedicated to data flow.

A ProSave component is passive in the sense that the ex-
ecution of each of its services requires external activation.
For each service S of a ProSave component, when the input
trigger port is activated, S becomes active and performs
computation based on its input data ports. After complet-
ing the computation, S writes the result to its output data
ports, activates its output trigger port(s) and then becomes
passive.

Figure 2: ProSave and ProSys components

Figure 3: Typical connectors in ProSave

Figure 2(a) depicts a ProSave component with two ser-
vices S1 and S2. Service S1 has an input port group (con-
sisting of an input trigger port and an input data port) and
an output port group (consisting of an output trigger port
and two output data ports). The ports of S2 can be ex-
plained in the same way.

The communication between ProSave components is
based on a single directional one-to-one connection between
ports of the same types. An output trigger/data port of a
ProSave component is directly connected to an input trig-
ger/data port of another ProSave component. In addition,
ProCom defines a couple of connectors for more advanced
communication in ProSave. Figure 3 lists some common
connectors that will be used in this paper:

• Control Or: It has multiple input trigger ports and one
output trigger port. Its output trigger port is activated
when any one of its input trigger ports is activated.

• Data Or: It has multiple input data ports and one
output data port. The data arriving at any one of its
input data ports is forwarded to its output data port.

• Selection: It has an input trigger port, at least one in-
put data port and multiple output trigger ports. When
its input trigger port is activated, it will activate ex-
actly one of its output trigger ports according to the
data written to its input data port(s).

The ProSave layer is hierarchical as a composite ProSave
component can be composed by other ProSave components.

2.2 The ProSys layer
The ProSys layer is used to construct distributed subsys-

tems. A component belonging to this layer is called a ProSys
component. A ProSys component has a number of input and
output message ports. Figure 2(b) depicts a ProSys compo-
nent with one input message port and two output message
ports. The communication between ProSys components is
realized by asynchronous message passing. A message is
sent from an output message port and received from an in-
put message port via message channels. A message channel

Figure 4: A ProSys component composed by

ProSave components

can be associated with multiple input and output message
ports, enabling many-to-many communication.

A ProSys component is active, as it has its own threads.
Therefore, concurrent execution is allowed in ProSys. Just
like ProSave, ProSys is also hierarchical in the sense that
a composite ProSys component can be composed by other
ProSys components.

The integration of ProSys and ProSave is realized by
building a ProSys component with ProSave components, il-
lustrated in Figure 4. In order to map the pipe-and-filter
architecture to message passing, a message port is inter-
nally treated as a pair of a trigger port and a data port.
In addition, a special connector Clock can be used for the
periodic activation of ProSave components composing the
ProSys component.

3. THE MODE SWITCH LOGIC
The Mode Switch Logic (MSL) [8] [7] is a systematic ap-

proach to the mode switch handling of CBMMSs. The major
elements of MSL include a mode-aware component model, a
mode mapping mechanism and a mode switch runtime mech-
anism. The following briefly introduces these elements.

The mode-aware component model defines essential fea-
tures that a component should possess in order to support
both individual mode switch and cooperative mode switch
with other components. Illustrated in Figure 5, a compo-
nent can support multiple modes and has a unique con-
figuration defined for each mode. Controlled by the mode
switch runtime mechanism of MSL, the mode switch of a
component is realized by its reconfiguration, i.e. changing
its configuration in the current mode to a new configura-
tion in the target mode. Furthermore, to enable cooperative
mode switch, dedicated mode switch ports are introduced for
the cross-layer communication in the component hierarchy.
A multi-mode primitive component has a dedicated mode
switch port pMSX , which is used to exchange mode related
information with its parent during a mode switch. A multi-
mode composite component has two dedicated mode switch
ports: apart from pMSX that has the same role as for prim-
itive components, the other one is pMSX

in , used to exchange
mode related information with its subcomponents during a
mode switch.

MSL also provides a mode mapping mechanism (see Chap-
ter 4 in [7] for details) for the composition of multi-mode
components and the derivation of the new mode for each
component during a mode switch. Usually a multi-mode
component is independently developed without knowing the
context where it will be used. For a multi-mode composite
component ci, the mapping between the modes of ci and its
subcomponents must be properly specified. In other words,

Figure 5: The mode-aware component model

ci must be able to monitor and update the modes of itself
and its subcomponents.

The mode switch runtime mechanism handles the mode
switch of a CBMMS and the mode switches of its compo-
nents at runtime. This mechanism includes two fundamen-
tal elements: the Mode Switch Propagation (MSP) protocol
and the mode switch dependency rule. The MSP protocol
specifies how a mode switch event is detected by an individ-
ual component and efficiently propagated to other related
components. How and why a mode switch event is generated
is outside the scope of the MSP protocol, and is something
that from the perspective of the MSP protocol is handled by
the code implementing the corresponding component. The
mode switch dependency rule guarantees the mode consis-
tency between a system and its components after each mode
switch. Both elements of the mode switch runtime mecha-
nism are based on the transmission of downstream and up-
stream primitives throughout the component hierarchy. A
downstream primitive is sent from a composite component
to its subcomponents via its dedicated mode switch port
pMSX
in . An upstream primitive is sent from a component to

its parent via its dedicated mode switch port pMSX . Due to
limited space, the complete description of the mode switch
runtime mechanism will not be presented here (see Chapter
3 in [7] for details).

4. IMPLEMENTING MSL IN PROCOM
In previous sections, the ProCom component model and

MSL have been introduced separately. In this section, we
describe the contribution of this paper—implementing MSL
in the ProCom component model. The basic idea of our ap-
proach is to integrate the key elements of MSL in ProCom
with minimum modification to ProCom. First, a ProCom
component must be made mode-aware to become consistent
with the mode-aware component model and the mode map-
ping mechanism. Second, the mode switch runtime mecha-
nism must be included in each ProCom component for its
mode switch handling. Furthermore, since component con-
nections may change during a mode switch, ProCom must be
able to provide multiple versions of component connections
and switch between them when necessary. Next we shall
present our approach in terms of the definition of multi-mode
ProCom components, the mode switch handling in ProCom,
and the support of varied component connections in differ-
ent modes. To simplify the presentation, two assumptions
are made: (1) the execution of a component in ProCom can
be immediately aborted by a mode switch; (2) no new mode
switch event is detected when a system is switching mode.
The handling of atomic component execution which cannot
be interrupted is presented in Chapter 5 of [7]. Without

Figure 6: Multi-mode ProCom components

the second assumption, a conflict may occur due to multiple
mode switch triggering. It is our ongoing work to provide
handling of such conflicts.

4.1 Multi-mode ProCom components
Multi-mode components have not been considered by the

current ProCom component model. However, we are able to
define multi-mode ProCom components without extending
ProCom. Since ProCom distinguishes ProSave and ProSys,
multi-mode ProSave and ProSys components will be intro-
duced separately in the following.

In ProSave, in order to separate the mode switch han-
dling from the functional behavior of each component, a
dedicated service Smode is used for the mode switch handling
of a multi-mode ProSave component. This service includes
the definition of multiple modes, the configuration for each
mode, mode mapping and the mode switch runtime mech-
anism. Furthermore, Smode also has dedicated mode switch
ports that correspond to pMSX and pMSX

in in the mode-
aware component model. The service Smode consists of an
input port group and an output port group. The input port
group comprises an input trigger port pmst

i and an input
data port pms

i , while the output port group comprises an
output trigger port pmst

o and an output data port pms
o . Fig-

ure 6(a) shows a typical multi-mode ProSave component ci
with two services, the lower service being Smode . The dedi-
cated mode switch ports of Smode are highlighted in purple.

In ProSys, no concept of service exists and concurrent ex-
ecution is allowed in a ProSys component, hence a dedicated
internal thread can be used for the mode switch handling of a
multi-mode ProSys component. Similar to ProSave, a multi-
mode ProSys component should also have dedicated mode
switch ports. Since a ProSys component is equipped with
message ports that integrate both control flow and data flow,
the dedicated mode switch ports of a multi-mode ProSys
component can be assigned to an input message port pms

i

and an output message port pms
o . Figure 6(b) shows a typi-

cal multi-mode ProSys component ci whose dedicated mode
switch ports are highlighted in purple.

4.2 The mode switch handling in ProCom
Section 3 states that the mode switch of a CBMMS is

handled by the mode switch runtime mechanism of MSL.
In this subsection, we integrate this mode switch runtime
mechanism in ProCom. For primitive multi-mode ProCom
components, such mechanism can be simply implemented
in the code (complete algorithms described in pseudo code
can be found in [9]). In this paper, our focus is on the
mode switch handling of composite multi-mode ProCom
components which requires a more elaborate approach in

Figure 7: The port definition of MSLA
ci

and MSLB
ci

both ProSave and ProSys. Hereafter we by default imply
multi-mode ProCom components while mentioning ProSave
or ProSys components. The mode switch of a composite
ProCom component is handled by dedicated subcomponents
via its dedicated mode switch ports defined in Section 4.1.

4.2.1 The mode switch handling in ProSave
Since a composite ProSave component has no behavior

and is just a composition of a set of enclosed ProSave com-
ponents, a reasonable strategy is to introduce additional sub-
components that are dedicated to its mode switch handling.
The same strategy can be applied to a ProSys component
composed by ProSave components.

For a composite component ci, which is either a compos-
ite ProSave component or a composite ProSys component
composed by ProSave components, we introduce two prim-
itive ProSave components: MSLA

ci
and MSLB

ci
as dedicated

subcomponents of ci for its mode switch handling. MSLA
ci

and MSLB
ci

jointly interact with the Smode service of each
subcomponent of ci.

Let ci.p denote the port p of component ci. Also, let
SCci = {c1j , c

2

j , · · · , c
n
j } (n ∈ N) denote the set of subcompo-

nents of ci, excluding MSLA
ci

and MSLB
ci
. Figure 7 illustrates

the ports of MSLA
ci

and MSLB
ci
, both of which are synchro-

nized with each other via their synchronization ports p
sync
i

and psync
o . Component MSLA

ci
has a single service with an

input port group and an output port group. Apart from
the synchronization ports, these port groups consist of the
following ports:

• pti: an input trigger port whose activation makes
MSLA

ci
active.

• pmsx
i : an input data port for receiving a downstream

primitive from the parent of ci.

• pto: an output trigger port activated after MSLA
ci

com-
pletes its current instance of execution.

• Pmsx
o = {p1o, p

2

o, · · · , p
n
o } (n = |SCci |): a set of output

data ports for sending a downstream primitive to SCci .

• pso: an output data port indicating the current mode
of ci.

Similarly, apart from the synchronization ports, MSLB
ci

also has the following ports:

• pti: an input trigger port whose activation makes
MSLB

ci
active.

• Pmsx
i = {p1i , p

2

i , · · · , p
n
i } (n = |SCci |): a set of input

data ports for receiving an upstream primitive from
SCci .

Figure 8: The connections around MSLA
ci

and MSLB
ci

• pto: an output trigger port activated after MSLB
ci

com-
pletes its current instance of execution.

• pmsx
o : an output data port for sending an upstream

primitive to the parent of ci.

The connections around MSLA
ci

and MSLB
ci

are illustrated
in Figure 8. The ports associated with services other than
Smode of both ci and SCci have been omitted for simplic-
ity. MSLA

ci
and MSLB

ci
are connected to both ci and SCci .

Their connection with ci is represented by the connection
between ci.p

ms
i and MSLA

ci
.pmsx

i and the connection be-

tween MSLB
ci
.pmsx

o and ci.p
ms
o . Their connection with SCci

is represented by the connection between MSLA
ci
.pko (k =

[1, n]) and ckj .p
ms
i and the connection between ckj .p

ms
o and

MSLB
ci
.pki . A mode related control flow is established within

ci from MSLA
ci

to SCci and then to MSLB
ci
. A Control Or

connector is used so that MSLB
ci

can be triggered by any
subcomponent of ci (i.e. ci is able to receive an upstream
primitive from any subcomponent). This connection pattern
is repeated within all composite ProSave components. For
instance, ∀ckj ∈ SCci (k = [1, n]) which is composite, the

internal connections of ckj will exhibit the same connection
pattern as ci which enables the transmission of both down-
stream and upstream primitives. A downstream primitive
from ci to ckj can be transmitted from MSLA

ci
.pko to ckj .p

ms
i

and ckj can propagate the primitive further to lower levels
if it is composite and wants to. Conversely, an upstream
primitive from ckj to ci can be transmitted from ckj .p

ms
o to

MSLB
ci
.pki and then MSLB

ci
will forward this primitive to

MSLA
ci

via their synchronization ports. Let cl be the parent
of ci, if ci wants to propagate this primitive further to cl,
MSLB

ci
can send the primitive to ci.p

ms
o which must be ex-

ternally connected to MSLB
cl

that is dedicated to the mode
switch handling of cl.

Attention must be paid to the connector Clock in Fig-
ure 8. Since ProSave components are passive and require
external activation, a common Clock must be placed at the
top ProSave level, periodically triggering the mode related
control flow in ProSave. Since each ProSave component can
only handle its mode switch when its Smode service is active,
the activation period of Clock highly affects the total mode
switch time of a system.

Moreover, our initial intention was to use a single dedi-
cated component to handle the mode switch of a composite

Figure 9: The port definition of MSLci

ProSave component. The reason why two such components
are used is attributed to the rigorous execution semantics
in ProSave, which prohibits mutual triggering between two
neighboring ProSave components. If a single component, say
MSLci , is used instead of MSLA

ci
andMSLB

ci
, there must exist

mutual triggering between MSLci and SCci . Consequently,
the execution semantics of ProCom will be violated.

Since both MSLA
ci

and MSLB
ci

are primitive ProSave com-
ponents, they can be easily implemented by following the
mode mapping mechanism and mode switch runtime mech-
anism of MSL (see the algorithms provided in [9] which can
also be automatically generated together with the structure
of MSLA

ci
and MSLB

ci
). In general, MSLA

ci
is responsible for

handling a downstream primitive while MSLB
ci

is responsible
of handling an upstream primitive. Besides, if ci is able to
initiate a mode switch by detecting a mode switch event,
a primitive will be issued from either MSLA

ci
or MSLB

ci
de-

pending on its direction.

4.2.2 The mode switch handling in ProSys
The mode switch handling in ProSys is similar to that in

ProSave. For a composite ProSys component ci, we intro-
duce a dedicated subcomponent of ci for its mode switch
handling: MSLci which plays an equal role as the pair
of MSLA

ci
and MSLB

ci
. However, message passing between

ProSys components is more flexible than the pipe-and-filter
communication in ProSave. Two ProSys components can
send messages to each other, therefore, a single subcompo-
nent MSLci is sufficient for the mode switch handling of ci.

Still, let SCci = {c1j , c
2

j , · · · , c
n
j } (n ∈ N, n = |SCci |) de-

note the set of subcomponents of ci, excluding MSLci . Fig-
ure 9 illustrates the ports of MSLci :

• pmsx
i : an input message port for receiving a down-

stream primitive from the parent of ci.

• Pi = {p1i , p
2

i , · · · , p
n
i }: a set of input message ports for

receiving an upstream primitive from SCci .

• pso: an output message port indicating the current
mode of ci.

• Po = {p1o, p
2

o, · · · , p
n
o }: a set of output message ports

for sending a downstream primitive to SCci .

• pmsx
o : an output message port for sending an upstream

primitive to the parent of ci.

The connections around MSLci are illustrated in Fig-
ure 10, where the ports not related to the mode switches of
both ci and SCci have been omitted for simplicity. Dark red
shapes are message channels. Component MSLci has direct
communication with both ci and SCci . On the one hand,

Figure 10: The connections around MSLci

MSLci .p
msx
i is connected to ci.p

ms
i and MSLci .p

msx
o is con-

nected to ci.p
ms
o . On the other hand, MSLci .p

k
o (k = [1, n])

is connected to ckj .p
ms
i and ckj .p

ms
o is connected to MSLci .p

k
i .

No Clock is needed in ProSys, because ProSys components
are active and can execute without external activation. Ad-
ditionally, since a message channel allows many-to-many
communication, the Control Or connector in ProSave is re-
moved. This connection pattern is repeated for all composite
ProSys components while enabling the transmission of both
downstream and upstream primitives.

MSLci is a primitive ProSys component where the mode
switch runtime mechanism of ci is implemented and de-
scribed in the algorithms provided in [9].

4.3 Managing the variability of ProCom com-
ponent connections in multiple modes

Section 4.2 explains the mode switch handling of a Pro-
Com component, yet without addressing how component re-
configuration is achieved during a mode switch in ProCom.
Many properties of a component can be changed by recon-
figuration, e.g. functional behavior and running status (ac-
tivated or deactivated). Among these properties, our focus
in this paper is on the inner component connections of a
composite ProCom component. As indicated in Figure 1 at
the beginning of this paper, the inner component connec-
tions of a composite component ci can be different while ci
is in different modes. The inner component connections of ci
for each mode can be separately defined at design time and
changed to each other during a mode switch at runtime.
In order to manage the variability of component connec-
tions in different modes in ProCom, we provide a solution
which can automatically generate a complete view of inner
component connections of each composite ProCom compo-
nent based on its inner component connections separately
defined for each mode. Depending on the current mode of
a composite component, the activated subcomponents and
corresponding inner component connections are selected.

4.3.1 Managing the variability of component con-
nections in ProSave

Consider a composite ProSave component ci, whose inner
component connections are mode-dependent. The basic idea
of managing the variability of inner component connections
of ci is to package each ckj ∈ SCci (k = [1, n], n = |SCci |)
with additional connectors. Each connector integrates all

the possible incoming or outgoing connections of a specific
port for all modes and can select the correct connection
based on the current mode of ci.

Let Mci = {m1

ci
,m2

ci
, · · · ,mq

ci
}(q > 1) be the set of sup-

ported modes of ci. Suppose the inner component connec-
tions of ci for each mode ml

ci
(l = [1, q]) have been well-

defined. Besides, for a ProSave component c, the following
sets of ports are defined:

• P t
i : the set of input trigger ports excluding c.pmst

i .

• P d
i : the set of input data ports excluding c.pms

i .

• P t
o : the set of output trigger ports excluding c.pmst

o .

• P d
o : the set of output data ports excluding c.pms

o .

In order to merge the inner component connections of ci
into a complete view, connectors are automatically gener-
ated within ci based on the following rules:

• For each p where p ∈ ckj .P
t
i or p ∈ ci.P

t
o , a Control

Or connector A is generated, with a set of input trig-
ger ports Pi = {pt1i , pt2i , · · · , ptqi }(q = |Mci |) and an
output trigger port pto. The incoming connection to
A.ptli (l = [1, q]) follows the pre-defined connection
while ci is in mode ml

ci
. The output trigger port A.pto

is directly connected to p.

• For each p where p ∈ ckj .P
d
i or p ∈ ci.P

d
o , a Data

Or connector B is generated, with a set of input
data ports Pi = {pd1i , pd2i , · · · , pdqi }(q = |Mci |) and
an output data port pdo. The incoming connection to
B.pdli (l = [1, q]) follows the pre-defined connection
while ci is in mode ml

ci
. The output data port B.pdo is

directly connected to p.

• For each p where p ∈ ckj .P
t
o or p ∈ ci.P

t
i , a Selection

connector C is generated, with an input trigger port pti,
an input data port psi and a set of output trigger ports
Po = {pt1o , pt2o , · · · , ptqo }(q = |Mci |). The input trigger
port C.pti is directly connected to p. The input data
port C.psi is connected to MSLA

ci
.pso (see Section 4.2).

The outgoing connection from C.ptlo (l = [1, q]) follows
the pre-defined connection while ci is in mode ml

ci
ac-

cording to the data from C.psi : If the data returns
ml

ci
(l = [1, q]), C.ptlo will be triggered.

• For each p where p ∈ ckj .P
d
o or p ∈ ci.P

d
i , a Data Se-

lection connector D is generated, with an input data
port pdi , and another input data port psi and a set of
output data ports Po = {pd1o , pd2o , · · · , pdqo }(q = |Mci |).
The input data port D.pdi is directly connected to p.
The input data port D.psi is connected to MSLA

ci
.pso.

The outgoing connection from D.pdlo (l = [1, q]) fol-
lows the pre-defined connection while ci is in mode ml

ci

according to the data from D.psi : If the data returns
ml

ci
(l = [1, q]), the data from D.pdi will be forwarded

exactly to D.pdlo .

The rules above also apply to a ProSys component com-
posed by ProSave components by considering each message
port as a port group consisting of a trigger port and a data
port. Among these four generated connectors, Data Selec-

tion does not exist in the current ProCom component model.

Figure 11: Managing the variability of ProSave com-

ponent connections

Nonetheless, it can be easily developed as its execution se-
mantics is fairly similar to Selection. This is the only ex-
tension of ProCom required by our approach. The above
presented rules are illustrated in Figure 11 where generated
connectors are externally connected to ckj ∈ SCci . Addi-
tional connectors internally connected to ci can also be gen-
erated accordingly (further illustrated in Section 5).

4.3.2 Managing the variability of component con-
nections in ProSys

In comparison with ProSave, the central idea of managing
the variability of ProSys component connections is rather
similar in that all the generated connectors in ProSave can
be replaced with primitive ProSys components. However,
since an input message port can receive messages from mul-
tiple senders, there is no need to generate ProSys compo-
nents playing the role of Control Or or Data Or. Hence,
the only ProSys component that needs to be generated is a
Selection ProSys component which functions as both con-
nectors Selection and Data Selection.

Let ci be a composite ProSys component composed by
ProSys components, with the set of supported modes Mci =
{m1

ci
,m2

ci
, · · · ,mq

ci
}(q > 1) and the set of subcomponents

SCci = {c1j , c
2

j , · · · , c
n
j } (n = |SCci |). Suppose the inner

component connections of ci for each mode ml
ci

(l = [1, q])
have been well-defined. For a ProSys component c, let Pi be
the set of input message ports excluding c.pms

i and let Po be
the set of output message ports excluding c.pms

o . Then for
each p where p ∈ ckj .Po (k = [1, n]) or p ∈ ci.Pi, a primitive
ProSys component, called Selection and denoted as E, is
generated, with two input message ports pi and ps and a set
of output message ports P = {p1o, p

2

o, · · · , p
q
o} (q = |Mci |).

The port E.pi is directly connected to p while E.ps is con-
nected to MSLci .p

s
o (see Section 4.2). The outgoing connec-

tion from E.plo (l = [1, q]) follows the pre-defined connection
while ci is in ml

ci
according to the data from E.ps: If the

data returns ml
ci

(l = [1, q]), the message sent to E.pi will

be forwarded to E.plo. Figure 12 illustrates ckj ∈ SCci exter-
nally connected to the generated Selection component. Ad-
ditionally, a Selection component can also be generated and
internally connected to ci (further illustrated in Section 5).

5. AN EXAMPLE
Section 4 has presented our principal ideas of implement-

ing MSL in the ProCom component model. In this section,
an example is used to illustrate this, covering all the key el-

Figure 12: Managing the variability of ProSys com-

ponent connections

ements in Section 4 and demonstrating how a CBMMS can
be developed in ProCom under the guidance of MSL.

5.1 System description
Consider a system to be developed in ProCom, with its

component hierarchy given in Figure 1. Components d and e

are ProSave components while the others are ProSys compo-
nents. Components Top and b are composite and their basic
mode mappings are given in tables 1 and 2 where the modes
of different components belonging to the same column are
mapped. For instance, when Top is running in m1

Top , b is

running in either m1

b or m3

b , and c is deactivated.

Component Supported modes

Top m
1

Top m
2

Top

a m
1
a m

2
a

b m
1

b
m

3

b
m

2

b

c Deactivated m
1
c

Table 1: The basic mode mapping of Top

Component Supported modes

b m
1

b
m

2

b
m

3

b

d m
1

d
m

2

d
m

3

d
Deactivated

e m
1
e

Table 2: The basic mode mapping of b

It should be pointed out that tables 1 and 2 are insufficient
for defining the full range of possible mode mappings of Top
and b. Mode Mapping Automata (MMA) [7] can be used to
define more mappings. It is our future work to also integrate
MMA into ProCom for better mode mapping specification.

Component b is a ProSys component composed by
ProSave components. The inner component connections of
b in different modes, illustrated in Figure 13(a), are treated
in ProSave where control flow and data flow are separate.
In contrast, Figure 13(b) illustrates the inner component
connections of Top in m1

Top and m2

Top in ProSys.
In order to develop such a CBMMS in ProCom, the first

step is to define the multi-mode ProSave and ProSys compo-
nents introduced in Section 4.1. Figure 14 shows the hierar-
chy of all multi-mode ProCom components. The dedicated
mode switch ports of each component are marked in purple.
Furthermore, as multi-mode ProSave components, d and e

also have a dedicated service Smode .

5.2 The mode switch handling
In this example, a, c, d and e are primitive components,

whose mode switch handling can be directly implemented

Figure 13: The inner component connections of b

and Top in different modes

Figure 14: The component hierarchy in ProCom

by source code. In contrast, for composite components Top

and b, additional subcomponents must be used to handle
their mode switches.

Since Component b is composed by ProSave compo-
nents, its mode switch can be handled by a pair of ded-
icated subcomponents MSLA

b and MSLB
b , both of which

can be automatically generated, given the mode mapping
of b. The ports of MSLA

b and MSLB
b and the connections

around them are presented in Figure 15. Please note that
MSLA

b .P
msx
o = {MSLA

b .p
d
o,MSLA

b .p
e
o} and MSLB

b .Pmsx
i =

{MSLB
b .p

d
i ,MSLB

b .p
e
i }, as d and e are the subcomponents of

b. Components MSLA
b and MSLB

b jointly handle the mode
switch of b and their internal behaviors are described by
algorithms provided in [9].

Component Top is a ProSys component composed by
ProSys components, thus its mode switch can be handled
by a single dedicated subcomponent MSLTop that can be
automatically generated, given the mode mapping of Top.
The ports of MSLTop and its incoming and outgoing con-
nections are presented in Figure 16. Since the subcompo-
nents of Top are a, b and c, for MSLTop , P

msx
i = {pai , p

b
i , p

c
i}

and Pmsx
o = {pao , p

b
o, p

c
o}. Component MSLTop handles the

mode switch of Top, and its internal behavior is described
by algorithms provided in [9].

5.3 Managing the variability of component
connections

Figure 13 indicates the variability of inner component con-
nections of both b and Top. In order to manage such vari-
ability, we can generate a complete view by adhering to the
principles introduced in Section 4.3.

A complete view of the inner component connections of
b is presented in Figure 15, automatically generated based
on Figure 13(a) and including all the additional connectors
introduced in Section 4.3, i.e. Control Or, Data Or, Selection
and Data Selection. All these connectors have three input
or output ports because b can run in three modes: m1

b , m
2

b

and m3

b . Each Selection or Data Selection has an input data
port marked in red. This port is connected to MSLA

b .p
s
o

which tells the current mode of b so that the correct outgoing
connection is selected. Moreover, a Clock, MSLA

b andMSLB
b ,

and a Control Or connector connected to MSLB
b .p

t
i are also

generated for handling the mode switch of b.
A complete view of the inner component connections of

Top is presented in Figure 16, automatically generated based
on the inner component connections of Top separately de-
fined for each mode (see Figure 13(b)). The complete view
includes MSLTop for the mode switch handling of Top and
a couple of Selection ProSys components defined in Sec-
tion 4.3. Each Selection component has two output message
ports because Top can run in two modes: m1

Top and m2

Top.
Meanwhile, each Selection component also has a particular
input message port marked in red. This port is connected
to MSLTop.p

s
o which tells the current mode of Top such that

the correct outgoing connection is selected.
Please note that the generated complete views of compo-

nent connections in figures 15 and 16 are not optimized yet.
By default, the generation rules assume that any connec-
tion associated with any port not dedicated to mode switch
is different for different modes. However, some connections
remain the same for all modes. For instance, according to
Figure 13(a), the outgoing connection of e is never changed
regardless of the current mode of b. Then the four gener-
ated connectors between e and the second output port of
b in Figure 15 can actually be removed. Such optimization
can be employed at both the ProSave and ProSys layers,
thus substantially simplifying the generated complete view.

6. RELATED WORK
Apart from ProCom, many other component models

have been proposed for the development of embedded sys-
tems, such as SaveCCM [11] (the predecessor of ProCom),
COMDES-II [14] and MyCCM-HI [2], to name a few. There
are also some other component models which have been com-
mercialized, e.g. Koala [15] (targeting consumer electronics)
and Rubus [10] (targeting ground vehicles). These compo-
nent models have different notions about the mode switch
handling. For instance, in Koala and SaveCCM, a special
switch is introduced to achieve the structural diversity of a
component. Depending on the input data, switch can se-
lect one of multiple outgoing connections. COMDES-II uses
a state-machine component to switch component configu-
rations in different modes. In Rubus, mode is treated as a
system property. A system-wide static configuration of com-
ponents is defined for each mode. MyCCM-HI provides a
more advanced mechanism for handling mode switch. Each
MyCCM-HI component is mode-aware and is associated
with a mode automaton which implements its mode switch
mechanism. In addition, mode switch is also addressed by
languages such as the Architecture Analysis & Design Lan-
guage [6], where a state machine is used to represent the
mode switch behavior of a component. Each state machine
consists of a number of states (modes), transitions between

Figure 15: The complete view of inner component connections of b

Figure 16: The complete view of inner component connections of Top

these states (mode switches) and input/output event ports
used for mode switch triggering.

To the best of our knowledge, the extended
MECHATRONICUML (EUML) [12] by Heinzemann et
al. is currently the most closely related work to our MSL.
However, EUML focuses more on component reconfig-
uration while mode is not addressed, hence it does not
consider mode-related issues such as mode mapping. In
general, MSL is relatively more mature since EUML is more
recently developed. However, some initial ideas of EUML
coincidentally resemble those in MSL. For instance, EUML
suggests that component reconfiguration is not only locally
performed but also propagated through the component
hierarchy. This is similar to the MSP protocol of MSL.
In EUML, the reconfiguration of a composite component
is handled by two dedicated subcomponents: a Manager

and an Executor, which play similar roles as the dedicated
subcomponents of a composite ProCom component here.

Another recent work related to MSL is the oracle-based
approach [16] by Pop et al. The basic idea is to abstract com-
ponent behaviors into a property network spread throughout
the component hierarchy. The mode of each component is
modeled as a property and mapped from a set of properties
to their valuations. A single property change can be propa-
gated throughout the property network, potentially leading
to the valuation change of other properties. And then the
new mode of each component can be derived after the up-
date of the property network. A finite-state machine called
Oracle is offline constructed to guarantee predictable update
time of the property network. The construction of Oracle
implies that the mode switch handling requires global infor-
mation of the property network. In contrast, MSL is fully
distributed, requiring no global information.

7. CONCLUSION AND FUTUREWORK
This paper presents an approach to the mode switch han-

dling of the ProCom component model guided by the Mode
Switch Logic (MSL). It is shown that the mode switch of
a Component-Based Multi-Mode System (CBMMS) can be
properly handled after a slight extension of ProCom (i.e. the
introduction of the Data Selection connector). Multi-mode
ProSave and ProSys components are defined with reference
to the mode-aware component model of MSL. Also, it is sug-
gested that additional subcomponents can be used to handle
the mode switch of each composite ProCom component. In
order to manage the variability of component connections of
a CBMMS, component connections in all modes are merged
into a complete view with auxiliary elements generated at
both the ProSave and ProSys layers. Thereby, each com-
posite component is able to select the corresponding inner
connections based on its current running mode. Finally, our
approach is demonstrated by a simple example.

As future work, the theories presented in this paper will
be refined and implemented in PRIDE [1], a developing envi-
ronment based on the ProCom component model. It is also
envisioned that the extended PRIDE will provide a practical
platform for the evaluation of both MSL and our implemen-
tation of MSL in ProCom.

8. ACKNOWLEDGMENTS
This work is supported by the Swedish Research Council

via the ARROWS project at Mälardalen University.

9. REFERENCES
[1] PRIDE. http://www.idt.mdh.se/pride/?id=home.

[2] E. Borde, G. Häık, and L. Pautet. Mode-based
reconfiguration of critical software component
architectures. In DATE, 2009.

[3] T. Bureš, J. Carlson, I. Crnković, S. Sentilles, and
A. Vulgarakis. ProCom - the Progress component
model reference manual, version 1.0. Technical Report
ISSN 1404-3041 ISRN MDH-MRTC-230/2008-1-SE,
Mälardalen University, 2008.

[4] I. Crnković and M. Larsson. Building reliable

component-based software systems. Artech House,
2002.

[5] I. Crnković, S. Sentilles, A. Vulgarakis, and M. R. V.
Chaudron. A classification framework for software
component models. IEEE Transactions on Software

Engineering, 37(5), 2011.

[6] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The
architecture analysis & design language (AADL): An
introduction. Technical Report
CMU/SEI-2006-TN-011, Software engineering
institute, MA, Feb. 2006.

[7] Y. Hang. Mode switch for component-based multi-mode

systems. Licentiate thesis, Mälardalen University,
Väster̊as, Sweden, December 2012.

[8] Y. Hang, J. Carlson, and H. Hansson. Towards mode
switch handling in component-based multi-mode
systems. In CBSE, 2012.

[9] Y. Hang, H. Qin, J. Carlson, and H. Hansson. Mode
switch handling for the ProCom component model.
Technical Report ISSN 1404-3041 ISRN
MDH-MRTC-271/2013-1-SE, MRTC, Mälardalen
University, Jan 2013.

[10] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg,
J. Lundbäck, and K. Lundbäck. The Rubus
component model for resource constrained real-time
systems. In SIES, 2008.

[11] H. Hansson, M. Åkerholm, I. Crnković, and
M. Törngren. SaveCCM - a component model for
safety-critical real-time systems. In Proceedings of

Euromicro Conference, Special Session on Component

Models for Dependable Systems, 2004.

[12] C. Heinzemann, C. Priesterjahn, and S. Becker.
Towards modeling reconfiguration in hierarchical
component architectures. In CBSE, 2012.

[13] P. Hošek, T. Pop, T. Bureš, P. Hnětynka, and
M. Malohlava. Comparison of component frameworks
for real-time embedded systems. In Component-Based

Software Engineering, volume 6092 of Lecture Notes in

Computer Science. 2010.

[14] X. Ke, K. Sierszecki, and C. Angelov. COMDES-II: A
component-based framework for generative
development of distributed real-time control systems.
In RTCSA, 2007.

[15] R. V. Ommering, F. V. D. Linden, J. Kramer, and
J. Magee. The Koala component model for consumer
electronics software. Computer, 33(3), 2000.

[16] T. Pop, F. Plasil, M. Outly, M. Malohlava, and
T. Bureš. Property networks allowing oracle-based
mode-change propagation in hierarchical components.
In CBSE, 2012.

