
Research paper:

Managing Complex Systems – Challenges for PDM and SCM

Contact author:
Ivica Crnkovic

Mälardalen University, Software Engineering Dept.
721 23 Västerås, Sweden

ivica.crnkovic@mdh.se,
tel: +46 21 10 31 83, fax: +46 21 10 14 60

Abstract

Software is being increasingly incorporated in increasingly extensive industrial and other
applications. There is a demand for total control of entire applications including their software
components. A consequence of this is that the development procedure, production operations and
maintenance, previously separate processes, are being integrated in comprehensive process systems.

In the integration of these processes, many difficulties are encountered because of different natures
of the processes and the different approaches made to the problem. In the integration process, many
activities overlap and much data is duplicated, this making a complex process even more complex.
Software Configuration Management (SCM) and Product Data Management (PDM) which are used
to solve similar problems in different ways are examples of overlapping processes. Attempts to
integrate SCM and PDM systems to obtain a more efficient development process have not proved
particularly successful.

This paper analyses the main characteristics of SCM and PDM, development processes that are
PDM- or SCM-centered, their common characteristics and their differences. The problems
encountered when using both systems are analyzed. An analysis of possible integration of these
systems is presented and the potential benefits of and problems involved in such integration are
discussed.

Keywords: Software Configuration Management, Product Data Management, Development
process, tool and process integration

Categories: Software Configuration Management, Product Data Management, Development

process.

Managing Complex Systems – Challenges for PDM and SCM

Ivica Crnkovic
Mälardalen University

Software Engineering Dept.
721 23 Västerås, Sweden
ivica.crnkovic@mdh.se

Annita Persson Dahlkvist
Ericsson Microwave Systems AB

Ground Systems Div
431 84 Mölndal, Sweden

Annita.Persson@emw.ericsson.se

Daniel Svensson

Chalmers University
Machine and Vehicle Design
412 96 Gothenburg, Sweden

daniel.svensson@mvd.chalmers.se

Abstract

Software is being increasingly incorporated in

increasingly extensive industrial and other applications.
There is a demand for total control of entire applications
including their software components. A consequence of
this is that the development procedure, production
operations and maintenance, previously separate
processes, are being integrated in comprehensive process
systems.

In the integration of these processes, many difficulties
are encountered because of different natures of the
processes and the different approaches made to the
problem. In the integration process, many activities
overlap and much data is duplicated, this making a
complex process even more complex. Software
Configuration Management (SCM) and Product Data
Management (PDM) which are used to solve similar
problems in different ways are examples of overlapping
processes. Attempts to integrate SCM and PDM systems
to obtain a more efficient development process have not
proved particularly successful.

This paper analyses the main characteristics of SCM
and PDM, development processes that are PDM- or
SCM-centered, their common characteristics and their
differences. The problems encountered when using both
systems are analyzed. An analysis of possible integration
of these systems is presented and the potential benefits of
and problems involved in such integration are discussed.

Keywords: Software Configuration Management,
Product Data Management, Development process.

1. Introduction

Product Data Management (PDM) is the discipline of

designing and controlling the evolution of a product
design. Software Configuration Management (SCM) is the
discipline of controlling the evolution of a software
product design. These two domains have long been
disconnected. They have shared certain common concepts
and techniques, but have lived in different worlds.
Historically PDM has been focused on hardware
development and SCM has been focused on software

development. Vendors drive in the PDM domain and
researchers in the SCM domain. A trend in both domains
is an understanding, for many reasons, of the need for co-
operation, especially on the tool side. The use of
embedded software in manufactured products is
increasing. Companies need comprehensive control of
products and their associated software components. A
trend in industry today is to manage the entire product and
not the hardware and the software parts separately. For an
easier environment for users, companies have tried to
integrate different systems such as PDM and SCM. We
are thus faced with the need to understand both domains.

PDM vendors have ignored software management in

their development activities. Similarly, SCM vendors have
until recently concentrated on supporting pure software
development. In general there is a lack of knowledge in
both disciplines, and exhaustive research is needed to
determine which integration and interaction methods are
most suitable. PDM and SCM users must also decide what
they expect to accomplish from such an integrated system
and then put pressure on vendors to deliver those
capabilities. For vendors and users, the payoffs are likely
to be considerable at relatively low-cost and with minimal
investment of resources in software management.

This paper analyses the similarities and differences

between SCM and PDM and possibilities for their
integration. Chapter 2 gives an overview of SCM,
outlining the trends in research and industry. Chapter 3
gives a similar overview of PDM. What are the common
SCM and PDM characteristics, and what type of use is
typical for software development- or hardware
development- oriented organizations? Which activities in
both domains address the same problem and require a
common approach. These questions are discussed in
Chapter 4. Although the processes managed by PDM and
SCM are similar, there exist several fundamental
differences that cause severe difficulties in integration.
Which approach can add quality without introducing new
complexity and functional overhead? Possible directions
of new, integrated approach are discussed in chapter 5.
The paper is rounded off with conclusions and outlines for
future work.

2. SCM – State of the Art

SCM is about controlling the evolution of complex

software. From a management point of view, SCM directs
and controls the development of a product by the
identification of the product components and their related
documents, product structuring, control of their
continuous changes, status accounting and auditing. From
a developer point of view, SCM maintains current
components, stores their history, offers a stable
development environment, builds the products and
coordinates simultaneous changes in the product. SCM
includes both the product (configuration) and the working
mode (methods) and the goal is to make a group of
developers as efficient as possible in their common work
with the product. In many cases, for example in ISO 1007,
the term CM (configuration management) is used which is
applicable for both software and hardware products.
However when specify SCM we emphasize support
specific to software development process, which is often
unknown for the hardware developers and typically, PDM
users. SCM research was traditionally close to industry
and has been actively involved in tool development
[2,3,4]. SCM is one of the few software-engineering
disciplines which has been utilized successfully in
practice. More than 50 [5] different SCM tools are
currently available.
− SCM treats first of all the complexity of software

products. As software became more complex, the
number of SCM functions increase. Many disciplines
are covered by SCM today, the most important being:

− Version Control - the possibility of storing different

versions of a software item and being able
subsequently to retrieve and compare them.

− Configurations/Selection – the ability to create or
select associated versions of different items.

− Concurrency Control – concurrent development, by
either preventing or by supporting simultaneous
access.

− Build – mechanisms for keeping generated files up to
date, rebuilding only those parts of which sources or
the building conditions have been changed.

− Release management – managing final products in
the form of software packages suitable for
distribution and installation, and keeping track of
product versions in relation to the building
components.

− Workspace management – support for developers
working in a project. Controlling the working
versions of the modules being changed.

− Change management – a system supporting the
management of the collection of change requests, for
example in collaboration with customer support, the

generation of error reports, firm change requests,
implementation of those changes, documentation of
the problem and the solution, and when it is available.

− SCM Process support – in recent years, especially as
a consequence of the emergence of the CMM [6]
emergence, the process aspects of SCM activities,
i.e. their planning, executing and measuring, became
an important part of SCM.

The disciplines developed earlier are closely related to

the software development cycle: Editing and building
source code. The products of that process, (i.e. binary
files) have traditionally not been apart of SCM, since it
has been easy to reproduce them. The objects treated by
SCM were mostly source code modules. The software
development process is more complex today. In addition
to traditional software development, there are many other
factors managing different type of objects, and with
different internal structures and different types of
relations. The implication of this is an increase in
requirements for automatic management of completed
artifacts. The importance of SCM has extended from the
implementation phase to earlier phases (requirement and
design specifications) and to later phases (assemble,
maintenance and support). The previously dominant
version management has been superceded by the
configuration/selection discipline. In this respect SCM has
become less software-specific and more liked a PDM
solution.

Another issue becoming important is document
management. The basic level of document management
can be covered by pure version management in the same
way as any source code, but the more sophisticated
support requires more functions: Managing differences on
the semantic level (impossible with delta-algorithms), and
managing the process is different from the source-code
management. In this respect SCM has approached PDM.
In general, the number of different processes has
significantly increased, which requires different level of
support. In this respect also SCM has approached PDM.
In general, the number of different processes has
significantly increased this requiring a different level of
support. In this respect SCM has become a more general
approach, valid also for non-software artifacts, i.e. to
general CM level.

Although SCM is a successful discipline, there are still
a number of problems which are cot completely solved.
Most of the SCM disciplines works good for ASCII files
recognizing lines as internal structures. SCM manages
much less efficiently complex objects, and does not
recognize the semantic of the objects. For example,
programming language semantics is usually unknown to
SCM tool. For this reason the interoperability of SCM is
becoming more serious problem in the integration process
with other tools.

3. PDM – State of the Art

PDM is used to handle artifacts in hardware design,

primarily meta-data i.e. data which describes real objects.
PDM systems are used to perform CM of hardware, but
the scope of PDM is wider than this: "Product Data
Management (PDM) is a tool that helps engineers and
others to manage both data and the product development
process. PDM systems keep track of the masses of data
and information required to design, manufacture or build,
and support and maintain products" [13]. The PDM
systems used today have their origin in the management of
documents and product structures. A product structure is
used to identify the parts in a product. The first systems
used to manage product structures were manufacturing
systems, but subsequently design departments began to
apply their own systems. When the use of CAD systems
expanded, a need to manage CAD models more efficiently
became apparent. The vendors of CAD systems offered
applications for this. A product structure was used to
structure the information in these systems. This was the
beginning of modern PDM systems, which can manage
not only various kinds of documents and product
structures, but also development processes.
− The most important user functions of a PDM system

are [13]:

− Data Vault and Document Management – documents
must be stored in an organized manner. Information
about the documents (meta-data) is stored in a central
database. Document management routines are used to
manage release and change of documents.

− Workflow and Process Management – routine
processes can be monitored and controlled by a PDM
system.

− Product Structure Management – product structures,
which include description of products parts, are
defined and changes in them are controlled.

− Part and Component Management (Classification &
Retrieval) – standard parts can be classified to
support re-use.

− Project Management – a large project can be broken
down into sub-projects. The progress of a project can
be tracked.

− Central utility functions are:

− Data Transport and Translation – design is often

performed in a heterogeneous environment, with
various design tools, on different platforms and at
various locations. A PDM system must therefore be
able to communicate with various applications and to
transfer data between locations. Data created in
different applications may need to be translated.

− Image Services – most design tools, such as CAD, are
only used by the designers. An automatic translation
to a neutral format possible to view from any desktop
PC makes it possible for anyone in a company to
view the geometry.

− Administration – hardware design involves numerous
participants and many document types. Different
users have different access rights to documents which
must be handled by the PDM system.

The introduction of PDM systems has not been easy.

Many companies are still in the process of selecting and
implementing PDM systems. A PDM system will have
impact on many of the processes in a company; therefore
a company's overall business strategy must be taken into
consideration when introducing a PDM system [10]. It is
also important to consider organizational issues when
introducing PDM [11] in a company.

If researchers drive the SCM (Software Configuration

Management), PDM is driven by the needs of industry and
by the vendors of PDM systems. There are few
researchers in the PDM field as compared with SCM.
PDM systems are usually very large and complex and
require considerable administration efforts. The usability
of such systems is often limited. Their deployment with
efficient customization and improved usability is now
demanded by industry. Another requirement trend is
Internet access and a web-based interface to data to permit
people outside a company to access data.

4. Changing paradigms in both SCM and

PDM

The characteristics of the two systems emerge from the

nature of the artifacts developed. In life-cycle models,
PDM is focused more on the design phase and later on the
production and maintenance/support phase. The
development phase as seen from the software
development point of view is less significant. On the
contrary, in the software product life cycle, the
development phase is usually the most intensive part
(despite the intention of software engineering to move
more activities to the beginning of the product life cycle),
The tools consequently bring into focus support for the
corresponding processes.

Figure 1 shows schematically support provided by

these tools during the product life-cycle. From the
functional point of view, the SCM and PDM tools fit
together to completely cover the entire product life cycle.
A possibility of integration is even more attractive as the
trends in both systems are enlargement of the area of
control already covered by the other system. For example,

the CM part is becoming more important than pure
version management for the software developers. SCM
becomes more similar to PDM due to the structuring and
configuration of complex products. On the other hand the
development phase, due to extensive use of CAD and
simulation tools, becomes more important for PDM users.

Figure 1. PDM and SCM Process support

In practice, there exist many problems. First, the

sharing or exchanging of data between different tools
from the same domain but from different phases. Neither
system has yet solved this problem completely. A more
serious problem arises when data must be shared or
exchanged between the tools from these two domains. The
second problem is the choice of the tools and methods
from the overlapping areas. Even if a particular tool
provides excellent support within one domain, it does not
mean that it is suitable or well integrated within the
second domain.

The overlapping functions are many. Figure 2 depicts
the most important functions from both domains. As the
figure shows, there are many functions supporting the
same or similar process.

Figure 2. The main functions of SCM and PDM

A further problem is that software developers do not
understand the hardware developers and their need of a
PDM system, and the hardware developers do not
understand the need for SCM tools. The two groups have
different opinions on what CM is. There is a need for a
common terminology and the semantics to ensure mutual
understanding. To find out the real possibility for the tools
integration, the analysis beyond the functional level must
be done, which is done in the next section.

5. Common Characteristics and Possibilities

of Integration

5.1 Common characteristics and differences

Estublier [1] concludes the both domains appear to be

very similar, but only on the principle level, while the
implementations are very different. To analyze the
similarities and the differences the following categories
can be compared:

− The product model (data model, configuration)
− The evolution model (versioning)
− The process model

The product model includes mechanisms for

specification of complex systems. The lowest level of
product modeling is data modeling. PDM follows
STEP/EXPRESS standard [7, 12]. EXPRESS is an
Object-Oriented modeling language defining the static
characteristics of complex artifacts. SCM systems do not
provide explicit data modeling, but are most often based
on an operating system model, i.e. files and directories.
The basic principle of product modeling in PDM is the
composition relationship in the form of tree structures
(examples part list or bill of materials). Traditionally
SCM uses tools such as make [8] where relations
(dependencies) between different components and the
procedure to build them are specified. Data modeling in
SCM is very weak. The differences in approach come
from fundamental differences in the nature of hardware
products: PDM, the product has a physical existence and
consists of physical parts. For that reason the product
structure is always its part structure. In software there is
no such real structure; parts are arbitrary abstractions with
loose relationships, and the product structure (application,
operating system, platform) exists only in the development
phase.

The evolution model manages changes during the

product life cycle, and is related to version management.
The PDM data model, EXPRESS includes no concept of
versioning, while this concept is fundamental for SCM
data modeling. The focus on version management in SCM

PDM

SCM

Build Management
Concurrent Development (branch &
merge)
Workspace Mgmt
...

Classification
Production
Parts, Assemblies
Context
Configuration
Efficiency Document Management

Costs of components
Vendors/Supplier
Delivery Process

Identification, Process Mgmt
Change Mgmt, Meta Data
Version/Revision & Storage
Configuration Mgmt,
Release Mgmt,Variants,
History Management
Product structure
Relations

 Requirements Design Development Production Maintenance

SCM

PDM

Process support

and the neglect of this concept in PDM arise from the
differences in the products’ natures: Since software may
be changed more easily than hardware, SCM must manage
versioning in a more sophisticated way than CM for
hardware [9]. PDM recognizes three different concepts:
historical versioning, logical versioning and domain
versioning. Historical versioning is conceptual and similar
to SCM versioning, dealing with revisions/versions of a
product. Logical versioning manages versions of parts as
alternatives, possible substitutes or options. Finally
domain versioning is not actually versioning but more the
generation of different views of product structures.
Similar concepts are included in SCM with emphasis on
flexibility of configuration and visibility of differences
between versions. The concept of “view” exists in many
SCM tools and is related to the selection of a specific
configuration. The versioning models in PDM and SCM
are tending to become more alike since the objects of
management have become similar. Software artifacts, for
example documentation and the results from different
modeling/design tools, are being managed more and more
by PDM. Documentation management is often treated
separately in PDM and SCM versioning models are then
applied. The problem remaining is the fact that neither
PDM nor SCM have solved sophisticated versioning of
objects with a complex internal structure (such as
documents created by word-processors).

The process model is conceptually similar for both

SCM and PDM and can be described by State Transition
Diagrams. Although STEP should define the standard for
PDM systems, PDM providers commonly use extensions
to this standard, since STEP is a rather static model,
oriented to the final products rather than to the
development process. There is however a significant
difference between the processes: In PDM, there is a clear
distinction between the design and the production process.
In software the design and the product are almost the
same, and the majority of effort is concentrated to the
development/design phase.

To sum up, we can conclude that there are many

similarities on the conceptual level between PDM and
SCM, but the emphasis on different moments is quite
different. The implementations are also different. While
PDM is complaint with STEP, SCM does not have
established standards. Being too static and too much
oriented to the final product management, STEP could not
be applied in SCM.

5.2 Integration Possibilities

As many companies are faced with a situation requiring
the use of both systems, the question is which kind of
integration or cooperation can be achieved with these two
systems? A full integration can be achieved by using a
common infrastructure, common interfaces and common
data. This means that we need a common product model,
common evolution model and common process model. A
common support for the process model can be used with
the present tools, but other models with today’s
functionality are too different for use as common models.

Another possibility of integration is weak integration

with separate infrastructures and data, but a well-defined
and efficient interface between the systems.

Figure 3 shows the simplest integration method,

building a common application user interface to manage
both SCM and PDM functions and present them via
common interface to the user.

Figure 3. SCM and PDM integration – Common API

This model unfortunately cannot work well with the

tools available on the market today. Most of them have a
poor API, which provides incomplete (if any)
functionality. Another challenge for both tools,
independently of each other, is interoperability with other
engineering tools. Interoperability requirements will lead
to the emergence of better and clearer API’s. The new,
component-based technology also encourages the use of
API’s.

As an API for SCM and PDM tools does not provide

full functionality, the solution shown in Figure 3 will
appear in practice as shown on Figure 4. This solution
may generate problems as certain manual actions may
introduce inconsistent states for the SCM/PDM
combination.

PDM

Common API

SCM

User, Engineering tools

Figure 4. Direct and indirect use of tools

For more robust and efficient integration, SCM and

PDM vendors should provide the integration. As PDM
covers a larger part of the total product life-cycle and as
PDM deals with meta-data (i.e. description and structuring
of data), it is natural that communication with the user is
via PDM, as shown in Figure 5. Early attempts at this
integration, such as integration between Metaphase [15]
and Rational ClearCase [14], are already in progress.
SCM tools can be integrated with PDM tools as other
engineering tools (such as Integrated Development
Environment tools) are integrated. PDM tools use API
from SCM. Users communicate only via PDM, which is
responsible for updating information for both PDM and
SCM data. This model provides better control of the
consistency of duplicated data. However a similar
problem remains. There is already integration of different
development tools and SCM tools and it is unrealistic to
assume that such integration will not be used
independently of PDM integration. This means that there
will always be a possibility of data in one database only
being modified thereby introducing an inconsistent state.
To avoid such possible inconsistencies, a database
synchronization process must be included between the
databases on a periodical or interrupt/trigger base.

Figure 5. Partial direct SCM/PDM integration

Another problem, which already exists in both
systems, becomes more acute in the integration process.
Both tools are complex and as a consequence have
complex and often user-unfriendly interfaces. When
integrated, the system user-interface will be even more
complex.

Which parts of the tools can be integrated depends on

the tools. The minimal integration required is on the
version and configuration level. As PDM does not have
flexible mechanisms for version management it is suitable
for file versioning to be under the control of the SCM
tool. From the PDM point of view, it is more interesting to
keep information about specific versions of files collected
in a configuration or in a baseline. This means that a list
of files (source and executables) containing the pointers to
the actual files is saved, as shown on Figure 6.

Figure 6. SCM configurations saved in PDM

Workspace management is very important in SCM and

in more advanced tools tightly integrated in the entire
process. This part must also remain under SCM control,
which implies direct interaction between users and SCM,
and which deviates from the general intention that one
tool should control.

Change management and process management in
general can be kept under PDM control. This implies that
the change management part in SCM tools should be
hidden from users in form of process and action initiation,
but kept as triggers to actions and information status
inside SCM.

6. A new integration approach

Interaction and integration of the existing PDM and
SCM tools meet many problems and it is likely that only
partial results can be achieved. The integration will
introduce even more complexity and problems with
interpretability. The reliability of such integrated system
would decrease. As both domains are recognized by

PDM

Common API

SCM

User, Engineering tools

PDM

PDM API

SCM

Users

SCM API

Engineering tools

Parts
Source Code

Files

Release x.x
Versions

Hardware Software

Revisions

Product
structure

Relationship between part in PDM
system and release in SCM system

industries as important parts in the development process,
and both domains still struggle with usability,
interoperability, scalability and cost efficiency, it is not
likely that much effort will be applied to integration unless
the pressure from users becomes obvious.

The proper solution would be to define a common

model. As the processes on the highest abstraction level
are very similar, a common data and process model
including evolution and interoperability models would be
a natural development. Many other engineering tools
could use the same model. It should be much easier for
one vendor providing several tools to use this approach,
but it has been shown that it is a difficult task even for one
vendor. A tendency to use this approach can be seen in
Rational products, in particular in Rational SoDA [14] in
which the results from different tools are collected in one
common documentation.

One of the biggest problems encountered in the

creation of a common model is the complexity and
diversity of objects of management and the inflexibility of
the tools which make it impossible to develop consistent
coherent models.

New technologies such as middleware, XML, and

component-based development are promising in the sense
that they permit the building of flexible structures and
well-defined interface specifications, allowing different
tools to retain their internal structures and processes.
There is ongoing work using this approach in the process
industry (ABB Objects and Aspects) [16] and research
[17], in which two main objectives are considered:
flexible and scalable data modeling and a general
application interface model. The flexible modeling is
achieved by building complex objects with attributes
grouped in so-called aspects. Each aspect describes a
specific role in a certain context of the system. For
example, the aspects of a car as an object can be
production documents, part lists, web pages, test results,
any kind of relevant information. The introduction of
aspects (known also as object roles) provides the
possibility of obtaining a partial view of an object and the
extraction of related information only. The aspects have
their own methods for providing information or for
performing an action. An aspect can be implemented for
example as the document, CAD/CAM drawing, a video
sequence, an optimization function or a process control
loop. The most important fact is that the aspect’s
properties need not to be known at system building time,
but they are invoked dynamically.

The aspects from different objects (i.e. a configuration

of object aspects) can be grouped and managed together.
Figure 7 shows an example of structuring aspects, in

which the same aspect of an object shares two different
structures.

Figure 7. Aspect structures

The concept is similar to implementation of PDM

structures, but in this case the structures can be built
dynamically. The flexibility of structures is a new feature,
absent from previous PDM systems. A second feature is
the possibility of communicating with objects by invoking
objects’ or aspects’ methods. The objects provide those
methods. Using a standardized framework such as
COM/DOCM or JavaBeans makes it possible to
dynamically load, invoke and provide results from the
objects without knowing in advance the format of data.
This approach enables the building of complex systems
which are highly dynamic and flexible.

7. Conclusion

Although the trends in system development are toward

an integrated approach, in which products are built from
both software and hardware, these processes are still
separated. One of the reasons is the inadequate integration
of tools managing hardware and tools managing software.
SCM and PDM systems differ too much to be easily
integrated. As the data models and the processes are too
different, it is very difficult to achieve a strong integration
of the existing systems. This means that instead of having
a common database, the repositories will continue to be
separate. The integration can be achieved by exchanging
data using import/export functions triggered by change of
state in databases or invoked through API from users of
other engineering tools. When using this approach there is
always a risk that data in two systems will not be
synchronized. A new approach, covering functions of both
systems is required, in which flexibility of data structures
and the possibility of dynamically adding new services are

Functional
structure

Location
structure

object

the most important requirements. Middleware technology
can be used to achieve the dynamic integration.

8. References

[1] J. Estublier, J-M Favre and P. Morat: “Toward SCM/PDM
Integration?”, System Configuration Management, SCM-8,
Lecture Notes in Computer Science 1439, Springer, pp. 75-94

[2] J. Estublier, R. Casallas: “The Adele Software
Configuration manager”. Configuration Management, Edited by
W. Tichy, J. Wiley and Sons, 1994, Trends in Software

[3] G.M. Clemm, Replacing Version Control with Job Control,
Proceedings of the 2bd International Workshop on SCM, pp
162-169, ACM SIGSOFT, 1989

[4] D. B. Leblang, “Managing the Software Development
Process with ClearGuide”, Software Configuration Management
SCM-7, Springer, 1997, pp. 66-80

[5] CM Yellow pages, http://www.cmtoday.com

[6] A Systems Engineering Capability Maturity Model,
CMU/SEI-95-MM-003, Carnegie Mellon, Software Engineering
Institute,

[7] STEP Part 1: Overview and fundamental principles”, ISO
TCI194/SC4/WG5, November 1991.

[8] S. Feldman, “Make – A program for maintaining computer
programs” – Software-Practice and Experience, 9:255-265,
April 1979

[9] B. Westfechtel, R. Conradi: “Software Configuration
Management and Engineering Data Management: Differences
and Similarities”, System Configuration Management, SCM-8,
Lecture Notes in Computer Science 1439, Springer, pp. 96-106

[10] S. B. Harris, "Business strategy and the role of engineering
data management: a literature review and summary of the
emerging research questions", Proceedings of the Institution of
Mechanical Engineers: Part B: Journal of Engineering
Manufacturing, 210: pp. 207-220, 1996.

[11] P. Pikosz: "Product Data Management in the Product
Development Process". Licentiate thesis, Machine and Vehicle
Design, Chalmers University of Technology, Göteborg, Sweden,
1997.

[12] D. Schenck, P. R. Wilson: "Information modeling the
EXPRESS way". Oxford University Press, New York, NY,
USA.

[13] CIMdata: "Product Data Management: The Definition",
CIMdata Inc., Ann Arbor, MI, USA, 1998.

[14] Rational ClearCase,
http://www.rational.com/products/clearcase/index.jsp

[15] SDRC Metaphase, http://www.sdrc.com/metaphase

[16] ABB Automation, Industrial IT – Objects and Aspects,
http://www.abb.com/automation

[17] Erik Gyillenswärd et al: Information Organizer: A
Framework for Business Integration, Technical report,
Mälardalen University, January 2000

