Verifying MARTE/CCSL Mode Behaviors using
UPPAAL

Jagadish Suryadevara®, Cristina Seceleanu®, Frédéric Mallet? and Paul Pettersson’

! Milardalen Real-Time Research Centre, Milardalen University, Visteras, Sweden
2 Aoste Team-project INRIA/I3S, Sophia-Antipolis, France
jagadish.suryadevara@mdh.se, cristina.seceleanu@mdh.se,
frederic.mallet@unice.fr, paul.pettersson@mdh.se

Abstract. In the development of safety-critical embedded systems, the ability to
formally analyze system behavior models, based on timing and causality, helps
the designer to get insight into the systems overall timing behavior. To support the
design and analysis of real-time embedded systems, the UML modeling profile
MARTE provides CCSL — a time model and a clock constraint specification lan-
guage. CCSL is an expressive language that supports specification of both logical
and chronometric constraints for MARTE models. On the other hand, semantic
frameworks such as timed automata provide verification support for real-time sys-
tems. To address the challenge of verifying CCSL-based behavior models, in this
paper, we propose a technique for transforming MARTE/CCSL mode behaviors
into Timed Automata for model-checking using the UPPAAL tool. This enables
verification of both logical and chronometric properties of the system, which has
not been possible before. We demonstrate the proposed transformation and veri-
fication approach using two relevant examples of real-time embedded systems.

1 Introduction

The increasing complexity and safety-criticality of real-time embedded systems in do-
mains such as automotive and avionics, stress the need for applying rigorous analysis
techniques during system development in order to ensure predictability [8]. To meet
this need, the standard modeling language UML (The Unified Modeling Language)
[14] provides a domain-specific modeling profile called MARTE (Modeling and Anal-
ysis of Real-Time and Embedded systems) [15]. Besides modeling support for perfor-
mance and schedulability analysis, MARTE includes CCSL — a time model and a clock
constraint specification language, for describing both logical and physical (chrono-
metric) clock constraints [3]. On the other hand, semantic frameworks such as timed
automata provide modeling and verification support for real-time systems [1,7,11,2],
which CCSL - based models could benefit from. An important feature of CCSL is
that it can be used for expressing/specifying both synchronous and asynchronous con-
straints, based on the coincidence and precedence relationships between clock instants.
However, the expressiveness of CCSL poses challenges with respect to providing rigor-
ous analysis support, like exhaustive verification, to its specifications. The focus of our
work, in this paper, is to address these challenges and provide a model-checking based

verification support for MARTE/CCSL behavior models, by transforming them into the
timed automata (TA) framework.

MARTE Statemachine models, called ModeBehaviors, can be used to specify the
mode-based behavior of a system. In this view, a mode represents an operational seg-
ment within the system execution that is characterized by a configuration of system
entities. For instance, during ‘TakeOff’, ‘Flying’ and ‘Landing’ modes of an aircraft,
different parts of the control system may be active in different modes.

In this paper, we propose to constrain MARTE mode behaviors with CCSL specifi-
cations, using the underlying MARTE time model. As we show, this facilitates precise
specification of logical (of synchronous and asynchronous nature) as well as physical
(chronometric) time properties of a system witin a mode. Next, as a main contribu-
tion, we present a technique to transform MARTE/CCSL mode behaviors into timed
automata [1,7] to enable model-checking based analysis. The transformation is based
on the synchronized product of the state-based representations of the CCSL semantics
[4,12]. This proves to be non-trivial due to the expressiveness of CCSL constraints and
the differing semantic domain of TA framework.

In brief, in this paper, we make the following contributions:

— We provide a mapping strategy to transform CCSL-extended MARTE mode behav-
iors into timed automata, and verify logical and chronometric properties using the
UPPAAL model-checking tool [11].

— We propose novel techniques to address the limitations of mapping synchronous
and chronometric semantics of CCSL into timed automata.

— We demonstrate the proposed modeling and verification approach using simplified
versions of two representative examples of safety-critical embedded control sys-
tems, namely, a temperature control system and an anti-lock braking system.

The rest of the paper is organized as follows. In Section 2, we introduce exam-
ple embedded systems and present the corresponding mode behavior specifications. In
Section 3, we present an overview of CCSL, followed by the CCSL extended mode
behaviors for the example systems. In Section 4, we present the proposed transforma-
tion technique for CCSL-extended mode behavior specifications, and in Section 5, we
discuss verification results based on the transformed timed automata models of the ex-
ample systems. The related work is discussed in Section 6. Finally, we conclude the
paper in Section 7, with a discussion of future work.

2 Example Systems and Mode-behavior Specifications

In this section, we present the mode behavior specifications of the example embedded
systems used in this paper. We have chosen two simple but representative systems,
which represent different kinds of functional and timing aspects commonly found in
embedded systems.

MARTE Notations and Stereotypes. In MARTE, the stereotype ModeBehavior ex-
tends the UML Statemachine notation with stereotypes Mode, which extends State, and

‘ «modeBehavior» ’ ‘ «modeBehavior» ’

TCS ABS
«mode»
Calibrate

«modeTransition» «modeTransition»
(a) Temperature Control System (b) Anti-lock Braking System

=
«mode»
«modeTransition» Brake
o TOUE TR

[Brake_Released]

[after(100s)] [Brake_Pressed]
«mode» «mode»
Diagnostic «modeTransition» | Control
-
MIN < T <MAX

Fig. 1. UML/MARTE mode behavior specifications.

ModeTransition that extends Transition (Fig. 1). A ModeBehavior specifies a set of mu-
tually exclusive modes, that is, only one mode can be active at a given instant. A mode
represents an operational fragment of the system, also called configuration, meaning the
set of system entities that are active during the mode instance. The dynamics of mode
switching, either time or event triggered, is specified by connecting modes by means of
ModeTransitions. Transitions are enabled as a response to an event occurrence, that is,
the activation condition triggering the mode switching.

2.1 Examplel: A Temperature Control System (TCS)

We consider a simplified version of a temperature control system that regulates the tem-
perature inside a nuclear reactor core, by using thermal-controlling rods. The rods are
inserted into the core of the reactor when the temperature reaches a given upper limit,
denoted by constant MAX, causing the temperature to gradually reduce (as neutrons in
the reactor are absorbed by the control rods). Similarly, the control rods are removed
when the temperature in the reactor falls below MIN. TCS operates in two modes.

In Diagnostic mode, the following actions are triggered that execute the corre-
sponding behaviors®: Diagnostics examines the current status of the control rods,
Reconfig replaces the ineffective control rods if any, and StatusUpdate updates
the status of a rod configuration in the reactor. In Control mode, the system triggers
three actions; PeriodicSense senses the temperature in the reactor, InsertRod
inserts a control rod, and RemoveRod removes a rod from the reactor.

The TCS mode behavior is presented in Fig. 1. After 100 s in Diagnostic mode, the
system changes to Control mode. However, the mode-change from Control to Diagnos-
tic is triggered by an event occurrence, indicating the sensed temperature in the reactor
is within the specified limits. The following properties specify the functional and timing
aspects for TCS:

TCS1: Diagnostics is always followed by Reconfig.

TCS2 : The behavior of Reconfig is ‘extended’ by StatusUpdate, only when there
is a change in the control rod configuration.

TCS3: PeriodicSense executes periodically with a period of 10 s.

TCS4: PeriodicSense is followed by InsertRod or RemoveRod but not both.

TCS5 : At most two rods can be used in sequence, for cooling the reactor core.

3 By behavior, we refer to primitive functionality often implemented as a single piece of code.
We assume instantaneous execution of a behavior, if not specified otherwise.

2.2 Example2: An Anti-lock Braking System (ABS)

ABS is a control unit in a car that ensures the stability of the vehicle during drive and
extreme brake situations. It functions in two operational modes: Calibrate and Brake.
The default mode is Calibrate. In this mode, the system maintains the required speed
equally on all the four wheels, by calibrating and adjusting the current speeds on indi-
vidual wheels. In Brake mode, the ABS ensures lock-free application of brake pressure
on all the wheels, enforcing the car’s stability, in particular on slippery surfaces.

In the Calibrate mode, the ABS triggers two actions: SenseSpeed periodically
senses the current wheel speed values, and Calibrate estimates the speed to be ad-
justed on each individual wheel with respect to the required speed. In the Brake mode,
ABS triggers three actions: SenseBrake that receives the current brake torque value,
BrakeControl that determines the brake pressure to be applied, and BrakeWheel
that applies required brake pressure with anti-lock braking to individual wheels.

The ABS mode-behavior is shown in Fig. 1. The mode changes are caused by events
Brake_Pressed and Brake _Released. The following properties specify the functional and
timing constraints in ABS.

ABS1: SenseSpeed is always followed by Calibrate.
ABS2: SenseSpeed is periodic with a period of 100 ms.

ABS3: Calibrate completes within 10 ms after SenseSpeed.
ABS4: SenseBrake is always followed by BrakeControl.
ABS5: BrakeControl is always followed by BrakeWheel.
ABS6: SenseBrake is periodic with a period of 10 ms.

ABS7: BrakeWheel completes within 1 ms after SenseBrake.

In the next section, we extend the mode behavior specifications of TCS and ABS,
using CCSL constraints for the specification of logical and chronometric properties
described above.

3 CCSL

UML/MARTE provides modeling support to capture structural as well as functional
and extra-functional behavioral aspects of systems. The Clock Constraint Specification
Language (CCSL [4]), initially specified in an annex of MARTE, provides an expressive
set of constructs to specify causality (of both synchronous and asynchronous nature) as
well as chronological and timed properties of system models, and it has been used in
various subdomains. The CCSL is formally defined and CCSL specifications can be
executed at the model level [9].

3.1 CCSL Constraints

CCSL is a declarative language that specifies constraints imposed on the clocks
(activation conditions) of a model. CCSL clocks refer to any repetitive events of the
system and should not be confused with UPPAAL clocks. CCSL clocks are defined as
an (often infinite) sequence of clock instants (event occurrences). If ¢ is a CCSL clock,

c[k] denotes its k" instant, for any k € N. Below, we describe only the constraints
used in this paper. A comprehensive description of CCSL constructs can be found in
André’s work [4].

Synchronous constraints rely on the notion of coincidence of clock instants. For
example, the clock constraint a isSubclockOf b, denoted by a b, specifies
that each instant of subclock a must coincide with exactly one instant of superclock
b. Other examples of synchronous constraints are discretizedBy or excludes
(denoted). The latter prevents two clocks from ticking simultaneously. The former
discretizes a dense clock to derive discrete chronometric clocks, mostly from IdealClk,
a perfect dense chronometric clock, predefined in MARTE Time Library, and assumed
to follow ’physical time’ faithfully (with no jitter).

Asynchronous constraints are based on instant precedence, which may appear in a
strict (<) or a non-strict (<) form. The clock constraint @ i sFasterThan b (denoted
by a E b) specifies that clock a is (non-strictly) faster than clock b, that is for all

natural number k, the k*" instant of a precedes or is coincident with the k" instant of b
(Vk € N; alk] < blk]). Alternation is another example of an asynchronous constraint. It
is a form of bounded precedence. The constraint ¢ alternatesWith b (denoted by
a bora E b) states that Vk € N;a[k] < b[k] A b[k] < a[k + 1], i.e., an instant
of a precedes the corresponding instant of b which in turn precedes the next instant of a.

Mixed constraints combine coincidence and precedence. The constraint ¢ =
a delayedFor n on b enforces a delayed coincidence, i.e., imposes c to tick syn-
chronously with the nt" tick of b following a tick of a. It is considered as a mixed

constraint since a and b are not assumed to be synchronous.
Table 1. CCSL constraints for TCS and ABS systems.

Property CCSL Constraints
TCS3 Clock p[=]ldealClk discretizedBy 10s
ABS2 Clock s[=] IdealClk discretizedBy O0.ls
ABS6 Clock b[=]ldealClk discretizedBy 0.0ls
TCS2 s[Cle
TCS1 d[~]c
TCS4 p[~]EUr)A ir
TCS5 ACRES
ABSI s[~]!
ABS4 r w
ABS3 l sdelayedFor 1 oncy

where Clock ¢1 = IdealClk discretizedBy 0.01s
ABS7 w bdelayedFor 1on ¢

where Clock ¢z = IdealClk discretizedBy 0.001s

3.2 CCSL Constraints for TCS and ABS

The functional and timing properties of the TCS and ABS, as CCSL constraints, are
given in Table 1. These properties constrain the system behaviors with respect to causal-
ity and timing. The constraints are listed in three groups: synchronous, asynchronous,
and mixed. The correspondence between the actions in TCS mode behavior and the
logical clocks in the CCSL constraints is as follows: Diagnostics: d, Reconfig:
¢, StatusUpdate: s, PeriodicSense: p, InsertRod: 4, and RemoveRod: 7.
Similarly, for the ABS system, the correspondence between the primitive behaviors and
the logical clocks is as follows: SenseSpeed: s, Calibrate: [, SenseBrake: b,
BrakeControl: r, and BrakeWheel: w.

‘ «TimedProcessing» | «TimedProcessing» ’

TCS
«mode» after(100s) «mode» «mode» Brake Pressed]._
Diagnostic MIN <T <MAX Control Calibrate [Brake_Released

i 2 v

«NfpConstraint» «NfpConstraint» «NfpConstraint» «NfpConstraint»
d-c; p~GuUri#ni<r | < s delayedFor 1 on c1 W < b delayedFor 1 on c2
scc p = IdealClock discretizedBy 10 s cl = IdealClock discretizedBy 0.01 s || c2 = IdealClock discretizedBy 0.001 s

Fig. 2. MARTE/CCSL mode behavior specifications.

In Fig. 2, we present the CCSL-extended mode behavior specifications of TCS and
ABS. We use MARTE stereotypes ‘TimedProcessing’ for mode behaviors, as we as-
sociate modes with CCSL clocks. We also use stereotype ‘NfpConstraint’ to associate
CCSL constraints to a mode. However, in this paper, we distinguish between the stateful
CCSL-constraints that retain history during complete system ‘runs’ from those that re-
tain history during a mode execution. History-enabled CCSL constraints are annotated
with symbol oo, for instance, the constraint % r for TCS Control mode.

4 MARTE/CCSL Mode Behaviors to Timed Automata

In this section, we propose a mapping strategy to transform MARTE/CCSL mode be-
haviors, henceforth simply referred to as mode behaviors, into TA, to provide UPPAAL
model-checking support. We first present a brief overview of timed automata as used in
UPPAAL.

4.1 Timed automata and UPPAAL: An overview

A timed automaton (TAn) is atuple < L, [y, C, A, E, I >, where L is a set of [ocations,
lp € L is the initial location, C is the set of clocks, A is the set of actions, synchro-
nization actions and the internal T-action, E C L x A x B(C) x 2¢ x L is a set
of edges between locations with an action, a guard, a set of clocks to be reset, and
I: L — B(C) assigns clock invariants to locations. A location can be marked urgent
(u) or committed (c) to indicate that the time is not allowed to progress in the speci-
fied location(s), the latter being a stricter form indicating further that the next transition

can only be taken from the resepective committed location only. Also, synchronization
between two automata is modeled by channels (e.g., x! and x?) with rendezvous or
broadcast semantics.

UPPAAL extends the timed automata language, originally introduced by Alur and
Dill [1], with a number of features such as global and local (bounded) integer variables,
arithmetic operations, arrays, and a C-like programming language. The tool consists
of three parts: a graphical editor for modeling timed automata, a simulator for trace
generation, and a verifier for the verification of a system modeled as a network of timed
automata. A subset of CTL (computation tree logic) is used as the input language for
the verifier. For further details, we refer the reader to UPPAAL tutorial [11].

4.2 Synchronized Product of CCSL Constraints: An example

A state-based semantics of CCSL operators has been defined [12], using the Labelled
Transition Systems (LTS). With this, the combined LTS of composed CCSL operators
can be obtained, using the synchronized product of the LTSs [6]. As an example, we
present the synchronized product for CCSL constraints in the TCS Diagnostic mode,
as shown in Fig. 3. The LTS of the constraint d c is presented in Fig. 3.(a). It
specifies that only the clock d can tick in state 1, whereas in state 2 only the clock c.
Thus, it intuitively specifies the semantics of the operator altnernatesWith (d

c). An empty transition, denoted by ¢, represents that no clock ticks, but useful for
composing two LTSs. The LTS of s c, as shown in Fig 3.(b), specifies that, in state
A, either only c ticks or both s and c tick synchronously (denoted by < s, c >). The
synchronized product of the above described LTS, as shown in Fig 3.(c), considers all
possible states and the transitions. For instance, in the state 2A, the only non-e transition
in state 2 of the first LTS, combines with either the ¢, ¢ -transition, or < s,c >
transition in state A of the second LTS, resulting in the two possible transitions i.e. c,
or < c, s >. Further details on the synchronization products of CCSL constraints, are
described by Mallet [12].

@ \ Y Y E
| =
) e
(a) LTS of (d ~ ¢) (b) LTS of (sc c) (c) Synchronized product of LTSs
of (d~c)and (sc ¢)

Fig. 3. Synchronized product of LTS-based CCSL semantics.

4.3 Transforming Mode Behaviors into Timed automata

For the transformation of a MARTE/CCSL mode behavior into a timed automaton,
several aspects need to be considered, such as, logical clocks, CCSL constraints, log-
ical and chronometric time, modes and mode transitions. The transformation consists
mainly of three steps: mapping CCSL constraints of modes into corresponding TA,
referred to as LTS-TA, modeling logical and chronometric timing aspects in the trans-
formed TA, and transforming modes and mode transitions. The mapping strategy is
summarized in Fig. 4.

LTS / CCSL / Modes Timed Automata Remarks

A state in a LTS is mapped to a location in the
corresponding TAn.

A’ticking’ of the logical clock denoted by the
boolean value '1', and non-ticking by ‘0.

Logical clock 'a’ Boolean variable 'a’

A transition with a 'ticking’ configuration in a LTS

(a,c) a=1, c=1, b=0 is mapped to a TAn edge with an update action of
e e G G the boolean variables corresponding to logical
clocks that 'tick’ synchronously, other boolean
variables are set to '0'

Non-deterministic x>0 | On every edge in the LTS-TAn of modes, a global
durations of logical clock x=0 | clock variable 'x’ is reset, and invariant 'x>0"
‘configurations’ | assigned to all locations.

For every location in the LTS-TAn, with outgoing
edge containing action 'c=1', add the invariant
'y<=n’ to the location and guard 'y > (n-8)’ to the
edge, where 'y’ is a clock variable, and '0<6<<n’
is the minimum jitter necessary to integrate logical
steps with chronometric time progress.

Logical clock 'c’ with
chronometric period 'n’ ms
(i.e. 'c = IdealClock
discretizedBy n ms’)

m=ID TAn New urgent-location 'entry’. Edges from ‘entry’ to
CCSL-annotated mode @ of the mode | initial location of the TAn of the mode LTS. Also,
LTS a global variable 'm’ assigned the mode identifier.

Time-triggered mode- y<=n % For every location in the LTS-TAn, add the
transition y=0 S=n invariant 'y<=n’, and an edge, with gaurd 'y>=n’,
e.g ‘after(n ms)’ @ @ @ to the new ’exit’ location (urgent), where 'y’ is a
>) clock variable, reset on entry to the mode.
Event-triggerd mode- o Pred(e) p For every location in the LTS-TAn, add edge with
transition i TAn ored(e) P guard ’lprled(e)’ to the new ’exit’ location (qr_gent).
e.gevente’ ; M:t;;thS @ Add priotiry channel 'P’, to force the transition
? when 'pred(e)' holds, i.e. the event ‘e’ occurs,
,,,,,,,,,,,,,, oredl®)

Add an edge from the corresponding exit location

Mode-change e d
behavior of a of the transition to the entry location of the mode-
mode-transition TAn of m2.

(m1to m2)

hsigo New edges from the entry location to all the
\(I) locations of the corresponding LTS-TAn, and from
LTS-TAn Lh=id2 _@ latter to all the exit-locations of the mode-TAn.
p=id2 \ 1d1(), 1d2() are location identier functions to
support history-enabled constraints.

History-enabled
CCSL constraint

Fig. 4. MARTE/CCSL mode behaviors to timed automata: A mapping strategy.
Logical clocks and CCSL Constraints. For the logical CCSL constraints in modes, we
construct their synchronized products, using the LTS-based semantics of the constraints.
These LTS are then transformed into TA, following the mapping strategy presented in
Fig. 4. States are mapped to locations, transitions become edges in the corresponding
TA. Further, the logical clocks are denoted by boolean variables, with ‘ticking’ con-
figurations modeled as the action updates of the boolean variables for the TA edges
corresponding to the LTS transitions.

Logical and Chronometric Time. The transformation provides a basis, to correlate
logical semantics of CCSL through chronometric time progress in TA. This is done by
extending the LTS-TA of the modes, described above, with timing mechanisms consist-
ing of clock-variables, clock-guards, and invariants in TA. To begin with, every location
in the LTS-TAn of a mode, is assigned the invariant > 0, where x is a clock variable
which is also reset on on every edge in the TAn. This models the non-deterministic

occurrences of the logical clock configurations. As the next step, we map the CCSL
constraints that specify chronometric durations for the logical clocks (for some con-
straints, we need to separate logical and chronometric parts into separate constraints, as
explained for ABS mode behavior transformation later in the section). For instance, a
CCSL clock ¢ with period ‘n ms’ is mapped using the invariant y < n on all locations
with an outgoing edge with action update ¢ = 1. Also the edge is assigned the clock
guard y > (n — ¢). The value § << n is necessary to model the integration of logical
steps with chronometric time.

Modes and Mode Transitions. Using the timing extended LTS-TA of modes, described
above, we obtain the timed automata for modes, by simply adding an ent ry-location
and an edge from the new location to the initial location of the corresponding LTS-TAn.
A global mode variable m may be updated with the mode identifier value. The mode
TA are further extended to enable the mode transitions, as described below.

A mode transition, is either time- or event-triggered, and represents the correspond-
ing mode-change behavior. A mode transition is mapped into a new exit-location in
the corresponding source mode automaton, and new edges from every location of the
mode TAn to the exit location. Additionally, for the time-triggered transition, that is,
of the form ‘after(10ms)’, we add the invariant x < n to all the locations in the
mode TAn. Also, the guards of the form x > n are assigned to all the edges to the
corresponding exit-location. For the event-triggered mode-transition, an event, i.e. ‘e’,
is mapped by adding the event predicate, denoted by P (e), as guard on all edges to
the corresponding exit-location. To force the transition in case of event occurrence, we
also use an urgent synchronization channel ‘p!’. Finally, in both cases, the mode-switch
behavior, corresponding to the transition, is modeled by connecting the exit-location of
the source mode TAn to the entry-location of the target mode TAn.

Mode history. For instance, the Control mode of the TCS (Fig. 2) contains a history-
enabled constraint i r. This specifies that the clock i (for InsertRod) can
tick faster than the clock r (for RemoveRod) but not by more than two instances.
Clearly, the state of the constraint needs to be retained if the mode is exited and re-
enabled later. When a mode is transformed into a TAn, we use a history variable /4 that
is updated on all the edges leading to the exit-location. Moreover, edges are added from
the entry-location of the mode to all the locations (not just the initial location), with
guards based on the variable 4. However, to support the history mechanism, we assume
transformation functions ‘id1()’” and ‘id2()’ that return the location information.

In this section, we have presented some techniques to transform MARTE/CCSL
mode behaviors into timed automata. A complete formal transformation and related
methodology is out of the paper’s scope. However, we demonstrate the proposed map-
ping strategy using the mode behavior specifications of the example systems, presented
earlier in this paper. We will discuss some additional issues in applying the techniques.

4.4 The transformed automaton for the TCS

In Fig. 5, we present the complete TAn model for the CCSL-extended mode behavior
(Fig. 2) of the TCS. The Diagnostic mode is transformed to a TAn using the synchro-
nized product of constraints d E c and s c. Similarly, the Control mode is

n

)

TCS Diagnostic Mode TAn

CCSL Mode to TAN—————————————————————— ¥

—Mode-change transitions———»

«TimedRrocessing»
Cs
«mode» ,M@_\%‘ «mode»
Control
[2 Diagnostic L | MIN<T <MAX
«NfpConstraint»—) «NfpConstraint» >~
d~c; p~(|ur);|#r;|<2rm
sc¢ p = IdealClock discretizedBy 10 s

CCSL-Mode to TAN—»

t P!
TCS Control Mode TAn

Fig. 5. TCS mode behavior to timed automaton.
transformed using the synchronized product of the constraints p (iUr), 1 r,

and i r. These mappings are shown in Fig. 5. For simplicity, the entry-locations
of the mode TA are merged with the initial locations in the corresponding LTS-TA,
respectively.

Next, we have mapped the mode-transitions that trigger the mode-change behavior,
as follows: the time-triggered transition from Diagnostic to Control is mapped using the
invariant x < 100 at the locations of the Diagnostic TAn, and guards x > 100 for
the edges to the exit-location. The mode-transition from Control to Diagnostic is event-
triggered, by the predicate denoted by “s” (after the required temperature is sensed).
Finally, the mode-switchings for the above transitions are modeled by connecting the
exit location of the source mode TAn to the initial location of the target mode TAn.

From CCSL ’alternatesWith’ definition:

3 leftright : Vi €N, pli] < right[i] & right[i] < left[i+]1] (where N, set of

natural numbers) .

And, p[~](iUr) : ¥V i €N+, plil < (i U n)[i] & (i U r)[i] < pli+1]

Given ’'p’ periodic, i.e. n seconds : V i € N, p[i] = s[n*i — (n—1)] where ’s’ is a
chronometric clock that counts the seconds.

For n=10, V i € N, s[10xi — 9] < (i U r) [i] < s[10xi + 1]

Listing 1.1. Timing invariants derived from CCSL constraints.

The Control mode of the TCS contains a chronometric constraint for the logical
clock p (for PeriodicSense). This is mapped to the location invariant x < 10,
and guard x > 10 for the edges containing the clock ‘ticks’ i.e. p=1. However, the
other locations also need to be assigned the invariant, due to causality among the CCSL
clocks. From the proof given in Listing 1.1, and under the assumption that the physical

«mode»
Calibrate

«NfpConstraint»
s ~|; s isPeriodic 100 ms
| < s delayedFor 10 ms

I:x <10 && y < 100
gl:y > (100-d)
g2: x > (10-d)

I_g3: X > (10-d) && y > (100-d)

Fig. 6. Timed automaton for ABS Calibrate mode.

time (in TA) is s and s[1] is time O, we infer s[10] is time 10. For i=1, s[1] < (iU r
[i] < s[11], which gives the interval (0,10). This proves the invariants for the locations.

The Control mode contains the history-enabled CCSL constraint i E r. The
execution state of the constraint, that is, the current location before exiting the TAn,
is saved in a history variable #’, when the mode is exited. Based on the saved loca-
tion identifier, the initial location is chosen, when the mode is re-entered. The history
mechanism integrates the expressiveness of CCSL constraints and the mode behavior
formalism.

4.5 The transformed automaton for the ABS

For the transformation of the ABS mode behavior, we chose to skip the complete au-
tomaton model, and focus only on the transformation of Calibrate mode, given that the
CCSL specification of the Brake mode is similar.

Obtaining the synchronized product of CCSL constraints for the Calibrate mode
is complex, due to the mixed constraint delayedFor. However, we propose a novel
technique to address this. We separate the causality and the chronometric aspects for
the constraint, using an auxiliary logical clock c, such that the chronometric duration
is specified as ‘logical’ ticks of ¢ with additional constraint on c that specifies the
actual chronometric duration. This facilitates an easier construction of the synchronized
product and also an efficient mapping of the chronometric time to TA. Note that the
invariant / (partly) and the guard g2 (in the mode automaton of Fig. 6) are due to the
chronometric constraint on ¢ (i.e. 10ms), from the mixed CCSL constraint. Also, the
invariant / in all locations is due to the other chronometric constraint on the logical
clock s and the causality (as proved in Listing 1.1 for the TCS mode transformations).

Another transformation issue arises when transforming the LTS of the CCSI con-
straint a E b delayedFor 1 on cy. This is obtained as the synchronized product

of the two constraints a x (precedes) and x [=] b delayedFor 1 on ¢

(coincidence), where x is an auxiliary logical clock introduced for the purpose.
The LTS of both constraints are presented in Fig. 7. For the constraint a | < | x, we
have considered its unbounded semantics encoded by the variable d, which represents
the number of instances of a that have preceded instances of x (Fig. 7.(a)). However,
the ticks of x are not explicit in the final automaton presented in Fig. 6, though ‘ticks’
of both x and a update the variable d.

c (b,c) b
[d>1] x
(a) (b)

Fig.7. LTS of CCSL constraints: a)a|<|x b)x[=] bdelayedFor lonc

The transformed LTS-TAn for the ABS Calibrate mode is presented in Fig. 6. To
make the model readable, we have not shown the update actions on d, logical clock
resets on each edge (for the clocks that do not ‘tick’ in the configuration), as well as TA
clock resets. To avoid the non-determinism at location XA1, we have used a priority
channel P, to force the transition with guard g3 when both g/ and g2 also hold.

The TA mappings for the ABS, as presented above, shows that the proposed trans-
formation addresses some of the critical issues that arise due to the expressiveness of
CCSL, such as, unbounded operators, mixed constraints, and chronometric time.

5 Verification

In this section, we present a verification approach for MARTE/CCSL mode behaviors
by model checking the corresponding TA, obtained using the transformation approach
presented in the previous section. Verification is performed using the UPPAAL tool.
A set of properties describing deadlock-freedom, liveness, causality, and chronomet-
ric time is specified and verified for the example systems. To support the verification,
we use observer automata for specific kinds of properties, and extend the automata re-
sulting from the transformation, to support synchronous (timewise) interactions with
the observers. Such extensions can be easily automated together with the entire model
transformation.

Deadlock-freedom. The property specified in Eqn.1, as a safety-property, describes the
absence of deadlocks. A deadlock occurs when the system cannot progress further. For
both TCS and ABS mode behaviors, the property is satisfied.

Al —deadlock (1)

Deadlock-Path identification problem for logical clocks. For CCSL specifications, one
of very important and hard to achieve verification problems is the identification of the

execution paths, or sub-paths, for which a given set of clocks eventually do not ‘tick’.
In CCSL, such paths are referred to as deadlock-paths for a given set of logical clocks.
For instance, for the TCS Diagnostic TAn, we have verified the presence of a deadlock-
path, using property in Eqn. 2, for the logical clock s (StatusUpdate action). The
equation models a liveness property, as a“leads to” property in UPPAAL (denoted by
~», implemented as ——> in UPPAAL). The property (2) basically states that for all paths,
itis always the case that the clock will eventually tick. In the TCS example, the property
fails to hold and an execution path where s never ticks eventually is shown as a counter-
example/diagnostic trace. The diagnostic traces show the execution path where s never
ticks. The property can be extended to multiple clocks, as in Eqn. 3, where clocks ¢
and s correspond to Reconfig and StatusUpdate respectively. The property is
satisfied, indicating that the clocks together do not lead to any deadlock paths of the
Diagnostic mode executions.

s==0 ~» g== 2
(c==0 && s==0) ~» (c==1 || s==1) 3)

Chronometric durations of logical clocks and event chains. Another benefit provided
by transforming mode behaviors into TA is the possibility of verifying chronometric
aspects, such as, minimum and maximum inter-arrival times, (m, M), of a logical clock
with no explicit chronometric constraints otherwise. For this, we use an observer au-
tomaton as shown in Fig. 8, and the corresponding property to be verified, given by
(4). To enable (time-wise) synchronous interactions between the specification automa-
ton and the observer, we introduce in the former, between the source and the target
locations, a committed location that connects to the target location through an edge
annotated with the synchronization channel ‘sig!’, as shown in Fig. 8. The observer
computes the time between two ‘ticks’ of the logical clock r. By the timing property
given by (4), one is able to verify that the (min, max) inter-arrival time of r is (0, 40)
for the RemoveRod action.

AQ (t==1imply (rz > mandrx < M)) 4)

We can generalize the observer automaton for two events, to verify end-to-end tim-
ing of event chains that consist of a stimulus-response event pair. For instance, the ABS
Calibrate mode has CCSL timing constraint ‘1 < s delayedFor 10 ms’, which
specifies the end-to-end timing for s, 1 representing SenseSpeed and Calibrate
respectively. However, the event chain may contain sub-events, which makes it neces-
sary to verify the consistency of the constraints.

A B
C) a=1,b=0,c=0. ()

A T
a=1.b=0.c=0Q @ sig!
O @ O r==1 sig? cx=0 B

(@) (b)

Fig. 8. a) Extending mode TAn transitions b) Observer TAn for chronometric durations.

6 Related Work

Wang et.al have recently proposed the MDM (Mode Diagram Modeling) framework
for periodic control systems [16]. They have also provided a property specification lan-
guage, based on the interval logic, to capture the temporal properties that can be verified
against MDM models, using statistical model checking. Unlike our approach, the com-
plete verification is undecidable, as MDM may involve complex non-linear computa-
tions. Another comparable framework is that of Modecharts and RTL (real time logic)
[10]. RTL assertions for events are similar to CCSL constraints involving logical and
chronometric clocks. Both approaches define a time structure to specify timed causality
semantics of the system (CCSL is more expressive given its polychronous semantics),
and provide structural organization of a system’s causality and timing behavior to ef-
ficiently reason about system timing properties. In comparison, our approach provides
the capability of verifying usual dense-time properties, but also combinations of log-
ical and chronometric time properties, a feature not existing before. Several related
works have proposed various transformation approaches for mapping CCSL or its sub-
sets, into different semantic domains such as VHDL, Petri nets, and Promela. André et
al. presented an automatic transformation of a CCSL specification into VHDL code [5].
The proposed transformation assembles instances of pre-built VHDL components while
preserving the polychronous semantics of CCSL. The generated code can be integrated
in the VHDL design and verification flow. Mallet and André have recently proposed a
formal semantics to a kernel subset of MARTE, and presented an equivalent interpreta-
tion of the kernel in two different formal languages, namely Signal and Time Petri nets
[13]. In their work, relevant examples have been used to show instances when Petri-
nets are suitable to express CCSL constraints, as well as instances where synchronous
languages are more appropriate. Ling et al. have proposed a transformation approach
for logical CCSL constraints into Promela, using checkpoint-bisimulation approach,
for verification with SPIN model-checker [17]. Also, some property specification pat-
terns for expressing the properties of the model have been proposed. In comparison
to above transformation based approaches, here we have proposed a model-checking
based approach that addresses chronometric time constraints of CCSL effectively, by
overcoming the limitations in specifying synchrony in otherwise asynchronous model-
ing of timed automata.

7 Conclusions and Future work

In this paper, we have proposed a transformation approach for MARTE/CCSL mode
behavior specifications into timed automata, to enable model-checking of the specifica-
tions using UPPAAL. The approach is based on the synchronized product of the CCSL
semantics. As a main contribution, we have been able to bridge the CCSL and timed
automata based frameworks, by successfully mapping the synchronous and discrete
chronometric semantics of CCSL into the asynchronous and dense time semantics of
timed automata. To demonstrate the benefits of the proposed transformation approach,
we have verified both logical and chronometric properties using the mode behavior
specification of the example systems in this paper. Since CCSL is an expressive lan-
guage, we have considered a subset of CCSL constraints for the transformation, and

plan to investigate other constraints as future work. To support the verification process,
we will investigate specific classes of logical and timing properties that can be veri-
fied, and will model them as property patterns or timed automata observers. Currently,
a prototype version of the tool for constructing synchronized products of CCSL con-
straints exists, so we intend to formalize the proposed model transformation technique
and integrate UPPAAL in a MARTE/CCSL modeling framework.

References

1

2

10.

11.

12.

13.

14.

15.

16.

17.

. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994.

. Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Times: a
tool for schedulability analysis and code generation of real-time systems. In the Ist Interna-
tional Workshop on Formal Modeling and Analysis of Timed Systems, May 2003.

. C. André, F. Mallet, and R. de Simone. Modeling time(s). In Models’07, volume 4735 of
LNCS, pages 559-573. Springer, 2007.

. Charles André. Syntax and Semantics of the Clock Constraint Specification Language
(CCSL). Rapport de recherche RR-6925, INRIA, 2009.

. Charles André, Frédéric Mallet, and Julien DeAntoni. VHDL observers for clock constraint
checking. In Industrial Embedded Systems (SIES), 2010 Int. Symp. on, pages 98—107, July.

. André Arnold. Finite transition systems - semantics of communicating systems. Int. Series
in Computer Science. Prentice Hall, 1994.

. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and
Mind Series). The MIT Press, 2008.

. B. Bouyssounouse and J. Sifakis. Embedded Systems Design: The ARTIST Roadmap for Re-
search and Development (Lecture Notes in Computer Science). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2005.

. Julien Deantoni and Frédéric Mallet. TimeSquare: Treat your Models with Logical Time. In

TOOLS - 50th Int. Conf. on Objects, Models, Components, Patterns, volume 7304 of LNCS,

pages 34—41. Springer, May 2012. Available at http://timesquare.inria.fr.

F. Jahanian and A.K. Mok. Modechart: a specification language for real-time systems. Soft-

ware Engineering, IEEE Transactions on, 20(12):933-947, Dec.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal on Software Tools

for Technology Transfer, 1(1-2):134-152, October 1997.

Frédéric Mallet. Automatic Generation of Observers from MARTE/CCSL. In Int. Symp. on

Rapid System Prototyping - RSP 2012, Tampere, Finland, 2012. IEEE.

Frédéric Mallet and Charles André. On the semantics of UML/Marte Clock Con-

straints. In Int. Symp. on Object/component/service-oriented Real-time distributed Com-

puting (ISORC’09), pages 301-312, Tokyo, Japon, 2009. IEEE.

Object Management Group (OMG). UML 2.0 Superstructure Specification, The OMG Final

Adopted Specification, 2003.

OMG. UML Profile for MARTE, vi.0. Object Management Group, November 2009.

formal/2009-11-02.

Zheng Wang, Geguang Pu, Jianwen Li, Jifeng He, Shengchao Qin, Kim G. Larsen, Jan Mad-

sen, and Bin Gu. Mdm: A mode diagram modeling framework. In Proc. First International

Workshop on Formal Techniques for Safety-Critical Systems, EPTCS, pages 135-149, 2012.

Ling Yin, Frédéric Mallet, and Jing Liu. Verification of MARTE/CCSL time requirements in

Promela/SPIN. In Engineering of Complex Computer Systems (ICECCS), 2011 16th IEEE

Int. Conf. on, pages 65-74, April.

