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Abstract—We have presented a multi-level adaptive hierarchi-
cal scheduling framework in our previous work. The framework
targets compositional real-time systems which are composed of
both hard and soft real-time systems. While static CPU portions
are reserved for hard real-time components, the CPU portions of
soft real-time components are adjusted during run-time. In this
paper, we present the implementation details of our framework
which is implemented as a Linux kernel loadable module. In
addition, we present a case-study to evaluate the performance
and the overhead of our framework.

I. INTRODUCTION

Hierarchical scheduling and resource reservation tech-
niques have been widely used for composing independent hard
real-time systems on a shared underlying hardware [1]. Using
such techniques, the timing behavior of the individual systems
(components) are studied in isolation, while the correctness
of the entire systems is inferred from the correctness of the
individual components before the composition. This compo-
sitional timing study is especially useful in open systems in
which components are added or removed during the system’s
life time [2].

Hierarchical scheduling is often performed through CPU
reservations. When dealing with hard real-time systems, based
on the worst case CPU demand of the individual components,
a CPU portion is reserved for each component such that the
component’s inner tasks are guaranteed to receive enough CPU
resource time to complete their executions in time.

While there exists a variety of techniques to handle the
composition when composing hard real-time systems (e.g., [2],
[3], [4], [5]), the problem of composing soft and hard real-
time systems together has not been deeply studied. A con-
siderable group of soft real-time systems have the following
attributes. First of all, they demonstrate a wide difference
between their worst case and average case CPU demands.
Secondly, occasional timing violations can be tolerated in
these type of systems. Last but not least, resource demand
analysis are rarely done for these systems. As a result, de-
signers do not have enough information about the resource
demand requirements of such systems. Note that the timing
requirements are often known a priori, whereas, the resource
requirements are unknown. In dealing with real-time systems
that have the aforementioned attributes, reserving the CPU

portions based on the worst case CPU demand of the tasks
is not an efficient design approach. Because even if the worst
case CPU demand is available, it will result in an unnecessary
CPU overallocation. Consequently, the CPU resource will be
wasted.

To address this problem, we presented an adaptive frame-
work in [6] where for hard real-time systems we reserve the
CPU portions based on their worst case resource demand.
On the other hand, soft real-time systems receive dynamic
CPU portions based on their actual need at each point in
time. For acquiring the resource demand of the soft real-
time components, we monitor their behavior during run-time
and use the gathered information to adjust the component
CPU reservations. While the design and evaluation of our
framework is presented in [6], in this paper we present the im-
plementation details of our Adaptive Hierarchical Scheduling
(AdHierSched) framework1. In particular we present the
following contributions in this paper.

• The data structures and the mechanisms that are used
in the implementation of our framework as a Linux
kernel loadable module.

• The performance evaluation of AdHierSched with
respect to timing requirements of the real-time com-
ponents.

• The overhead evaluation of the scheduler and the CPU
reservation adapter component.

The rest of the paper is organized as follows. The related
work is reviewed in Section II. In Section III we present
our system model. Section IV presents the data structures
and implementation techniques used in AdHierSched. We
evaluate the performance of AdHierSched in Section V.
The overhead of AdHierSched is presented in Section VI.
Finally, the paper is concluded in Section VII.

II. RELATED WORK

There exists an enormous number of papers that address
the implementation of real-time schedulers (e.g, RTLinux [7]
and RTAI [8]). However, in this paper we only review a part of

1The source code is available at:
http://www.idt.mdh.se/∼adhiersched.

http://www.idt.mdh.se/~adhiersched


them that focus either on hierarchical scheduling or on adaptive
scheduling.

In [9] hierarchical scheduling is done on top of the Vx-
Works operating system. Hierarchical scheduling on top of the
FreeRTOS operating system is presented in [10]. ExSched [11]
is a platform independent real-time scheduler which has a
hierarchical scheduling plug-in. Hierarchical scheduling is also
implemented in µC/OS-II [12]. All of these works are two-
level hierarchical schedulers and are designed for hard real-
time applications, i.e, they are not adaptive frameworks.

HLS [13] is a multi-level hierarchal scheduling imple-
mented in Windows 2000 which targets composing soft real-
time systems. In [14], Parmer and West presented a hierarchical
scheme for managing CPU, memory and I/O. These frame-
works are not adaptive in the sense that the resource demands
are not monitored and hence the resource reservations (if used)
are fixed during run-time.

Hierarchical scheduling is also used for virtualization pur-
poses. Recursive virtual machines are proposed in [15] where
each virtual machine can directly access the microkernel.
A two-level hierarchical scheduler using L4/Fiasco as the
hypervisor is presented in [16]. Lee et al. developed a vir-
tualization platform using the Xen hypervisor [17]. A Virtual
CPU scheduling framework in the Quest operating system is
developed by Danish et al. [18]. In [19], the CPU reservations
are used for scheduling virtual machines. The VirtualBox and
the KVM hypervisores are scheduled using CPU reservation
techniques in [20].

The AQuoSA framework [21] is an adaptive framework im-
plemented in Linux which uses the CPU reservation techniques
together with feedback loops to adjust the reservations during
run-time. Our work is different than AQuoSA in the following
two aspects. First of all, we target multi-level hierarchical
systems while AQuoSA only targets flat systems, i.e the
systems with one task per CPU reservation and without local
schedulers. Secondly, we have implemented AdHierSched
as a kernel loadable module, whereas, AQuoSA requires kernel
patching.

ACTORS [22] is an adaptive framework which targets
multicore systems. In this framework, the CPU reservations are
used for providing isolation among real-time tasks, while the
reservation sizes are being adjusted during run-time. ACTORS
uses SCHED_DEADLINE [23] for implementing the CPU
reservations. Similar to the AQuoSA framework, ACTORS
addresses flat systems and not hierarchical systems.

AIRS [24] is a framework designed to provide high quality
of service to interactive real-time applications. AIRS uses a
new CPU reservation scheme as well as a new multiprocessor
scheduling policy. Alike AQuoSA and ACTORS, AIRS targets
flat systems.

III. MODEL

In this section, we explain how we model servers, tasks
and systems.

A. Server model

We use the periodic resource model [25] in our framework,
and we implement the periodic model using the periodic
servers which work as follows. The servers are released period-
ically, providing their children with a predefined amount of the
CPU time in each period. The periodic servers idle their CPU
allocation if there is no active task/server inside them. Any
server implementation compliant with the periodic resource
model can be used in our framework. A periodic server is rep-
resented with the following 4-tuple Sji =< P ji , B

j
i , P r

j
i , ζ

j
i >,

where P ji , Bji , Prji and ζji represent period, budget, scheduling
priority and importance of server Sji . The importance value
represents the relative importance of the servers with respect
to their other sibling servers. This parameter is only used in an
overload situation where the total CPU demand is more than
the available CPU. In the overload situations, AdHierSched
prioritizes the servers in the order of their importance. Note
that the overload situation is only considered to happen in
soft real-time servers. The superscript in the server notation,
represents the parent server index. Based on the scheduling
policy of Sj , a subset of the parameters in the server 4-tuple are
used. For instance, when the scheduling is done according to
EDF, Prji is ignored. In the case of soft real-time servers, Bji is
adapted during run-time. Thus, the budget is a function of time
Bji (t). Consequently, server’s children may receive a different
share of the CPU in different server periods. The adaptation
is done through the budget controller component based on on-
line monitoring of the server’s workload. The budget controller
adapts the budgets such that each server receives just enough
CPU time at each server period. The details of the adaptation
mechanism is presented in our previous work [6].

Furthermore, server Sji is composed of ni child servers and
mi child tasks. Server Sji schedules its children according to
its local scheduling policy. Servers and tasks inherit the type
of their parents, e.g., if a server is a soft-real-time server its
children will also be treated as soft real-time servers/tasks. At
each point in time there is at most one server assigned to the
CPU which is called the “active server”.

Since our adaptation mechanism is designed for the pe-
riodic servers, we focus on the explanation of the periodic
servers in this paper. Nevertheless, the Constant Bandwidth
Server (CBS) [26] is implemented in AdHierSched, and it
can be used inside the periodic servers for providing timing
isolation among tasks and servers that reside inside the same
periodic server parent.

B. Task model

We assume the periodic task model in which a periodic
task τ ji , which is a child of server Sj , is represented using the
following parameters: task period T ji , task deadline Dj

i , worst
case execution time Cji and task priority πji . Similar to the
server model, depending on the parent scheduling policy some
task parameters may be ignored. At each point in time, at most
one task is assigned to the CPU which is called the “running
task”. In the case of soft real-time tasks, we assume that the



CPU

S1
S

m
S

m+1
S

m+n

Hard RT 
APP 1

Hard RT 
APP m

Budget 
Controller

Budget 
Controller

Soft RT 
APP 1

Soft RT 
APP n

τ1

1
S1

1
τ1

m1 S1
n1

... ...

... ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Global Scheduler

Local Scheduler

.

.

.

Local Scheduler

Local Scheduler Local Scheduler

System

Fig. 1: Visualization of the system model.

tasks are dynamic, i.e, their execution times are changing in
a wide range during run-time and their execution time is not
known a priori. One instance of the task execution is called a
job.

C. System model

We assume a single processor system which consists of
n soft real-time servers and m hard real-time servers at the
root level. The servers contain applications which consist of
tasks and/or sub-servers. Therefore, our system model is a
multi-level hierarchical model. A system has a global scheduler
which schedules the servers and tasks at the root level of the
hierarchy. In addition, there is a local scheduler in each server
which is responsible for scheduling the server’s inner children
(both tasks and servers). Figure 1 illustrates our hierarchical
system model. The hard real-time applications are shown
using dark gray background in the figure. There is a budget
controller component attached to the soft real-time servers.
The budget controller component monitors the CPU demand
of the applications and assigns a sufficient CPU portion to the
servers.

Considering the system hierarchy, we would like to present
two definitions that are used in the later sections of the paper
for explaining the implementation of the scheduler.

Definition 1: Sji is an ancestor of Slκ if either i = l or by
upward traversing the parent of Sl we reach Sji . For instance,
S1 is an ancestor of S3

5 in Figure 2.

Definition 2: Sji outranks Slκ if and only if one of an
ancestor of Sl is Sj . For instance, S2 outranks S1

3 in Figure 2.
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Fig. 2: Example tree structure (S0 represents the root sched-
uler).

IV. FRAMEWORK

In this section, we explain how our assumed model is
implemented as a Linux kernel loadable module.

A. Real-time scheduling through a kernel loadable module

We use a similar idea to the work presented in [11]. The
idea is to implement a real-time scheduler in Linux without
modifying the kernel. To this end, we developed a kernel
loadable module that plays a middleware role between real-
time tasks and the Linux kernel. The module is responsible to
release, run and stop the real-time tasks. When a task has to
run, the module inserts it into the Linux run queue and changes
its state to running. On the other hand, when the module has
to stop a real-time task, it removes the task from the Linux
run queue and the task goes to the sleep state. Thus, at each
point in time, there is at most one real-time task (priority 0
to 99) in the Linux run queue. Consequently, no matter which
Linux real-time scheduling class is used, the schedule()
system call will always pick the single real-time task that is in
the Linux run queue. Figure 3 illustrates the relation between
the AdHierSched module and the Linux run queue.

B. Managing time

In order to manage the scheduling events, we use the
classic Linux timers (low-resolution timers) available in
kernel/timer.c. As will be explained in the rest of this
section, we use one timer per task and two timers per server for
managing their corresponding scheduling events. Therefore,
AdHierSched does not have a release queue and instead it
delegates the job of the release queue to the Linux timer list.
Since the Linux timer list is implemented using the red-black
trees, when the number of timers increases, retrieving and
inserting them are still efficient (O(logn)). Nevertheless, we
assume that systems will not excess a handful of levels, hence
n will not be a large number. We insert the timers using the
setup_timer_on_stack and mod_timer system calls,
and remove them using the del_timer system call.

In order to convert the relative scheduling parameters to
absolute parameters, we use the jiffies variable available
in the kernel which return the current time.
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C. Task and server descriptors

AdHierSched uses its own task and server descriptors
to store their corresponding information. The task descriptor,
which is presented in Code Snippet 1, has a timer_list
member called period_timer (line 17) which is used
for running tasks periodically. When a task finishes its job,
the period_timer is set to the next release of the task.
Each AdHierSched task points to a Linux task (line 16).
Tasks may be attached to a periodic server (line 18) and/or a
CBS (line 19). The CBSs may be used for providing timing
isolation among tasks that reside inside the same parent, i.e
periodic server. The dl_miss member in line 7 and the
dl_miss_amount member in line 15 are used to monitor
the load situation of the tasks. These fields are used by the
budget controller component to adapt the budget of servers.
The timestamp member is used for monitoring the duration
of the scheduling events such as the duration that tasks are
assigned to the CPU.

The server descriptor is presented in Code Snippet 2.
Our framework supports both constant bandwidth servers

Code Snippet 1: Task descriptor.
1: struct Task {
2: struct list head head;
3: int id;
4: int priority;
5: int state;
6: int cnt; /* job number */
7: int dl miss; /* number of deadline misses */
8: int missing dl flag;
9: unsigned long period;

10: unsigned long release time;
11: unsigned long exec time;
12: unsigned long relative deadline;
13: unsigned long abs deadline;
14: unsigned long timestamp;
15: unsigned long dl miss amount;
16: struct task struct *linux task;
17: struct timer list period timer;
18: struct Server *parent;
19: struct Server *cbs; };

and periodic servers. The type member in line 4 indi-
cates whether the server is a constant bandwidth server or
a periodic server. The children member in line 3 is a
pointer to the scheduling entities that are inside the server.
The control_period field in line 8 stores the budget
adaptation frequency. The current_budget field stores the
remaining budget at each time point. The fields from line 15
to line 17 are used for the budget adaptation purpose. Each
server has its own ready queue (line 19) which contains the
child tasks and servers that are ready to run. The server
structure has two timer_list members: period_timer
and budget_timer. The period_timer is used for peri-
odically releasing the servers, whereas, the budget_timer
is used to stop the servers when their budget is depleted.

D. Timer handlers

There are two types of handlers: (i) release handlers (ii)
budget depletion handlers. We have implemented each handler
in a separate function. The list of timer handlers is as follows.
(i) Task release, (ii) Server release, (iii) Periodic server budget
depletion, (iv) CBS budget depletion.

E. Queue structure

We define the “scheduling entity” type as a generic type
which covers both tasks and servers. Therefore, an entity
can be either a task or a server. The ready queues store the
scheduling entities in the order of their priority. The ready
queue is implemented as a linked list through the list_head
structure available in the Linux kernel. We have implemented
two functions for inserting/deleting an entity to/from queue:

• insert_queue(queue, entity)

• delete_queue(entity)



Code Snippet 2: Server descriptor.
1: struct Server {
2: struct list head head;
3: Children children;
4: int type;
5: int id;
6: int priority;
7: int cnt; /* number of jobs */
8: int control period;
9: int importance; /* ζ*/

10: unsigned long budget;
11: unsigned long period;
12: unsigned long relative deadline;
13: unsigned long abs deadline;
14: unsigned long current budget;
15: unsigned long consumed budget;
16: unsigned long extra req budget;
17: unsigned long total budget;
18: unsigned long timestamp;
19: struct Queue *ready queue;
20: struct timer list period timer;
21: struct timer list budget timer;
22: struct Server *parent; };

1) Fixed priority scheduling: When the scheduling policy
is fixed priority, the insert_queue function inserts the new
entities based on their priorities.

2) EDF scheduling: The insertion to the ready queue, when
the scheduling policy is EDF is based on the abs_deadline
of the scheduling entities.

Note that since we use multiple ready queues (one queue
per server):

qji ≤ n
j
i +mj

i ,

where qji is the number of elements in the ready queue of Sji .
Hence, the complexity of the insertion to the queue is O(qji ).

F. Communication between tasks and AdHierSched

The communication between tasks and AdHierSched
is done through a device file. The AdHierSched library
provides a number of API functions. The API functions use
the ioctl() system call for the communication purpose.
When the message is delivered to the AdHierSched mod-
ule, it relays the message to the message’s corresponding
function. The list of provided API functions is presented
in Table I. The names of the functions are self explana-
tory, however, we explain a few of them here. As soon as
AdHierSched receives a run() message, it releases all
of the servers and tasks immediately. So, the release time of
all scheduling entities will be equal if this function is used.
The stop() function first stops inserting new timers to the
timer list, i.e, it stops the release events. Secondly, it calls the
wake_up_process() system call for all of the tasks that
are still running. In other words, when the stop() function

run()
stop()
create task()
detach task(task id)
release task(task id)
task finish job(task id)
detach server(server id)
release server(server id)
attach task to mod(task id)
create server(queue type, server type)
attach server to server(server id, server id2)
attach task to server(server id, task id, server type)
set task param(task id, period, deadline, exec time, priority)
set server param(server id, period, deadline, budget, priority, server type)

TABLE I: List of provided API functions by
AdHierSched library.

is called, the AdHierSched module no longer operates and
Linux takes the complete responsibility of scheduling the real-
time tasks. The task_finish_job(task_id) function
should be called at the end of the task jobs. This call indeed
changes the task status to sleep until the next release of the
task. Note that it is possible to add/remove tasks and servers
through the API functions while the module is running.

G. Configuration and run

The API functions allow the users to configure their target
system, i.e, to create their desirable hierarchy and to set the
scheduling parameters. Once the system is set up, the Linux
tasks need to be attached to the AdHierSched tasks using
the attach_task_to_mod(task_id) API function. A
sample task structure is presented in Code Snippet 3. Finally,
the run() API function needs to be called to release all
servers and tasks. When AdHierSched receives a run()

Code Snippet 3: Sample task structure.
1: int main(int argc, char* argv[]){
2: task id = atoi(argv[1]);
3: attach task to mod(task id);
4: while i < job no do
5: /* periodic job */
6: task finish job(task id);
7: end while
8: detach task(task id);
9: return 0; }

call, it releases all servers and tasks and then tries to run them.
Depending on the global level scheduling policy, among all
released scheduling entities at the root level of the hierarchy,
the one that has the highest priority or shortest deadline will
be assigned to the CPU.

If a server is assigned to the CPU, it will try to run its local
ready queue. If from the server’s ready queue a sub-server
receives the CPU, the local ready queue running operation
continues until the scheduler decides to run a task. As soon as
server Sji becomes active, we insert its corresponding budget
depletion timer (budget_timer) to be invoked at time tdep,



where:
tdep = jiffies+Bji (t).

When the jiffies is equal to tdep, the budget depletion
timer handler is invoked. The handler deactivates its corre-
sponding server (Sji ) and all of its child servers. If Sji is an
ancestor (see Definition 1) of the active server, the active server
is stopped. If the running task is a child of the server that is
getting deactivated, the running task is also stopped. Finally,
the timer handler runs the first element that is in the ready
queue of Sj (the parent of the server whose budget is depleted).
When a server is stopped (either because of its parent budget
depletion or because of a preemption), its remaining budget is
updated.

Each scheduling entity belongs to a ready queue. The
entities at the root level belong to the global ready queue,
while the other entities belong to their parent server’s ready
queue. Therefore, when an entity causes a scheduling event,
the event takes place at its corresponding ready queue.

The scheduling decisions are taken only at the scheduling
events. We have the following scheduling events in the system.

• task and server release

• server (periodic and constant bandwidth) budget de-
pletion

• task finishing its job

• task and servers leaving the system

When a task is released and the active ready queue is
different than the task’s ready queue, the task will wait until its
ready queue, i.e., its server is activated. Even when the released
task’s parent is active, it will only be assigned to the CPU if it
is able to preempt the running task or the active server. Note
that the preemption rules depend on the parent’s scheduling
policy. When a server is released, it should wait unless one of
the following conditions hold in which the released server is
allowed to preempt the active server or the running task.

• The server’s parent is active and the released server
can preempt the running/active scheduling entity.

• The released server outranks (see Definition 2) the
active server.

H. Budget adaptation

The budget adaptation is done periodically. The adapta-
tion period is proportional to the server periods. The budget
adaptation is done through a function which is called at
certain server release events. When calling the budget adapter
function, the pointer to the caller server structure is passed to
the function. This function uses the consumed_budget and
the extra_req_budget fields in the server data structure
to derive the new budget field. The extra_req_budget
field is updated by the server’s child tasks and sub-servers
that are violating their timing requirements. We also have a
mechanism to guarantee that adapting the soft real-time server

budgets does not influence the amount of provided budget to
the hard real-time servers. For more details about the budget
adaptation mechanism refer to [6].

V. EVALUATION

In this section, we first design a case-study to study the
performance of our framework. Thereafter, we present the
results.

A. Tasks

As we mentioned earlier, AdHierSched mainly targets
systems containing dynamic soft real-time applications. To this
end, in our evaluations we use two types of dynamic real-time
tasks. Moreover, we use tasks with fixed execution times. In
general the following three types of tasks are used in the case-
study.

1) Fixed execution time tasks (static tasks). These tasks are
indeed a simple C program that contain a loop with a
constant number of instructions.

2) Mplayer media player2. We have modified the source code
of the Mplayer media player such that it registers itself to
the AdHierSched module before starting the playback.
Thus, the AdHierSched module schedules the player
task. In addition, after decoding and playing frames,
Mplayer uses the task_finish_job(task_id) API
function to inform the AdHierSched module that a job
execution is finished.

3) Image processing program. This program is developed
using the OpenCV library and its objective is to filter a
color range of its input frame. The input is a movie file
to this application in our case-study.

B. Setup

We use an Intel Core i5-2540M processor clocked at 2.60
GHz in which only CPU 0 is active. Our hardware is equipped
with 4 GB of memory. In addition, Ubuntu 12.04.2 with Linux
kernel version 3.8.2 is used in the evaluations. The scheduler
resolution is set to one millisecond.

C. Case-study

The case-study that we investigate in this paper is a system
composed of five applications of which one is a hard real-
time application and the rest are soft real-time applications.
Figure 4 illustrates the structure of the case-study system that
we are using in this section. Note that τ11 , τ21 and S1 are hard
real-time tasks and a server respectively. The hard real-time
server uses a fixed priority scheduler, while the rest of the
servers use EDF schedulers for scheduling their children. The
tasks are assumed to be ordered based on their priority, i.e,
π1
1 > π1

2 . We use different inputs for the same type tasks. The
specifications of the tasks and servers used in the case-study
are presented in Table II. All scheduling parameters presented
in the table are in milliseconds. We assume that the servers are

2 http://www.mplayerhq.hu

http://www.mplayerhq.hu
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Hard-Soft Task type Pj − T j
i

S1 HRT server - 100
τ1
1 HRT task 1 200
τ1
2 HRT task 1 400
S2 SRT server - 10
S2
3 SRT server - 20
τ3
1 SRT task 2 40
τ3
2 SRT task 3 200
S2
4 SRT server - 100
τ4
1 SRT task 3 350
τ4
2 SRT task 3 200
S2
5 SRT server - 75
τ5
1 SRT task 3 350
τ5
2 SRT task 3 150

TABLE II: Servers and tasks specification in the case-study.

ordered based on their importance meaning that ζ23 > ζ24 > ζ25 .

D. Workload

In order to observe the workload of the applications, we
ran each server separately while assigning 100 % of the CPU
to them. The average and the maximum CPU demand of the
tasks in the servers are reported in Table III. To illustrate the
workload variations of the soft real-time serves we present the
CPU demand percentage of S2

3 in Figure 5.

Server AVG MAX
S2
3 13.35 60.00
S2
4 12.36 54.00
S2
5 11.98 44.00

total 37.43 158

TABLE III: The CPU demand percentage of the servers.

Moreover, in our experiments we observe that C1
1 = C1

2 =

Server fixed adaptive
S2
3 3.36 1.11
S2
4 27.28 6.49
S2
5 2.19 4.69

total 32.83 12.29

TABLE IV: The deadline miss ratio percentage of the servers.

31. Therefore, based on the suggestion presented in [25] we
choose the following period for S1: P1 = 100. In addition, we
derive the minimum budget that guarantees the schedulability
of τ11 and τ21 using the analysis presented in [25] which is
B1 = 39. Therefore, 39 % of the total bandwidth will be
assigned to S1 and the rest of the bandwidth (61 %) may be
utilized by S2.

E. Adaptive budgets

Recall that AdHierSched targets soft real-time applica-
tions for which their run-time behavior is not known a priori.
Therefore, assuming that we have no information about the
task CPU demands, we assign an initial budget to the servers
and then we let the budget controller to adapt the budgets.
We choose the deadline miss ratio as our performance metric
that is the number of jobs that finish their execution after their
deadline points, divided by the total number of finished jobs.
The number of jobs for a server is equal to the sum of its
tasks’ jobs. As a result of assigning adaptive budgets, the soft
real-time servers experience an average of 4.09 % deadline
miss ratio. While the most important server S2

3 experiences
only 1.1 % deadline miss ratio. As we show in the rest of this
section, the system is overloaded. Thus, missing deadlines is
inevitable. However, adapting the bandwidth of the servers, we
are serving the real-time tasks in such a way that the available
CPU bandwidth is efficiently utilized.

F. Static budgets

Allocating the soft real-time server budgets based on the
maximum demand of their tasks is impossible because the sum
of the bandwidth (158 %) is more than the available bandwidth
(61 %). Therefore, in another experiment we assign the server
budgets based on their average CPU demand. Table IV summa-
rizes the results of the case-study for both adaptive and static
budget allocation experiments. The adaptive CPU allocation
technique results in a total of 20 % less deadline misses than
the static technique. In addition, since S2

3 is the most important
application in the system, the deadline misses avoided for this
server is of more importance than the other deadline misses
potentially avoided. Figure 6 illustrates the budget adaptations
of the soft real-time servers used in the case-study.

VI. OVERHEAD

In this section, we report the overhead imposed by the
AdHierSched module in the case-study presented in Sec-
tion V. Note that our measurements exclude the Linux sched-
uler overhead that is responsible to assign the AdHierSched
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Fig. 6: The budget adaptations over the course of one minute experiment.

real-time tasks to the CPU. Therefore, we do not include the
context switch overhead.

There are two sources of overhead: (i) the multi-level
hierarchical scheduling overhead, i.e., the amount of extra
calculation that is done just for scheduling the real-time time
tasks in a hierarchical manner. (ii) the budget adaptation
overhead, i.e., the amount of extra calculations that are done
because of adapting the server budgets.

We measured the two types of overhead for the case-
study. The total overhead is less than 0.2 % (' 122 millisec-
onds). Figure 7 shows that the budget adaptation overhead
(' 8 milliseconds) has a small share of the total overhead.
The figure represents the overhead present in the case-study
explained in Section V. The overhead has been measured
using time stamps that are monitoring the execution length of
the timer handlers and the task_finish_job(task_id)
API function. Then, the total value is divided by the total time
that the experiment ran.

VII. CONCLUSION

In this paper, we presented the implementation details
of our adaptive hierarchal scheduling framework which is
called AdHierSched. We showed how the framework is

0.01

0.19

Overhead (%)

Adaptation

Scheduling

Fig. 7: The overhead of the AdHierSched module.

implemented in the Linux kernel as a kernel loadable module.
We demonstrated that our framework can efficiently deal with
unknown workloads. Finally, we reported the overhead of our
framework.

Our implementation can be improved in a number of ways.
For instance, we can use a more efficient queue structure to
reduce the overhead of the AdHierSched scheduler. As a



next step we are contemplating extending our framework to
multiprocessors. Although we are not currently considering I/O
operations, we would like to investigate the implications of
modeling them in our adaptive framework. For instance, we
can model the I/O requests as critical sections and we can use
available semaphore based protocols such as SIRAP [27] and
HSRP [28].
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