
MTU Assignment in a Master-Slave Switched
Ethernet Network

Mohammad Ashjaei, Moris Behnam, Thomas Nolte
Mälardalen University, Västerås, Sweden

{mohammad.ashjaei, moris.behnam, thomas.nolte}@mdh.se

Luis Almeida
IT / DEEC, University of Porto, Portugal

lda@fe.up.pt

Abstract—In this paper, we investigate the problem of selecting
the Maximal Transmission Unit (MTU) size that maximizes the
schedulability of real-time messages. We focus on a bandwidth-
efficient master-slave switched Ethernet protocol, namely the
FTT-SE protocol. We propose an algorithm to find the MTU
for each message in order to maximize the schedulability of the
messages. Moreover, we evaluate our proposed algorithm and
we show that setting the MTU for messages using the algorithm
increases the schedulability of messages compared with assigning
the MTU to the maximum value that the protocol can support.

I. INTRODUCTION

Nowadays, there is an increasing demand towards using
high performance network solutions for real-time Networked
Embedded Systems (NES) due to the growth of the num-
ber of nodes in such systems, their increased amount of
functionalities and the high amount of information being
transmitted between the nodes. Ethernet has been proposed as
an interesting technology for such systems as it provides high
throughput, low cost, wide availability and general maturity.
To overcome the limitation of Ethernet with respect to real-
time guarantees, it has been complemented with suitable
transmission control mechanisms, being the base for several
real-time communication protocols currently used in NES,
such as PROFINET, Ethernet POWERLINK, TTEthernet and
FTT-SE. To keep the high performance of the Ethernet based
protocols, the network should be configured properly and one
of the configuration parameters that has a significant effect
on the performance of the protocols is the selection of the
maximum packet size of messages [1].

In the area of Ethernet protocols, a packet is defined to
hold up to 1500 data bytes which is relatively high compared
with other communication technologies. As a configuration
parameter, the maximum data size that a packet can hold
in Ethernet is called the Maximal Transmission Unit (MTU),
which has a big impact on the performance of the network and
the bandwidth utilization. For instance, the MTU size affects
the minimum slot time in TTEthernet [2], while in cyclic
base protocols, such as the FTT-SE protocol [3], it affects the
size of the idle time, which is considered to prevent overruns
between cycles. In this paper, we mainly focus on the FTT-SE
protocol which is based on a master-slave switched Ethernet
technology.

Considering industrial real-time applications, the amount of
data to be transmitted can vary from small to very large,
for instance, the flow size might be rather large for au-
tomation applications based on video streams or machine

vision. Therefore, the data of such applications should be
fragmented to several packets to be transmitted sequentially.
However, selecting the best MTU that guarantees the real-time
requirements for all messages is challenging. On one hand,
a larger MTU will reduce the number of packets needed to
transmit messages which in turn reduces the total transmission
time of messages due to a lower amount of overhead associated
with Ethernet packets. On the other hand, the large MTU
increases the idle time used in every cycle to prevent overruns
which in turn decreases the efficiency of the protocol. This
contradicting effect has been discussed in [1] for the FTT-
SE protocol and two algorithms (optimal and simplified) have
been proposed to find the optimum MTU for all messages. The
algorithms are based on the utilization bound schedulability
test and they only consider the effect of messages that share
the same destination node, while the impact of other messages
that might delay the transmission of messages has not been
included in the analysis.

In this paper, we generalize the solution presented in [1] by
including the effect of all messages that can delay the trans-
mission of messages. In addition, we propose an algorithm
based on the response-time schedulability analysis to find a
proper MTU for each message to increase the schedulability
of systems. We show that the proposed algorithm increases the
schedulability compared with the case when the MTU is set
(configured) to the maximum Ethernet packet in the network.

The rest of the paper is structured in the following way.
Section II presents related work. Section III outlines the basics
of the FTT-SE protocol. Section IV presents the system model
and Section V sketches the schedulability analysis. Moreover,
Section VI proposes the heuristic algorithm, while Section VII
shows the evaluation of the algorithm. Finally, Section VIII
concludes the paper and presents the future work.

II. RELATED WORK

The problem of fragmenting messages into smaller packets
transmitted over large heterogeneous networks has been dis-
cussed in [4]. In such networks, some routes can carry limited
packet size and large messages should be fragmented leading
to a higher protocol overhead and a lower throughput. For
such a problem, optimal routing techniques are developed to
avoid message fragmentation as much as possible.

In the context of wireless networks, having several small
packets degrade the throughput of the network due to the
protocol overhead inherent to the transmission of each packet.



On the other hand, using a large packet size may also affect the
efficiency due to retransmission of faulty packets. Therefore,
optimal solutions have been proposed in [5] and [6] in the
area of wireless networks. Moreover, in [7] an algorithm
to dynamically adjust the packet size in multi-level security
wireless networks is proposed in which the goal is to mini-
mize the overhead in each packet. The same goal as finding
the optimized packet length for wireless sensor networks is
presented in [8], where the criterion for optimization is energy
efficiency rather than the bandwidth efficiency.

However, the above proposed solutions are not applicable
in this paper as the source of the problem and the goals are
different where we focus mostly on real time guarantees.

The work presented in [9] proposed an algorithm to select
optimal preemption points in order to increase the schedula-
bility of real-time tasks. The criteria to select the optimum
preemption points is based on decreasing the overhead of
task preemption and the blocking from lower priority tasks
on the higher priority tasks. Adding preemption points inside
the execution of tasks can be modeled as fragmenting the
tasks into a set of subtasks which is similar to fragment
messages into a set of packets. Nevertheless, the proposed
algorithm is not suitable for our case as it tries to optimize the
non-preemptive regions (between two preemption points) of
lower priority tasks that block the execution of higher priority
tasks. While in our case selecting the MTU of higher priority
message can contribute to their transmission time and also the
idle time included on every scheduling cycle for each message
affecting the schedulability of all messages.

The work presented in [1] is the most related work, where
two algorithms were proposed to find one optimum MTU for
all messages in the scope of the FTT-SE protocol. However,
the presented algorithms are based on the utilization bound
schedulability and do not consider all messages that can delay
the considered messages. In this paper, we use a tighter
schedulability test based on response time analysis and we
consider all messages that can interfere with the messages
under consideration. In addition and to improve the efficiency,
we assign an individual MTU for each message unlike the
previous work where only one MTU is assigned for all
messages. Note that the algorithms presented in [1] can only
give optimal results for very simple cases assuming that all
messages are forwarded to the same destination. Otherwise, a
very high computational complexity algorithm is required to
find the optimal solution. In this paper, we propose a heuristic
algorithm based on the response time analysis to find MTUs
for all messages that keep the system schedulable, i.e., all
messages meet their deadlines.

III. THE FTT-SE BASICS

The FTT-SE protocol [3] is an Ethernet real-time com-
munication protocol that uses a master-slave technique to
coordinate all traffic in the network. This protocol supports
both synchronous and asynchronous traffic. The former is
time-triggered and activated by the scheduler according to its

period, whereas the latter traffic is issued by applications in
the nodes.

The master node organizes the traffic in fixed time slots
called Elementary Cycles (EC) and broadcasts a specific
message, which is called the Trigger Message (TM), at the
beginning of the EC. The scheduling of messages is carried
out on-line according to some suitable scheduling policy, and
the scheduled messages are encoded into the TM. The network
nodes receive the TM, decode it and initiate the transmission
of messages.

As depicted in Figure 1, the data communication in each EC
is divided into two specific windows to handle synchronous
and asynchronous traffic, which is called the synchronous
window and asynchronous window respectively. Once the
nodes in the system receive the TM, the time they need to
decode it and initiate the transmissions is called turn around
time (TRD).

The asynchronous messages make use of a signaling mech-
anism that allows the master to become aware of them and
consider them in its internal traffic scheduling [10]. The
signaling mechanism is based on so-called signaling messages
(SIG) sent by the nodes to the master node, informing it of
the status of the nodes queues. Whenever an asynchronous
message becomes active in one node, this node informs the
master in the next SIG message that it sends to schedule
the asynchronous messages in the upcoming ECs, e.g., the
messages A and B in Figure 1.

Time 
Master TM 

Synchronous Window TRD Asynchronous Window 

Slave1 
TM 

A 

A 

Slave2 
TM 

B 

B 

switch In 

Switch Out 

Idle Time Idle Time 

Schedule the ready messages for the next EC by the master 

Elementary Cycle 

switch In 

Switch Out 

switch In 

Switch Out 

Fig. 1. The FTT-SE Elementary Cycle

The FTT-SE protocol automatically fragments large mes-
sages into several packets that are scheduled sequentially by
the master node.

IV. SYSTEM MODEL

In this paper, we consider the real-time periodic model
to describe both synchronous and asynchronous messages as
presented in the following set:

Γ = {mi(Ci,Di,Ti,Si,Dsi,MTUi,nPi), i = 1..N} (1)

In this set, Ci is the total transmission time of the message
including all physical layer overheads such as inter-frame gap,
Di and Ti are the relative deadline and period of messages
respectively, which are presented as integer number of ECs.
Moreover, Si is the source node and Dsi is the destination node
of the message (we assume unicast streams in this paper).



Also, MTUi is the maximum packet size among the packets
that compose mi and nPi is the number of packets. We model
both, synchronous and asynchronous messages, with the same
set in which Ti presents the minimum inter-arrival time for
asynchronous messages. In this paper we assume that Γ is
sorted by the descending priority of the messages. Finally,
the fixed priority scheduling algorithm is used to schedule
messages and the priorities of messages are assigned according
to the Rate-Monotonic (RM) algorithm.

The switches are assumed to be Commercial Off-The-Shelf
(COTS) and cut-through switching and ready messages in
switches are scheduled using the First In First Out (FIFO)
approach. We also consider the switch relaying latency (∆) in
the schedulability analysis.

According to the FTT-SE protocol, all messages which are
scheduled to be transmitted in one EC should be received by
the end of the EC. In order to prevent any overrun of the
traffic, a message that cannot be fully transmitted within the
transmission window is suspended for the next EC, e.g., m1
in Figure 2.

Time 

Synchronous Window Synchronous Window 

m5 m4 m7 m1 m3 m1 

ECk ECk+1 

Idle time 

Fig. 2. The Idle Time Presentation

This property introduces an idle time in each transmission
window that should be taken into account in the schedulability
analysis.

V. SCHEDULABILITY ANALYSIS

In the FTT-SE protocol, the system is schedulable when
all messages meet their deadlines. The schedulability is
investigated by computing the response time (RT) for all
messages. The system is guaranteed to be schedulable if
∀mi : RT (mi) ≤ Di. In addition, the FTT-SE scheduling is
based on reserving a bandwidth every EC for each type
of messages, both synchronous and asynchronous, which is
similar to the periodic resource model presented in [11].
Therefore, in order to calculate the response time analysis,
we perform the analysis based on a request bound function
(rbf) and a supply bound function (sbf).

The rb fi(t) represents the maximum load generated by mi
and all higher priority messages that can delay mi within
the time interval [0, t]. Therefore, the rb fi(t) is calculated by
summing the total transmission time of the message itself, the
interfering messages and the remote load interference denoted
by Wi(t) which will be discussed later in this section. The
rb fi(t) computation is presented in (2), where hp(mi) is the
set of messages with priority higher than that of mi.

rb fi(t) =Ci +∆+ ∑
∀m j∈hp(mi) ∧

(S j=Si∨Ds j=Dsi)

d t
Tj
eC j +Wi(t)

(2)

Besides the interference of the messages that share links
with the message under analysis mi (i.e., ∀m j ∈ hp(mi) ∧
(S j = Si ∨Ds j = Dsi)), the message mi may still be delayed
indirectly through other messages. To show this effect let us
consider the example illustrated in Figure 3.

In Figure 3, m1 is transmitted from Node A to Node B, m4
is sent from Node A to Node C and m3 is transmitted from
Node B to Node C and m2 is sent from Node B to Node A.
In this example we focus on m4 and we assume that it is the
lowest priority among the other messages. In this scenario, m1
is delaying m4 which cause delay in m3 reception. If m1 was
not scheduled for this EC, it would be possible for m3 to be
transmitted in the EC. Therefore, m1 delays m3 even though
they do not share links. We can call this effect remote load
delay. Since m4 has the lowest priority, the scheduler in the
master node will suspend the transmission of m4 to the later
EC.

Synchronous Window 

m1 m4 

ECk 

Node A 

Node B 

Node C 

m2 m3 

m4 m3 

switch In 

switch In 

switch In 

switch out 

switch out 

switch out 

m1 

m2 

Fig. 3. The Remote Load Interference

To consider this delay in the analysis, all higher priority
messages that share source node with the interfering messages
are considered as higher priority interfering messages in the
response time analysis as shown in (3).

Wi(t) = ∑
∀mk∈hp(m j) ∧ Sk=S j
∧ ∀m j∈hp(mi)

d t
Tk
eCk

(3)

The sbf(t) is the minimum effective communication capacity
that the network supplies within the time interval [0, t]. Note
that in each EC, a particular bandwidth is provided for trans-
mitting each type of message which is imposed by LSW − I,
where LSW is the length of the synchronous window and I is
the idle time in that window. The idle time is upper bounded by
the maximum packet size among the higher priority messages
and the message under analysis. Thus, for the message mi the
supply bound function sb fi(t) is computed in (4).

sb fi(t) = (LSW−Ii
EC )× t

Ii = max
∀m j∈hp(mi)

(MTUi,MTU j) (4)



The response time of mi is computed based on (5).

t∗ = min(t > 0) : sb fi(t)≥ rb fi(t) (5)

In order to determine t∗, the inequality should be checked
in all instants that rb fi(t) changes due to interference of other
messages up to Di. Therefore, a set of check points is given
by (6).

CPrb fi = [∪cpma ,∀ma∈hp(mi)]∪Di

where,cpma = Ta,2Ta, ...,nTa,n = bDi
Ta
c (6)

Finally, we compute the response time in number of ECs
which is given by (7).

RT (mi) = d
t∗

EC
e (7)

The analyses explained above are suitable for the syn-
chronous messages and the asynchronous messages. However,
for asynchronous messages additional 2 EC delay should be
added to the RT. The reason for this is that the request for
asynchronous messages may have to wait 1 EC before the
node signals it in the next SIG and the master then executes
the scheduling one EC before the respective dispatching.

VI. MTU ASSIGNMENT ALGORITHM

The maximum and minimum possible packet transmission
times are limited to MTUmax and MTUmin which are de-
fined according to the protocol specification. In this sec-
tion we present an algorithm to find the MTUi within
[MTUmin,MTUmax] such that the system becomes schedulable.

According to the schedulability analysis presented in Sec-
tion V, the selection of MTUi affects the response time
analysis as it influences the bandwidth utilization in sb fi(t)
through the idle time. Increasing MTUi might increase Ii in
(4) for message mi and the other lower priority messages that
share the same destination node. As a result, increasing Ii will
decrease the sb fi(t) and hence decreasing the schedulability
of the message. Moreover, increasing MTUi will require less
packets to transmit the data which in turn will decrease the
total transmission time of the message and it will decrease
rb fi(t) and as a result it will increase the schedulability of
the system. Considering these two contradicting effects in
the schedulability analysis, we may conclude that there is a
tradeoff between decreasing the effect of idle time and the
protocol overhead when changing the MTUs of messages.

Looking at (4, 2), we can conclude that selecting the MTU
for a message not only affects the response time of that
message itself but it affects the schedulability of the lower
priority messages through the higher priority interference and
remote load interference delay. In order to find the optimum
solution a combination of all possible MTU ranges for all
messages should be checked which requires an algorithm with
an exponential computational complexity. Thus, in this section
we present a heuristic algorithm to find the MTUi.

In order to present the effect of MTUi in the request
bound function, the total transmission time of the message

is formulated based on the MTUi. The total message trans-
mission time Ci includes the actual data transmission time C∗i
and the protocol overhead O. The protocol overhead O is a
constant value which is added to each packet separately and
includes Ethernet overhead, the FTT-SE protocol overhead and
the inter-frame gap between the packets. Therefore, the total
message transmission time equals to C∗i +nPi×O. Note that,
we consider the actual transmission time of a message equally
split among its packets. This helps avoiding residual short
packets and leads to increase the schedulability as described
before. Thus, the MTUi is evaluated in (8).

MTUi = d
C∗i
nPi
e (8)

The number of packets for each message can be expressed
as in (9).

nPi = d
C∗i

MTUi
e (9)

We can reformulate the total message transmission time
Ci to be a function of MTUi by considering nPi from (9).
Moreover, we can approximate the equation by removing the
ceiling in the equation which is presented in (10).

Ci =C∗i +(
C∗i

MTUi
+1)×O (10)

We expand the inequality (5) by substituting the sb fi(t) from
(4) and the rb fi(t) from (2). Also, the transmission time Ci in
rb fi(t) can be replaced with (10). Due to the max function in
the sb fi(t), we need to evaluate the inequality in two different
conditions.

In the first condition, we assume that the MTUi is greater or
equal to the maximum MTU of all higher priority messages
than that of mi. Therefore, a quadratic equation is derived as
a function of MTUi as it is presented in (11).

t
EC MTU2

i +(C∗i +M(t))×MTUi +(C∗i ×O)≤ 0 (11)

M(t) = O+∆− LSW×t
EC + ∑

∀m j∈hp(mi) ∧
(S j=Si∨Ds j=Dsi)

d t
Tj
eC j

+ ∑
∀mk∈hp(m j) ∧ Sk=S j
∧∀m j∈hp(mi)

d t
Tk
eCk

(12)

Note that, the quadratic equation (11) has two solutions
which shows a range of solutions that satisfies the inequality.
Moreover, the coefficient of MTU2

i is always positive as t
and EC are always positive integers. Therefore, the parabola
opens upwards in this case, i.e., the quadratic has a minimum
value. As a result, given MTUi[lo] and MTUi[hi] as lower
value and higher value of the solutions respectively, that make
the left side of the equation equal to zero, all the values within
the range [MTUi[lo],MTUi[hi]] guarantee the schedulability of
that message.



If the primitive condition is not satisfied, i.e., MTUi is less
than the maximum MTU of all higher priority messages, we
need to evaluate MTUi using (13) and (14).

MTUi ≤
−C∗i ×O
C∗i +L(t) (13)

L(t) = M(t)+ t
EC × max

∀m j∈hp(mi)
(MTU j) (14)

If the evaluated MTUi from (13) satisfies the assumed
condition, i.e., ∀m j ∈ hp(mi) : MTUi < max(MTU j), then the
solution is accepted, otherwise there is no solution to make
the message schedulable.

Algorithm 1 shows an algorithm to find the MTU for all
messages in order to make the system schedulable. As we
have seen above, selecting MTU for a message always affects
itself and the lower priority messages. Therefore, the algorithm
starts from the highest priority message and it continues to the
lowest priority messages. Algorithm 1 starts with calculating
the MTU range for m1 based on (11). As m1 is assumed to
be the highest priority message in the set, the set of MTUs
(MTUhp) from messages with priority higher than m1 is set to
zero. Moreover, for all messages the MTUi is calculated when
t is assigned to the deadline of the message, i.e., t = Di.

Algorithm 1 MTU Assignment Algorithm
1: //Find the range of MTU1 according to (11)
2: t = D1,MTUhp = 0
3: sched =−1
4: MTU1[hi, lo] = MTUcalc(t,MTUhp)
5: MTU1[hi, lo] =CheckRange(MTU1[hi, lo])
6: //Change MTU to nP according to (9)
7: nP[min,max] = translate(MTU1[hi, lo])
8: for i = nP[min]→ nP[max] do
9: for m j = m2→ mN do

10: t = D j,MTU j = 0
11: //Find the range of MTU j according to (11), (13)
12: MTU j[hi, lo] = MTUcalc(t,MTUhp[hi])
13: MTU j[hi, lo] =CheckRange(MTU j[hi, lo])
14: //If there is a solution, set the flag
15: if MTU j[hi]> 0 then
16: sched = 1
17: update(MTUhp)
18: else
19: sched =−1
20: break
21: end if
22: end for
23: //If there is a solution, no need to check other nP
24: if sched == 1 then
25: break
26: end if
27: end for
28: return MTU j,sched

The [MTU1] range is evaluated and the algorithm checks
the range with the maximum possible protocol range of MTU ,

i.e., the range should be within [MTUmin,MTUmax] (lines 4 and
the following). Afterwards, we need to find the value within
the evaluated MTU range such that all other lower priority
messages are schedulable. Therefore, the algorithm iterates
for all possible number of packets (only for m1) from the
evaluated range of the MTU1 according to (9) (line 7) starting
from the highest down to the lowest value of MTU. Given
the value of MTU1 the algorithm checks the schedulability of
other messages starting from message m2 the second highest
priority to evaluate its MTU and then continue with the other
messages.

In the message iteration, the algorithm calculates the range
of the MTU j for each message according to (11, 13) con-
sidering the highest evaluated MTU values of higher priority
which is denoted by MTUhp[hi] (lines 12 and the following).
This value is already computed for m1 and will be calculated
for other messages in the loop, then it is updated to be
used later in the calculations of MTU for the other lower
priority messages(line 17). For instance, in the iteration of
m3, the MTUhp[hi] includes both MTU2[hi] and MTU1 which
are calculated in the previous iterations. The loop continues
for other messages unless the solution is not found with the
evaluated values of the MTUhp.

Whenever the algorithm does not find a range for at least
one of the messages, it breaks the inner loop and it continues
for the next number of packets in the outer loop (lines 18
and the following). Otherwise if the range is evaluated for all
messages, the algorithm stops the outer iteration and returns
the MTU j for all messages (lines 24). When computing MTU j
the algorithm considers the highest evaluated values of the
MTUs (MTUhp[hi]) of the higher priority messages m2, ..m j−1.
The reason for this is that the higher value of MTU requires
lower number of packets which may lead to better response
times of messages.

The complexity of the algorithm is O(N× nP) where nP
is a function of MTU which is between [MTUmin,MTUmax].
Note that the presented algorithm is not an optimal algorithm
and it is sufficient but not necessary meaning that if it does
not find a solution for a system it does not mean than there is
no solution for that system.

VII. EVALUATION

In this section, we evaluate the improvements that can be
achieved by the presented algorithm in terms of increasing the
schedulability of messages and we compare the results of the
algorithm with the results of using the maximum protocol’s
MTU (MTUmax) for all messages. The evaluation is carried
out using four different simulation studies. In each study,
the algorithm is applied on a number of randomly generated
message sets given the following parameters as input to the
message sets generation program. The range of the message
period is defined [T min

i ,T max
i ], the number of messages is

denoted by N and the transmission time of the messages is
selected within [Cmin

i ,Cmax
i ].

For each study, 100000 message sets are randomly gener-
ated given the range of the above mentioned input parameters.



In all studies the following assumptions are made: the network
capacity is set to 100Mbps, number of slave nodes in the
network is 5, the elementary cycle duration is EC = 1.5ms,
the protocol overhead is 44 bytes including Ethernet overhead
and the FTT-SE overhead, and the Ethernet inter-frame gap
is 96bits which makes O = 3.96µs, and the switch latency
is considered ∆ = 5µs. Finally, the minimum and maximum
packet size is [100,1500] bytes. Moreover, in all studies only
synchronous messages are considered and for each study 20
different synchronous window durations LSW are selected
from; LSW = [100,1000]µs in steps of 50µs, where the 100000
sets are tested for every value of LSW .

The different settings in each study are:
• Study 1 is specified to have N = 10, [T min

i ,T max
i ] = [2×

EC,50×EC] and [Cmin
i ,Cmax

i ] = [150,200]µs.
• Study 2 is done with the same parameters as Study 1,

except the number of messages which is N = 30.
• Study 3 is specified having similar parameters in Study 1,

except that the message transmission times are increased
within [Cmin

i ,Cmax
i ] = [200,500]µs.

• Study 4 is performed having the same range for transmis-
sion time of the messages in Study 3, but changing the
range of the periods within [T min

i ,T max
i ] = [5×EC,80×

EC] and N = 30.
In all studies we count the number of scheduled sets out

of the 100000 randomly generated and using the MTU values
evaluated from the proposed algorithm and the same study is
repeated assuming the MTUmax for all messages.

0

10

20

30

40

50

60

70

80

90

100

Sc
h

ed
u

la
b

ili
ty

 P
er

ce
n

ta
ge

 (
%

) 

Synchronous Transmission Window Size (µs) 

Algorithm 1

MTU_max

Fig. 4. The Result of Study 1

Figure 4 shows the percentage of schedulable systems in
Study 1 as a function of LSW . It is clear from the figure
that the results of using the proposed algorithm increase the
schedulability of sets significantly compared with the case of
assigning the maximum MTU. To guarantee the schedulability
of all sets we need LSW ≥ 500µs for the case of maximum
MTU while using the MTU from the proposed algorithm
reduces the required length to LSW ≥ 400µs.

In the second study, we changed the number of messages
to 30 in each set to investigate the effect of the number of

messages on the results. The results of Study 2 are depicted in
Figure 5. The result illustrates that using the maximum MTU
for the messages cannot reach to 100% meaning that the dedi-
cated synchronous window is not enough. However, assigning
MTUs according to the proposed algorithm, makes all sets
schedulable even with LSW ≥ 850µs. Note that increasing the
number of messages in general requires more bandwidth to
be dedicated to the messages to guarantee their schedulability
since it increases the number of interfering messages for lower
priority messages which is clear when comparing the results
of Study 1 and Study 2.

0

10

20

30

40

50

60

70

80

90

100

Sc
h

ed
u

la
b

ili
ty

 P
er

ce
n

ta
ge

 (
%

) 

Synchronous Transmission Window Size (µs) 

Algorithm 1

MTU_max

Fig. 5. The Result of Study 2

The results of Study 3 are presented in Figure 6 and it
shows that increasing the transmission time of the messages
highly affects the schedulability of the sets, yet setting the
MTUs based on the presented algorithm makes 100% of the
generated sets schedulable by using a synchronous window
duration larger than 750µs.

0

10

20

30

40

50

60

70

80

90

100

Sc
h

ed
u

la
b

ili
ty

 P
er

ce
n

ta
ge

 (
%

) 

Synchronous Transmission Window Size (µs) 

Algorithm 1

MTU_max

Fig. 6. The Result of Study 3

In the last study, we increase both the number of messages
and the period of the generated messages. Figure 7 shows
the result of Study 4. As explained previously, increasing the



number of messages affects the percentage of schedulable
sets. Also increasing the difference between the minimum
and maximum periods of messages have the same negative
effect on the schedulability since the shorter period messages
may activate several times while scheduling the lower priority
larger periods which increases the interference from higher
priority messages. Applying the algorithm on the message
sets makes 100% of the message sets schedulable when the
dedicated synchronous window is more than 550µs, whereas
using MTUmax requires the synchronous window more than
750µs.

0

10

20

30

40

50

60

70

80

90

100

Sc
h

ed
u

la
b

ili
ty

 P
er

ce
n

ta
ge

 (
%

) 

Synchronous Transmission Window Size (µs) 

Algorithm

MTU_max

Fig. 7. The Result of Study 5

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a heuristic algorithm to find a
MTU for each message in order to increase the schedulability
of the messages in the FTT-SE protocol. We evaluated the
proposed algorithm using 4 different studies and we showed
that assigning the MTU of the messages according to the
proposed algorithm increases the percentage of schedulable
sets compared with using the protocol maximum MTU for
all messages. However, this algorithm does not evaluate the
optimum MTU for the messages as the complexity is high.
The future work aims at finding the MTU in the multi-hop
FTT-SE protocol.

ACKNOWLEDGMENTS

This work is supported by the Swedish Foundation for
Strategic Research, via Mälardalen Real-time Research Cen-
ter (MRTC) at Mälardalen University. Also, it is partially
supported by the Portuguese Government through FCT grant
CodeStream PTDC/EEI-TEL/3006/2012.

REFERENCES

[1] M. Behnam, R. Marau, and P. Pedreiras, “Analysis and optimization
of the mtu in real-time communications over switched ethernet,” in
16th IEEE International Conference on Emerging Technologies Factory
Automation (ETFA’11), sept. 2011.

[2] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The time-
triggered ethernet (tte) design,” in 8th IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, may 2005.

[3] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time communi-
cation over cots ethernet switches,” in 6th IEEE International Workshop
on Factory Communication Systems (WFCS’06), June 2006.

[4] C. A. Kent and J. C. Mogul, “Fragmentation considered harmful,”
SIGCOMM Comput. Commun. Rev., Jan. 1987.

[5] J. Chen, L. Gong, Y. Yang, and P. Zeng, “Average performance of packet
network,” in 6th International Conference on ITS Telecommunications
Proceedings, 2006.

[6] C. K. Kodikara, S. Worrall, and A. Kondoz, “Optimal settings of max-
imum transfer unit (mtu) for efficient wireless video communications,”
IEE Proceedings of Communications, 2005.

[7] M. Younis, O. Farrag, and W. D’Amico, “Packet size optimization for
increased throughput in multi-level security wireless networks,” in IEEE
Military Communications Conference (MILCOM’09), 2009.

[8] Y. Sankarasubramaniam, I. Akyildiz, and S. McLaughlin, “Energy
efficiency based packet size optimization in wireless sensor networks,”
in Proceedings of the First IEEE International Workshop on Sensor
Network Protocols and Applications, 2003.

[9] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito, and
M. Caccamo, “Preemption points placement for sporadic task sets,” in
22nd Euromicro Conference on Real-Time Systems (ECRTS’10), 2010.

[10] R. Marau, P. Pedreiras, and L. Almeida, “Asynchronous traffic signaling
over master-slave switched ethernet protocols,” in 6th International
Workshop on Real Time Networks (RTN’07), July 2007.

[11] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in 24th IEEE International Real-Time Systems Symposium
(RTSS’03), 2003.


