
Multi-Level Adaptive Hierarchical Scheduling Framework for Composing
Real-Time Systems

Nima Moghaddami Khalilzad, Moris Behnam and Thomas Nolte
MRTC/Mälardalen University

P.O. Box 883, SE-721 23 Västerås, Sweden
nima.m.khalilzad@mdh.se

Abstract

Processor partitioning and hierarchical scheduling
have been widely used for composing hard real-time
systems on a shared hardware platform while preserving
the timing requirements of the systems. Due to the safety
critical nature of the hard real-time systems for deriving
the sufficient partition size often conservative analysis
is used. Applying the exact same analysis for deriving
the partition sizes for soft real-time systems result in
unnecessary processors overallocation and consequently
waste of the CPU resource.

In this paper, to address the problem of composing
soft and hard real-time systems on a resource constrained
shared hardware, we present a multi-level adaptive hi-
erarchical scheduling framework. In our framework, we
adapt the processor partition sizes of soft real-time systems
according to their need at each time point by on-line moni-
toring their processor demand. Furthermore, we implement
our adaptive framework in the Linux kernel and show the
performance of our framework using a case-study.

I. Introduction

The recent advances in hardware technologies enable a
new opportunity to compose previously separated (both
hardware and software) systems into a single hardware
platform. To this end, an enormous number of works
has been done on developing mechanisms to ease the
composition process. When dealing with real-time systems,
the composition of a number of such systems should hold
the established timing properties of the individuals before
the composition. This issue has been addressed in the
hierarchical scheduling literature in recent years where a
number of methods has been proposed. In these methods,
the composition can be done safely with respect to the
timing requirements of the real-time systems.

A popular approach to deal with this problem is to
divide the CPU into a number of CPU reservations (often

called CPU partitions) and to assign each real-time system
to one reservation. In doing so, we can derive the minimum
supply of the CPU resource to each partition and compare
that with the CPU demand of the system assigned to that
partition. The CPU demand of systems is derived based
on the Worst Case Execution Time (WCET) of their inner
tasks.

While the problem of composing hard real-time systems
is well studied, composition of soft real-time systems
together or with hard real-time systems has not received
as much attention. There exists a group of real-time tasks
in which the WCET is not known a prior and even if
it is known, the worst case is far much larger than the
average case execution time. For instance, a video decoder
application where its execution time is depending on the
content of the input video may experience significantly
large variation in its execution time depending on which
video that is being played. Or consider a control task
controlling a physical environment, where depending on its
sensor value, its CPU demand may significantly change.
Therefore, given that occasional deadline misses are ac-
ceptable in most of these systems, reserving the CPU
resource based on the WCET may result in a great deal
of resource overallocation. This overallocation may be
infeasible in resource constrained embedded systems.

Moreover, dynamic real-time tasks may be organized
hierarchically in systems. For instance consider virtual
operating systems running on a processor where in order to
guarantee the timing requirements of the virtual operating
systems, they are running inside a CPU partition. In
addition, inside each operating system there may be a
number of independent real-time applications running in
parallel. In order to isolate the timing behavior of the
applications, the CPU share of the operating systems might
also be partitioned, and each application may be assigned
to a CPU partition of its parent operating system. Similarly,
applications may contain sub-applications which can result
in further CPU partitioning.

In this paper we propose a multi-level hierarchical
scheduling scheme for composing hard and soft real-
time systems. We allocate static CPU reservations to hard



real-time systems and adaptive reservations to soft real-
time systems. We propose an adaptation mechanism for
adjusting the CPU reservation sizes at each time point
based on the CPU demand of the components inside the
CPU reservations. Then, we show that using our adapta-
tion techniques, adapting the soft real-time partition sizes
does not affect the timing behavior of the hard real-time
partitions. Thereafter, we first implement the framework
as a Linux kernel loadable module and then evaluate the
performance of our proposed framework using a case-
study. In the evaluation, we use real applications such
as video player and image processing applications which
exhibit wide CPU demand variations.

The rest of the paper is organized as follows. In
Section II we review the related work. Section III presents
our adaptive framework and reveals the details of our
adaptation mechanism. The overview of the Linux imple-
mentation is presented in IV. We present a case-study in
Section V and show the performance of our framework.
Finally, we conclude the paper in Section VI.

II. Related work

Hierarchical scheduling through CPU reservation
emerged in 90’s [1], where the idea was to partition the
CPU into a number of partitions (CPU reservations) and
assign a partition to a group of tasks. In doing so, the
task groups experience temporal isolation, i.e., the timing
behavior of each task group (also called a component)
can be studied independently. The partitioning also paves
the way for adding and removing components without
jeopardizing the timing requirements of other components
in the system.

When partitioning the CPU, we need a model that
captures the amount of provided resource at each time
point. The resource partition model is presented in [2].
Schedulability analysis for hierarchical scheduling with
fixed priority at the global level and local EDF is presented
in [3]. In [4] Shin and Lee present the periodic resource
model in which the CPU reservation is achieved using
periodic servers. The periodic servers provide their inner
components with Q units of the CPU time each P time
units. We use the periodic resource model in our adaptive
scheme.

When using the CPU partitioning approach, the com-
mon assumption is that the CPU demand of the real-time
tasks (WCET) are known a prior. Given this demand, a
sufficient partition size can be calculated such that the
timing requirement of real-time tasks are not violated.
However, we assume that for soft real-time tasks the task
demands and therefore the sufficient partition size are
unknown.

Since Stankovic et al. introduced the idea of closed-
loop real-time scheduling [5], there has been a growing
interest in adopting feedback control techniques in the

context of real-time scheduling. In [6] Feedback Control
EDF (FC-EDF) is presented in which there is a PID
controller on top of the EDF scheduler. The controller
monitors the deadline miss ratio and based on that adjusts
the tasks requested CPU utilization value. This adjustment
affects the available CPU utilization and therefore the
admission control. Targeting control tasks Cervin et al.
presented a feedback-feedforward scheme in which by
adapting the sampling period of tasks the quality-of-control
is regulated [7].

In order to ensure that the multimedia applications
receive enough CPU bandwidth, resource partitioning is
used for scheduling multimedia tasks [8]. Due to the
dynamic nature of multimedia applications (with respect to
execution time), it is desirable to have adaptive reservations
for these kinds of applications. Abeni et al. proposed using
a PI controller on top of Constant Bandwidth Servers
(CBS) which adapts the CBS bandwidth such that it tracks
the current workload of tasks attached to the CBS.

Utilizing adaptive CBS (with a new control scheme),
Palopoli et al. present the AQuoSA framework [9]. This
scheme only considers the existence of one task per each
CBS. In order for it to work in hierarchical settings
where multiple tasks exist in each server, a new controlled
variable should be defined.

In the context of the ACTORS project [10] a cascade
controller is used on top of the hard CBS scheduling
algorithm for adapting the CBS bandwidth. In this work
alike the AQuoSA framework the authors also use one task
per CPU reservation.

Finally, we studied the problem of budget adaptation
using PI controllers [11] and Fuzzy controllers [12]. In our
aforementioned previous work we have investigated two-
level hierarchical scheduling, however, in this paper we
present a new budget adaptation scheme which supports
any arbitrary level of hierarchy in hierarchical scheduling.
The new scheme also takes the existence of hard real-
time systems into account and we show that adapting the
soft real-time partitions does not harm the hard real-time
partitions. Moreover, in our previous papers we performed
simulation-based evaluations whereas in this paper we
evaluate our framework by implementing our multi-level
adaptive hierarchical scheduling framework in the Linux
kernel and by running real applications.

III. Framework

In this section we present the structure of our adaptive
framework and our adaptation mechanism.

A. Application model

An application (Aj) consists of mj real-time tasks (τ ji )
and nj sub-applications (Ajκ). When referring to both tasks



and applications in Aj , we use the term “inner compo-
nents” ofAj . Each application is assigned a periodic server
Sj with period Pj , budget Bj and importance ζj . The
periodic server provides the application with Bj units of
the CPU time every Pj time units. The importance value ζj
shows the relative importance of applications with respect
to other applications that coexist in the system belonging to
the same parent. The importance value is only used when
the system is overloaded in which we have to serve the
more important applications at the price of sacrificing less
important applications. Tasks and applications may join
and/or leave the application during run-time. We define the
bandwidth of applications (αj) as follows: αj = Bj/Pj .

We distinguish two types of applications in our frame-
work: Hard Real-Time (HRT) and Soft Real-Time (SRT)
applications. Inner components of applications inherit their
parent type, meaning that e.g., if an application is HRT
then its children components are also HRT. HRT appli-
cations receive fixed CPU reservations during their life-
time in the system which is calculated using the analysis
provided in [4], whereas SRT applications receive dynamic
CPU reservations. Therefore, the budget in an SRT appli-
cation is changing and it is a function of time Bj(t).

B. Task model

We consider a periodic task model in which the follow-
ing parameters are associated with a task τ ji that belongs
to application Aj : period T ji , deadline Dj

i , priority prji and
the worst case execution time Cji . Without loss of gener-
ality, we assume implicit deadline model, i.e., T ji = Dj

i .
Note that Cji is only available for hard real-time tasks,
however, we assume that the soft real-time task execution
times are unknown a prior and that they possibly have
significant variations during tasks life-time in the system.
The soft real-time tasks may miss their deadlines due to
insufficient CPU allocation, then the remaining execution
time εji has to be executed in the next task periods under its
parent partition. A new instance of tasks is allowed to be
executed only when its previous instances has completed
its execution. One instance of the task execution is called
a “job”.

C. System model

We assume a single processor system composed of n
SRT applications and m HRT applications. As mentioned
in the application model, an application itself may be
composed of a number of sub-applications and/or tasks.
Therefore, our systems model is a multi-level hierarchical
model. The scheduling is also done hierarchically. The
global scheduler is responsible for scheduling the global
level periodic servers which serve the global level applica-
tions. Each application in turn has its own local scheduler
which distributes the application’s assigned CPU portion
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Fig. 1. Visualization of the system model.

among its inner components. In the case of SRT application
servers, there is a budget controller component attached to
each server which is responsible for adapting the budget of
servers. Figure 1 illustrates our system model. We refer to
the set of all, SRT and HRT applications at the root level
using Ar, Asrt and Ahrt respectively.

D. Adaptation model

Assuming that the system designer selects the applica-
tion periods, we keep the server periods fixed, and we only
adapt the budgets such that each application receives just
enough CPU time for scheduling its inner components.
For instance the period of an application consisting of
video decoder tasks is set based on the requirement on the
minimum number of frames needed per second. However,
the budget totally depends on the content of the video
at each time point. Note that only SRT applications are
subjected to the adaptation.

The budget adaptation is done periodically at each
P Ctrl
j time units by the budget controller component. We

assume that the controller period P Ctrl
j is proportional to its

corresponding server period P Ctrl
j = µ × Pj . Therefore, at

every µ server release events we call the controller function
and adapt the server budgets.

We call each trigger of the controller component a “con-
trol event” and we represent the control event sequence by
k where k ≥ 1. The first control event for each server
Sj (kj = 1) happens at time t = P Ctrl

j . Let us define Ψ
kj
j

as the k’th “control period” of Aj which represents the
following time window:

Ψ
kj
j =

(
(kj − 1)P Ctrl

j , kjP
Ctrl
j

]
.
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and the control event kj .

The first control period of server Sj (Ψ1
j ) is as follows:

Ψ
kj
j = (0, P Ctrl

j ]. The control event and the control period
concepts are visualized in Figure 2. In the figure the
controller period is four times the server period (µ = 4).

For keeping the equations simple, we drop index j when
referring to kj and Ψk

j . At each control event k monitoring
the CPU demand of application Aj , we assign a sufficient
budget Bj(k) to the application server Sj . Assuming that
we know the CPU demand of the application Aj inner
components during the next control period Ψk+1, the
sufficient budget for Sj is as follows:

Bj(k) = λ×
(
bj(k) + rj(k)

)
, (1)

where bj(k) is the amount of total required budget for
Ψk+1 (we assume we know it) and rj(k) is the amount of
work, in terms of the CPU time, that should have been
processed during Ψk but it is postponed to Ψk+1. We
explain how to measure the remaining work rj(k) in the
rest of this section. λ is a coefficient that specifies how
much of the total budget should be allocated at each server
period. If the control period is equal to the server period
(P Ctrl
j = Pj) then λ = 1. However, in order to decrease

the control overhead we may assign a control period that
is larger than the server period. Therefore, in general case
λ = µ−1.

E. Controlled parameters

In order to realize the workload of the applications we
need to monitor some parameters while doing the schedul-
ing, these parameters are called “controlled parameters”.

Since the periodic servers idle their budget when the
server is active and there is no running task or active
application in the server, we monitor the server’s budget to
see how much of the assigned budget is used in practice.
This parameter is called the actual required budget βj .
For instance when the controller realizes that βj(k) <
µ×Bj(k) it may adapt the budget of application Aj at the
next control event k+ 1 and assign a lower budget to this
application. βj(k) is visualized in Figure 3.a. In this figure
µ = 2, therefore at time k the controller will be triggered
and will see that βj(k) = x1 + x2.

There should also exist a mechanism for detecting bud-
get deficiency. There are two different sources of budget
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Fig. 3. Visualization of the controlled param-
eters: a) βj(k) b) εji (k).

deficiency: i) an application’s inner tasks are suffering,
i.e., tasks are missing their deadlines ii) an application’s
inner applications are suffering, i.e., they do not receive
their assigned budget at each period. For monitoring (i) we
measure the amount of task execution time after passing
the deadline (εji ) which can be translated as the amount
of budget deficiency of the parent. For instance, assume
that in Figure 3.b τ j1 is the only component in Aj and
that it misses its deadline at Dj

1, therefore the amount of
consumed budget after the deadline εj1(k) is equal to x2.

On the other hand, at each server period when a new
instance of the server is being released, if the controller
observes that the server’s previously assigned budget is not
exhausted (it is neither used by its inner components nor
idled) it realizes that the server’s parent is suffering from a
budget deficiency. We represent the amount of unallocated
budget to Ajκ using δjκ.

1) Remaining workload (rj(k)): Recall that we assume
T ji = Dj

i . Therefore, when task τ ji in control period Ψk

misses its deadline and then it consumes εji time unites
of the budget, it actually consumes the budget of its next
instance. Therefore, even if we know the exact amount
of tasks required budget in Ψk+1 and we assign this
budget to Sj at k, the task will still miss its deadline
because εji amount of its budget is used by its previous
instance and this domino effect will affect all of the later
jobs of τ ji . Hence, in order to stop this deadline miss
domino at each control event we compensate the postponed
workload by adding rj(k) units to Bj(k). On the other
hand, Ajκ may receive lower budget than its assigned
budget, and therefore (δjκ) workload will be postponed
from Ψk to Ψk+1. Note that the servers treat their inner
components equally, i.e., when a server receives δjκ budget
units less than its assigned budget, for the parent server



this case is equal to the case that a task misses its deadline
and consumes εji units of budget after its deadline. This
abstraction makes it possible to have any arbitrary levels
of hierarchy in the system. Therefore, we can derive the
amount of remaining workload of Aj from Ψk that should
be compensated in Ψk+1:

rj(k) =
∑
i∈Sj

εji (k) +
∑
κ∈Sj

δjκ(k). (2)

2) When rj(k) > 0 and βj(k) < µ × B(k − 1):
In the following two circumstances a server can idle its
budget while its inner components are suffering from low
CPU allocation: i) when the server period and its inner
components periods are not aligned, ii) when the work-
load is decreased at the beginning of the control period
and increased later at the same control period. In these
circumstances the controller should provide more budget
to the application. To this end, we take the following steps
at each control event:

• The remaining workload rj(k) is calculated using
Equation 2.

• If rj(k) > 0 we overwrite the actual required
budget such that βj(k) = µ×Bj(k) + λ× rj(k).
This action means that whenever there is a budget
deficiency then the actual required budget was
λ× rj(k) units more than the previously assigned
budget. Since βj(k) is used for estimating the fu-
ture workload, this overwriting the history indeed
is a signal to the controller to increase the budget
for Ψk+1.

F. Estimating the future workload

In Equation 1 we assume that we know the next
workload, however, in reality we have no information
about the next workload and predicting the exact amount of
the workload is rather difficult. Inspired by the AQuoSA
framework [9], we use a workload predictor component
that estimates the next workload and based on that predic-
tion we assign a budget to the applications. Figure 6 shows
the CPU utilization percentage (U %) at each server period
by applications in the case-study used in our evaluations
in Section V. For instance A3 is composed of three tasks
that have dynamic CPU demands. Note that to capture this
figure we have assigned almost 100 % of the CPU time
to the applications, in order to observe the CPU demand
of these applications. The figure depicts large variations
in the CPU demand which in practice makes the job of
the workload estimator component difficult. When there
is only one task in an application, and we can model the
task execution, then the model can be used in predicting
the future workload. However, when increasing the number
of tasks in each application then the execution pattern
becomes more fuzzy and the workload prediction becomes
more difficult.

Our approach for estimating the future workload is
based on the assumption that the future follows the trend
of the past. Of course when the future is totally different
compared to the past (e.g., an application or a task leaves
or joins the system), then our estimator will make mistakes
and the system may suffer for a while until the estimator
makes “good enough” estimations. We model the CPU
demand of the tasks using the Autoregressive (AR) model,
therefore considering h previous βj(k) we have:

bj(k) =

k−1∑
k−h

wkβj(k) + ek, (3)

where wk is the weight of observation k and ek is Gaussian
white noise.

G. Dealing with overload situations

The budget controller first calculates the available bud-
get avjκ for its application by excluding the bandwidth of
the other applications from the bandwidth of its parent αj :

avjκ = αj −
∑

q∈Aj∧q 6=κ

αq.

Assuming that we use EDF at the root level, the total
bandwidth at the root level is 1. The controller also
calculates the maximum possible budget majκ by only
excluding the bandwidth of higher importance applications
from its parent’s bandwidth:

majκ = αj −
∑

q∈Aj∧ζq>ζκ

αq.

Afterwards, based on Equation 1, the budget controller
computes a new budget for applications newjκ. Then the
following three situations can happen:

1) newjκ ≤ avjκ: The controller assigns the new budget
to Aκ: Bjκ(k) = newjκ.

2) avjκ < newjκ ≤ majκ: The controller assigns the
new budget to the application (Bjκ(k) = newjκ) but
it compensates ∆B = Bjκ(k) − avjκ by taking the
bandwidth from lower importance applications. The
budget stealing process is done in the reverse order
of the application importances.

3) newjκ > majκ: The controller assigns majκ to the
application (Bjκ(k) = majκ) and similar to case (2) it
compensates ∆B by stealing budget from the lower
importance applications.

The aim behind stealing budget from lower importance
applications is to make sure at each k we have:∑

j∈Ar
αj ≤ 1.

Example 1: Assume a system composed of three SRT
applications A1, A2 and A3 where ζ1 > ζ2 > ζ3,
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P1 = P2 = P3 = 10, B1(k − 1) = 5, B2(k − 1) = 3
and B3(k − 1) = 2. At control event k the controller
decides to increase the budget of A2 to four. Therefore, we
have: new2 = 4, av2 = 3 and ma2 = 5. In this situation,
the controller assigns B2(k) = new2 = 4 and decreases
∆B = 1 from B3(k), hence, we will have B1(k) = 5,
B2(k) = 4 and B3(k) = 1.

H. Mode change

The act of adapting the application budgets can be seen
as changing the system mode where in one mode the
system has a set of budgets associated with the applications
and in the next mode a new set of budgets are assigned
to the applications. When adapting the budget of SRT ap-
plications, we should make sure that the HRT applications
are not influenced by the adaptation. In this subsection we
present a potential hazard that adapting the budget of SRT
applications can create and we propose two approaches to
address this problem.

Example 2: Assume a system composed of an HRT
application (A1) and two SRT applications (A2 and A3)
which all share the same period P1 = P2 = P3 = 10. The
schedule of this system is depicted in Figure 4. The initial
budgets are as follows: B1 = 5, B2 = 3 and B3 = 2,
however, at time tM the controller decides to change the
budgets as follows: B2 = 2 and B3 = 3. As a result
of this adaptation, B1 which is an HRT application does
not receive its five budget units in time. This example
shows that although we do not change the budget of
HRT applications, adapting SRT application budgets (if
not done carefully at right moments) may affect the HRT
applications.

1) Using only one SRT application at the root level:
A simple way to avoid this problem is to have only one
SRT node at the root level (As) and make sure that Bs ≤
U ′ × Ps where assuming EDF at the root level

U ′ = 1−
∑
j∈Ahrt

αj ,

and Ahrt is the set of all HRT applications at the root level
of the hierarchy.

2) Mode change protocol: If we use more than one SRT
application at the root level, then the budgets should be
updated based on a protocol that guarantees safe mode
changes. In multi-mode real-time system literature [13]
there are two types of protocols: i) synchronous protocols
in which the new-mode tasks are not released until the
old-mode tasks are finished ii) asynchronous protocols
where both the old-mode and the new-mode tasks can run
together. Type (i) protocols guarantee the mode change by
introducing offset value for the release of the new-mode
tasks. This offset is not desirable in our framework since
our objective is to achieve the best possible performance.
In type (ii) protocols, schedulability analysis is used to
check whether the mode change is safe or not. However,
we present a protocol that does not introduce offsets for
release of servers, and by following that the mode change
is guaranteed to be done safely.

Assuming that we use EDF as our global scheduler,
first we should show that the system is schedulable in
all modes. Hence, the first condition for a safe budget
adaptation is that the controller adapts the budgets in such
a way that:

∀ k
∑
j∈Ar

Bj(k)

Pj
≤ 1.

However, since the utilization of HRT applications is fixed
we can exclude it and only check the condition for the
utilization of the SRT application. Therefore:

Condition 1:

∀ k
∑
j∈Asrt

Bj(k)

Pj
≤ U ′.

We should also make sure that the transition is safe,
hence, assuming that the mode change happens at time
tM , we should show that in all time windows (t0, t1] where
t1 − t0 = L and t0 < tM < t1, the following condition
holds:

Condition 2:

dbf(Asrt, L) ≤ U ′ × L,

where dbf returns the demand bound function of its input
application set and its input duration. Given that we know
the budgets in each mode, we can find an upper bound for
dbf:

dbf(Asrt, L) ≤ L×
∑

j∈Asrt ∧ k∈(t0,t1]

max
(
Bj(k)

)
Pj

.

Consequently, it is sufficient to show:

∑
j∈Asrt ∧ k∈(t0,t1]

max
(
Bj(k)

)
Pj

≤ U ′.



Since we use periodic servers it is safe to evaluate time
windows with the following length range:

0 ≤ L ≤ LCM(Asrt),

where LCM returns the least common multiple of the
periods of its input set. The LCM might be a large number,
therefore similar to [14] we can find a smaller range for
L. However, this problem is out of the scope of this paper.
Condition 2 reflects the fact that in the transition mode, the
demand depends on the maximum of the budgets assigned
in all modes.

We enforce Condition 1 by applying the overload con-
trol mechanism as explained earlier in this section. As a
result, we only need to address Condition 2 in our mode
change protocol.

The Decrease, Wait, Increase (DWI) protocol: In each
mode change there are two types of changes: i) the budget
of some applications should get increased (Ainc) ii) the
budget of some other applications should get decreased
(Adec). We immediately apply the budget decreases, then
we wait for LCM of Asrt periods, finally we apply the
budget increases. Note that the DWI protocol does not
delay the release of the servers and it only delays the
budget increases.

Lemma 1: The DWI protocol fulfills Condition 2.

Proof: We prove the lemma by contradiction. Assume
that the system is changing its mode from mode one with
budget Bj to mode two with budget B′j , and also assume
that Condition 2 does not hold, hence:

∃ W
∣∣∣W ≤ LCM(Asrt)∧

∑
j∈Asrt∧k∈W

max
(
Bj(k)

)
Pj

> U ′.

Given that Condition 1 holds in both modes:

∃ W , i , j , k , k′
∣∣∣W ≤ LCM(Asrt) ∧ k, k′ ∈ W

∧Bdecj (k) = Bj ∧ Binci (k) = B′i,

however, according to the DWI protocol there is at least
LCM(Asrt) time unites distance between Bj and B′i and
they can not happen in the same W . Hence, Lemma 1 is
proved.

IV. Implementation

Inspired by [15] we have implemented our adaptive
hierarchical scheduling framework as a Linux kernel load-
able module. We first load our module in the Linux kernel
and then each application needs to register itself to the
module. Our framework supports any arbitrary levels of
periodic servers hierarchy in which each server has its
independent ready queue i.e, the local schedulers of the
servers may be different. We support both EDF and FP

scheduling algorithms 1. We have a data structure for
storing task and server information. There is a one to one
relation between the Linux tasks and the tasks defined in
our framework.

In summary, the user first needs to define the structure
(tasks, servers and their position in the hierarchy) of the
target hierarchical system using a number of API functions.
Thereafter, when a task attaches itself to one of the prede-
fined tasks in our loadable module, the module changes its
scheduling policy to “SCHED FIFO”. Whenever the task
has to run, using “wake up process(task)” the module runs
the task and whenever the task has to stop by changing its
state to “TASK UNINTERRUPTIBLE” it is stopped.

Since we assume a periodic task model, there is also
an API function that the tasks have to call whenever they
finish their execution period to inform the module that
they need to sleep until their next release. We use the
“timer list” structure in the Linux kernel to handle the
scheduling events such as server release, server budget
depletion and task release.

The controller is also implemented as a function in the
kernel loadable module. At each server release event the
controller function is called and based the value of µ it
either directly returns or adapts Bj .

A. Monitoring the controlled parameters

When running servers and tasks we store the start
time in their corresponding data structure. When stopping
them, we calculate the distance between the stop time and
the start time. In doing so we update β of their parent
application. When a task is stopped (it is either end of its
job or a preemption), we compare the stopped time by its
deadline. If the deadline is missed we update the value of
εi, otherwise, we only update their parent β.

V. Evaluation

In this section we evaluate our framework by conduct-
ing a case-study. We first present the tasks and the system
used for the case-study, and then we present the results.

A. Tasks

We use two types of tasks that have highly varying
execution times: i) MPlayer video player 2 ii) image
processing task developed using openCV libraries which
basically filters a range of colors of its input video. On the

1In the case of using FP scheduling algorithm, the overload control
mechanism should be modified such that the EDF utilization bound is
replaced by the FP utilization bound in the equations.

2http://www.mplayerhq.hu



Hard-Soft Type Pj − T ji Bj(0)
S1 HRT server - 100 40
τ1
1 HRT task static 200 -
S2 SRT server - 10 6
S3 SRT server - 20 8
τ2
1 SRT task MPlayer 40 -
τ2
2 SRT task image processing 200 -
τ2
3 SRT task image processing 250 -
S4 SRT server - 100 20
τ3
1 SRT task image processing 350 -
τ3
2 SRT task image processing 200 -

TABLE I. Specification of servers and tasks
of the case-study.

other hand for simulating tasks with constant execution
times we use a C program with a loop that increments
a variable a each iteration. This type of tasks is called a
“static task”.

B. Evaluation setup

We use Ubuntu 12.04.2 with Linux kernel version 3.8.2
on an Intel CORE i5 processor in which only CPU 0 is
active. The scheduler resolution (system tick) is set to one
milliseconds.

The weight values in the workload predictor component
(Equation 3) are all set to 1/h. We set ek = 1/2 ×
std(βj(k), h) where std returns the standard deviation of
its h previous βj(k). Since the controller has negligible
overhead (see Section V-D) we set µ = 1. Based on the
suggestion in [4], the server periods are set to half of their
shortest inner component period.

C. Case study

In order to show the performance of our framework we
design a sample system consisting of four applications.
The structure of the sample system and its specification
are presented in Figure 5 and Table I respectively. The
period and initial budget values are all in milliseconds.
We assume that the applications are ordered based on their
importance, i.e, ζ3 > ζ4. Therefore, in overload situations
the controller will take bandwidth from A4 and give it
to A3. Note that we use different local schedulers in the
applications. We assume that the tasks in A4 are ordered
according to their priority, i.e, pr41 > pr42 .

The workload variations for A1, A3 and A4 are shown
in Figure 6. In the figure we show the percentage of
the CPU demand (U) by each application. For getting
these values we have executed the applications alone and
measured their CPU demand. Therefore when composing
all of them, their peaks in CPU utilization might match
at some points in time and cause overload situation. In
addition to the execution time changes there is another
source of workload variations in the sample system. τ33

CPU
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2

EDF Scheduler

EDF SchedulerEDF Scheduler

S
3

EDF Scheduler

S
4

FPS Scheduler

τ1

1

τ3

1
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τ3

1
τ4

1
τ4
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Fig. 5. Structure of the sample system used
in the case-study.

and τ41 leave the system after around 62 and 104 seconds
respectively which causes a drop in the workload of their
applications, and hence the budget of the application is
decreased by the budget controller (see Figure 7).

We ran the system for two minutes and here we report
the results for different configurations. Table II shows the
Deadline Miss Ratio (DMRj) and the average bandwidth
(αj) ofAj for different values of h. Recall from Equation 3
that the predictions of the workload estimator is based
on h previous observations. The DMRj is calculated by
dividing the sum of job deadline misses of the tasks in an
application by the total number of completed jobs in the
same application. The results suggest that for h ≥ 3 the
estimator component is able to make acceptable predictions
and hence the system reaches an overall deadline miss ratio
less than nine percent. For h ≥ 3 there is no significant
changes, however, h = 10 gives slightly better deadline
miss ratio. At the same h value αj is also minimum
among other configurations. Note that lower αj means that
the budget controller has assigned tighter budgets. When
the applications have tighter budgets, then the admission
control may accept more applications into the system and
the lower importance SRT applications may receive more
bandwidth if they need.

Figure 7 shows the bandwidth adaptation of the two
SRT applications that are inside A2. Note that A2 is also
adapting its bandwidth, however, since its children require
all U ′ bandwidth most of the time, B2 is almost fixed
during the two minutes experiment.

For a group of real-time tasks, even missing the deadline
point may be acceptable if the tasks finish their job
execution close enough to their deadline point. To this end,
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h server DMRj αj

1 S3 3.99 % 31.61 %
S4 52.43 % 14.91 %

2 S3 0.50 % 30.92 %
S4 20.01 % 15.57 %

3 S3 0.67 % 31.06 %
S4 8.89 % 16.55 %

5 S3 0.20 % 32.15 %
S4 9.12 % 18.00 %

10 S3 0.12 % 30.88 %
S4 8.12 % 17.79 %

20 S3 0.39 % 31.61 %
S4 8.89 % 18.10 %

TABLE II. DMRj and αj of the case-study.

we use the notion of job tardiness (Θi) [16] which shows
the distance of a job deadline point and its execution end
time. Note that Θi < 0 means that the task has missed its
deadline while Θi ≥ 0 means that the task has finished
its execution in time. Figure 8 shows the tardiness of all
tasks in the case-study during the two minutes experiment.
Note that τ33 and τ41 leave the system before the experiment
finishes. The figure illustrates that in the higher importance
applicationA3, τ31 experience the worst tardiness, however,
Θ3

1 ≥ −40 which means that in the worst case a video
frame is decoded and displayed one frame later than its

originally supposed time (the task displays one frame each
40 milliseconds which results in 25 frame per second).

Now assume that before running the system we already
know the average required bandwidth of each application.
From Table II we observe that in the best case αav3 ' 31 %
and αav4 ' 18 %. Based on these bandwidth estimations,
in another experiment with the exactly same setting as the
first experiment we assign fixed budgets for the applica-
tions. The result is a 0.67 % deadline miss ratio for A3

while a 30.23 % deadline miss ratio for A4. Note that since
A3 has shorter deadline than A4 it is more likely that A3

will be the winner when competing withA4 to get the CPU
(their parent scheduler is EDF). This experiment reveals
that even with the knowledge of the average workload,
the bandwidth adaptation is a necessity due to workload
variations.

D. Overhead of the adaptation

We have measured the overhead of calling the controller
function at each server release event. The overhead in
average is around one microsecond per each function call.
The changes of overhead for 1 ≤ h ≤ 20 is not significant.
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Fig. 8. Tardiness of the tasks.

Therefore, considering the sample system in the case-study
the total overhead is around 0.016 % of the CPU time.

VI. Conclusion

In this paper we presented a multi-level adaptive hierar-
chical scheduling framework in which based on feedbacks
from the system we assign adaptive CPU partition sizes to
soft real-time applications. We showed that by imposing a
negligible overhead (less than 0.02 % of the CPU time) we
are able to serve real-time applications (especially the more
important application) such that they reach an acceptable
deadline miss ratio.

We intend to extend our work to multiprocessor plat-
forms in which we will adapt the interface parameters of
the virtual clusters introduced in [17]. We also want to
study the use of more sophisticated workload estimator
components in our framework to examine whether we
could better serve the applications by more accurate work-
load estimations.
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