Handling multiple mode switch scenarios in component-based multi-mode systems

Yin Hang, Hans Hansson
Mälardalen Real-Time Research Centre
Mälardalen University
Västerås, Sweden
{young.hang.yin,hans.hansson}@mdh.se
June 13, 2013

Abstract

The growing complexity of embedded systems software entails new development techniques. Component-Based Software Engineering is undoubtedly suitable for the development of complex systems thanks to its inherent component reuse. Another approach to reduce software complexity is by partitioning the system behavior into different operational modes. Each mode is associated with a unique behavior and the system can change behavior by switching between modes. When such a multi-mode system is developed by reusable software components, a crucial issue is how to achieve a seamless composition of multi-mode components and also how to handle mode switch properly. As an integrated solution to the challenges of multi-mode component-based software system development we have proposed the Mode Switch Logic (MSL). The current version of MSL assumes independent handling of a single mode switch scenario, i.e. that no other mode switch is triggered until an ongoing mode switch is completed. For a wide class of systems, this is an unrealistic assumption. In this report we lift this assumption by proposing an extension of MSL to handle multiple mode switch scenarios concurrently triggered by different components.

1 Introduction

The software complexity of embedded systems is growing rapidly in recent years, imposing challenges on traditional developing techniques. As a consequence, there is a strong demand for new techniques to reduce software complexity. Among these new techniques, Component-Based Software Engineering (CBSE) [1] provides a promising paradigm for the development of complex systems, as it allows a system to be built by reusable components...
which can be independently developed. The success of CBSE has been evidenced by a number of component models proposed both in industry and academia [2] [3].

Apart from CBSE, another alternative to reduce software complexity is to partition system behavior into different operational modes. Such a multi-mode system usually runs in one of its supported modes and can switch to another mode under certain circumstances. A representative example is the control software of an airplane, which could run in the modes taxi (the initial mode), taking off, flight and landing. Different subsystems are running in different modes. For instance, the subsystem for controlling the wheels only runs in taxi mode whereas the navigation subsystem may only run in flight mode.

Combining CBSE and multi-mode systems, we get a Component-Based Multi-Mode System (CBMMS), i.e. a multi-mode system developed in a component-based manner. Figure 1 illustrates a conceptual CBMMS, with its component hierarchy on the left and its component connections on the right. The system, i.e. Component a, consists of three components: b, c and d. Component c is composed by e and f. According to the terminology of CBSE, we distinguish primitive components and composite components. A primitive component is directly implemented by source code whilst a composite component is composed by other components. In Figure 1, b, d, e and f are primitive components while a and c are composite components. Since the component hierarchy has a tree structure, a composite component and its subcomponents have a parent-and-children relationship. For instance, c is the parent of e and f, which in turn are the children of c. Moreover, the system can run in two modes: m_1^a and m_2^a. When the system is in m_1^a, Component d is deactivated (i.e. not running), shown in the component hierarchy in Figure 1 by not displaying d in mode m_1^a. In contrast, when the system is in m_2^a, d is activated while f is deactivated. Besides, Component b has different mode-specific behaviors represented by black and grey colors in Figure 1.

The predominant challenge that a CBMMS exhibits is its mode switch handling. Figure 1 implies that the mode switch of a system may amount to the joint mode switches of many different components at various levels. For instance, the mode switch from m_1^a to m_2^a requires the activation of d, the deactivation of f, and the behavior change of b. In order to overcome this challenge, we have developed a Mode Switch Logic (MSL) [4] [5], a systematic approach to the development of CBMMSs and its mode switch handling. In MSL, some component can detect a mode switch event and trigger a mode switch scenario that is propagated to some other components which may also switch mode as a consequence. Currently, MSL is limited by an assumption that only a single mode switch scenario is handled each time. However, in reality, it is possible that multiple scenarios are triggered simultaneously, thus leading to a conflict situation. The contribution of this
report is to handle multiple mode switch scenarios based on MSL.

The remainder of the report is organized as follows: Section 2 gives a brief introduction of MSL. In Section 3, a conflict handling mechanism is proposed for MSL to resolve the conflict due to the triggering of multiple mode switch scenarios. The correctness of the conflict handling mechanism is verified in Section 6. Related work is reviewed in Section 7. Section 8 concludes the report and discusses our future work.

2 The Mode Switch Logic

The Mode Switch Logic (MSL) includes three major elements: (1) a mode-aware component model; (2) a mode mapping mechanism; and (3) a mode switch runtime mechanism. The focus of this paper is on the mode switch runtime mechanism which is extended to cope with multiple mode switch scenarios.

The mode-aware component model defines essential features for a component to be mode-aware. Depicted in Figure 2, a component can support multiple modes, each of which represents a unique configuration. The mode switch of an individual component is realized by reconfiguration, viz. changing its configuration in the current mode to the configuration in the new mode. Furthermore, to enable cooperative mode switch, dedicated mode switch ports are introduced for the cross-layer communication in the component hierarchy. A multi-mode primitive component has a dedicated mode switch port p_{MSX}, which is used to exchange mode related information with its parent during a mode switch. A multi-mode composite component has two dedicated mode switch ports: apart from p_{MSX}^{MSX} that has the same role as for primitive components, the other one is p_{MSX}^{MSX}, used to exchange mode
related information with its subcomponents during a mode switch. The dedicated mode switch ports are marked in blue in Figure 2.

Figure 2: The mode-aware component model

The mode mapping mechanism describes the mode correlation between different components in a compositional manner. Given the current mode of a component at runtime, mode mapping can tell the current modes of other components. In addition, it also determines the new modes of different components when a mode switch is taking place. More details of the mode-aware component model and the mode mapping mechanism can be found in [4].

The mode switch runtime mechanism coordinates the mode switches of different components at runtime. It defines the following roles:

- **The Mode Switch Source (MSS):** a (primitive or composite) component which can detect a mode switch event (e.g., the value of a sensor reaches a threshold) and actively request to switch mode by triggering a mode switch scenario that can be denoted as $c_k : m_{i_{c_k}} \rightarrow m_{j_{c_k}}$, i.e., an MSS c_k requests to switch mode from its current mode $m_{i_{c_k}}$ to the target mode $m_{j_{c_k}}$. We hereafter shall use "scenario" to indicate "mode switch scenario”.

- **The Mode Switch Decision Maker (MSDM):** a component which has the authority to approve or reject a mode switch scenario. This component is scenario-dependent and must be either directly or indirectly composed by the MSS that triggers the scenario. A mode switch is triggered only when the MSDM approves a scenario.

- **Type A/B components:** For a given scenario, a Type A component must switch mode as a consequence, while a Type B component should keep running in its current mode without being affected. Type A and Type B components are determined by mode mapping and are
scenario-dependent. In this paper, we use $T_{c_i} = A$ or $T_{c_i} = B$ to denote that c_i is a Type A or Type B component.

The mode switch runtime mechanism consists of a Mode Switch Propagation (MSP) protocol and a mode switch dependency rule. The MSP protocol propagates a scenario to all Type A components without affecting Type B components. The MSDM is also identified by the MSP protocol for a specific scenario. If the MSDM approves a scenario by triggering a mode switch, the mode switch dependency rule guarantees the mode consistency between different components upon each mode switch completion.

The MSP protocol to some extent resembles the 2-phase commit protocol for distributed database [6], as a mode switch is triggered when all Type A components are ready to switch mode. For a component c_k, let S_{c_i} denote that the current state of c_i allows a mode switch, and let $\neg S_{c_i}$ denote that the current state of c_i does not allow a mode switch. Also, let P_{c_i} be the parent of c_i and Top be the top component in the component hierarchy.

Now consider a scenario triggered by an MSS c_i, with c_j as the MSDM and C_M as the set of vertically intermediate components between c_i and c_j in the component hierarchy. We slightly extend the MSP protocol presented in [4] as follows:

Definition 1. The Mode Switch Propagation (MSP) protocol: When c_i detects a mode switch event, it will request to switch mode by triggering a scenario. If $c_i \neq Top$, c_i will issue an MSR (Mode Switch Request) primitive which is sent to P_{c_i}, eventually reaching c_j through C_M. The MSDM c_j is identified upon receiving the MSR under three conditions; (1) $T_{c_j} = B$; (2) $T_{c_j} = A$ and $\neg S_{c_i}$; (3) $T_{c_j} = A$ and S_{c_k} and $c_j = Top$. For each $c_k \in C_M$, identified when $T_{c_k} = A$ and S_{c_k} upon receiving the MSR, c_k forwards the MSR to P_{c_k}. The MSDM c_j makes the following decisions:

- In Condition (2), c_j will reject the MSR by issuing an MSD (Mode Switch Denial) primitive that is propagated back to c_i via C_M. Mode switch propagation is terminated when c_i receives the MSD and no component will switch mode.

- In conditions (1) and (3), c_j will approve the MSR by issuing an MSQ (Mode Switch Query) primitive that is propagated downstream and stepwise to all Type A components. After receiving an MSQ, a component c_k is required to reply to P_{c_k} with either an MSOK or MSNOK primitive. Component c_k replies with an MSOK if S_{c_k} (and all its Type A subcomponents reply with an MSOK if c_k is composite). Otherwise, if $\neg S_{c_k}$, c_k will reply with an MSNOK (without propagating the MSQ downstream further if c_k is composite). If c_k receives at least one MSNOK from a subcomponent, it will also reply with an MSNOK.
- If all the Type A subcomponents of \(c_j \) have replied with an MSOK, \(c_j \) will trigger a mode switch by issuing an MSI (Mode Switch Instruction) primitive that follows the propagation trace of the MSQ. Mode switch propagation is completed when all Type A components have received the MSI. In contrast, if \(c_j \) receives at least one MSNOK, it will abort the mode switch plan by issuing an MSD that follows the propagation trace of the MSQ. Mode switch propagation is terminated when all Type A components have received the MSD and no component will switch mode.

If \(c_i = \text{Top} \), then \(c_j = c_i \) and \(C_M = \emptyset \). When \(c_i \) detects a mode switch event, it will directly issue an MSQ to its Type A subcomponents.

The difference between the MSP protocol in [4] and the extended MSP protocol above is only the way of directly rejecting an MSR. In the old version, an MSDM does nothing when it directly rejects an MSR, whereas in the extended version here, an MSD must be sent back from the MSDM all the way down to the MSS if the MSR is directly rejected. This extension serves as an initial purpose for the handling of multiple scenarios.

When an MSDM triggers a mode switch by issuing an MSI, all Type A components will switch mode after its MSI propagation, following the mode switch dependency rule, which specifies the conditions of mode switch completion:

Definition 2. The mode switch dependency rule: Let \(c_j \) be the MSDM for a mode switch scenario and \(c_j \) triggers a mode switch by issuing an MSI that is propagated downstream and stepwise to all Type A components. Then,

- For any primitive component \(c_i (T_{c_i} = A) \), \(c_i \) starts its mode switch by reconfiguring itself upon receiving an MSI. The mode switch completion of \(c_i \) equals its reconfiguration completion. An MSC (Mode Switch Completion) primitive will be sent from \(c_i \) to \(P_{c_i} \) when \(c_i \) completes its mode switch.

- For any composite component \(c_i (T_{c_i} = A) \), \(c_i \) starts its mode switch by reconfiguring itself after its MSI propagation. Component \(c_i \) completes its mode switch when it completes its reconfiguration and it has received an MSC from all its Type A subcomponents. After that, if \(c_i \neq c_j \), an MSC will be sent from \(c_i \) to \(P_{c_i} \) after \(c_i \) completes its mode switch.

- If \(T_{c_j} = A \), the system mode switch is completed after the mode switch of \(c_j \). Otherwise, if \(T_{c_j} = B \), the system mode switch is completed after \(c_j \) has received an MSC from all its Type A subcomponents.

The mode switch dependency rule guarantees that all Type A components must be running in their new modes after the mode switch completion of a system, which is a key property ensuring mode consistency.
The mode switch runtime mechanism, chiefly represented by the MSP protocol and the mode switch dependency rule, can be demonstrated by a complete mode switch process illustrated by Figure 3 based on the example in Figure 1. In Figure 3, c triggers a scenario by issuing an \texttt{MSR} as an MSS. The \texttt{MSR} from c is sent to its parent a which is the MSDM of this scenario. Component a approves the \texttt{MSR} by issuing an \texttt{MSQ} that is propagated to all Type A components. It should be noted that e is a Type B component, thus not affected by this scenario. After receiving the \texttt{MSQ}, each Type A component checks its current state. Here the current state of each Type A component allows a mode switch, therefore an \texttt{MSOK} is sent back in response to \texttt{MSQ}. Once the MSDM a receives the \texttt{MSOK} from its Type A subcomponents b, c and d, it will trigger a mode switch by issuing an \texttt{MSI} that follows the propagation trace of the \texttt{MSQ}. The propagation of \texttt{MSI} results in the reconfiguration of each Type A component, represented by black bars in Figure 3. Finally, \texttt{MSC} primitives are sent bottom-up to indicate mode switch completion. The white bars mean that the mode switch of a composite component is blocked by its subcomponents, i.e. a composite component has completed its reconfiguration but is still waiting for at least one \texttt{MSC}. Since the MSDM a is a Type A component, the system mode switch is completed upon the mode switch completion of a.

Figure 3: A complete mode switch process
3 The handling of multiple mode switch scenarios

The mode switch runtime mechanism presented in Section 2 assumes that no new scenarios are triggered until the current scenario is completely handled. However, it is likely that a system has multiple MSSs potentially triggering concurrent scenarios. In this section, we propose a conflict handling mechanism to cope with multiple scenarios based on the following assumptions:

1. An ongoing mode switch cannot be aborted or rolled back.
2. An MSS will not trigger a new scenario until the current scenario triggered by itself is completely handled.
3. There is no mode switch failure.

In essence, the conflict handling mechanism introduces separate queues for storing incoming MSR and MSQ and updates these queues according to a set of pre-defined criteria.

3.1 MSR and MSQ queues

When multiple scenarios are considered, each component must be able to distinguish different scenarios. Hence we introduce the concept (mode switch) scenario ID:

Definition 3. Mode switch scenario ID is a unique ID of a scenario $c_k : m^i_{ck} \rightarrow m^j_{ck}$. Any MSX primitive must carry a (mode switch) scenario ID x that it is associated with, denoted as msx^x.

For a system where concurrent scenario triggering is allowed, each component may receive multiple primitives simultaneously or within a short interval, each primitive being associated with a specific scenario. Since a component can only handle a single primitive each time, other primitives must be buffered somewhere to be handled afterwards. Therefore, we introduce MSR and MSQ queues. For a CBMMS, let PC be the set of its primitive components and let CC be the set of its composite components. We also use \tilde{CC} to denote the set of composite components excluding Top. Let SC_{c_i} be the set of subcomponents of a composite component c_i. Furthermore, let $T^A_k = A$ or $T^B_k = B$ denote that c_i is a Type A or Type B component for Scenario k and let $SC^A_{c_i}(k)$ denote the set of Type A subcomponents of c_i for k, then:

Definition 4. An MSR queue of c_i, denoted as $c_i.Q_{msr}$, is a FIFO queue storing any incoming MSR from SC_{c_i} (and from c_i itself if c_i is an MSS and $c_i \neq Top$). An MSR in this queue is denoted as msr^k, or $msr^k_{c_j}$ where k is the scenario ID and $c_j \in SC_{c_i} \cup \{c_i\}$ is the immediate sender of this MSR.
Whenever c_i receives an MSR from a subcomponent or decides to trigger a scenario by issuing an MSR ($c_i \neq \text{Top}$) as an MSS, the MSR will be enqueued in $c_i.Q_{msr}$. Conversely, an MSR $msr_{c_j}^k$ is dequeued from $c_i.Q_{msr}$ when any one of the following conditions is satisfied:

1. c_i completes its mode switch based on scenario k ($T_{c_i}^k = A$).
2. c_i has received an MSC from all $c_j \in SC_{c_i}^A(k)$ ($T_{c_i}^k = B$).
3. c_i receives a msd^k ($c_i \in PC \cup SC_{c_i}^A(k) = \emptyset$).
4. c_i has propagated a msd^k to $SC_{c_i}^A(k)$ ($SC_{c_i}^A(k) \neq \emptyset$).

In addition to the MSR queue, MSQ queue is defined in a similar fashion:

Definition 5. An MSQ queue of c_i, denoted as $c_i.Q_{msq}$, is a FIFO queue storing an incoming MSQ from P_{c_i} (or from c_i itself if c_i is an MSS and $c_i = \text{Top}$). An MSQ in this queue is denoted as msq^k where k is the scenario ID.

Whenever c_i receives an MSQ from P_{c_i} or decides to trigger a scenario by issuing an MSQ ($c_i = \text{Top}$), the MSQ is enqueued in $c_i.Q_{msq}$. The dequeuing conditions of an msq^k in $c_i.Q_{msq}$ are exactly the same as those of the $msr_{c_j}^k$ in $c_i.Q_{msr}$.

Based on the definition of MSR/MSQ queues together with their enqueuing and dequeuing conditions, we propose the MSR/MSQ queue checking rule and MSR/MSQ queue updating rule, which constitute our conflict handling mechanism.

3.2 The MSR/MSQ queue checking rule

The MSR/MSQ queue checking rule includes two additional prerequisite terms: transition state and locked MSR:

Definition 6. A component c_i is in a transition state within the interval $[t_1, t_2]$ for Scenario k, where

- If $c_i \in PC$, t_1 is the time when c_i handles a msq^k from P_{c_i}, while t_2 is the time when the dequeuing conditions (1) or (3) are satisfied for either $c_i.Q_{msr}$ or $c_i.Q_{msq}$ for k.
- If $c_i \in \overline{PC}$, t_1 is the time when (1) c_i issues a msq^k to $SC_{c_i}^A(k)$ as an MSDM; or (2) c_i handles a msq^k from P_{c_i}. In addition, t_2 is the time when one of the dequeuing conditions (1)-(4) is satisfied for either $c_i.Q_{msr}$ or $c_i.Q_{msq}$ for k.

9
If \(c_i = \text{Top}\), \(t_1\) is the time when \(c_i\) issues an msq\(^k\) to \(SC_i^A(k)\), while \(t_2\) is the time when the dequeuing conditions (1), (2), or (4) are satisfied for either \(c_i.Q_{msr}\) or \(c_i.Q_{msq}\) for \(k\).

Definition 7. An MSR in \(c_i.Q_{msr}\) is locked if it has been forwarded by \(c_i\) to \(P_{c_i}\).

Based on the aforementioned definitions, the MSR/MSQ queue checking rule is described as follows:

Definition 8. The MSR/MSQ queue checking rule: If \(c_i\) is not in transition state, then: If \(c_i.Q_{msq} \neq \emptyset\), the first MSQ in \(c_i.Q_{msq}\) will be immediately handled, else if \(c_i.Q_{msr} \neq \emptyset\) and the first MSR in \(c_i.Q_{msr}\) is not locked, the first MSR will be immediately handled. The handling of the MSQ or MSR follows the mode switch runtime mechanism presented in Section 2.

The MSR/MSQ queue checking rule enables a component to handle multiple scenarios sequentially. When a component is in transition state for Scenario \(k\), it is dedicated to the handling of \(k\) until it leaves the transition state, i.e. when it has completely handled \(k\). By this means, its handling of \(k\) can never be interfered by the arrival of another scenario \(k'\) which is simply enqueued and handled afterwards.

3.3 The MSR/MSQ queue updating rule

The MSR/MSQ queue checking rule alone is still insufficient to handle multiple scenarios correctly, as it is unaware of the impact of a scenario upon other pending scenarios, implicitly assuming that different scenarios are independent of each other. Nevertheless, after a component completes its mode switch for Scenario \(k\), if \(\exists m_{sr}\) in \(c_i.Q_{msr}\) for \(c_j \in SC_{c_i} \cup \{c_i\}\), \(m_{sr}\) may not be valid any more. This problem can be illustrated by a small example. Let’s consider a system with its component hierarchy presented in Figure 1. Tables 1 and 2 give the basic mode mappings of the two composite components \(a\) and \(c\). In each table, modes in the same column are mapped. For example, according to Table 1, when \(a\) is running in mode \(m^1_a\), \(b\) must be running in \(m^1_b\), \(c\) can run in either \(m^1_c\) or \(m^2_c\), and \(d\) is deactivated. Figure 4 depicts three scenarios: (1) \(S_1 = (b : m^1_b \rightarrow m^2_b)\); (2) \(S_2 = (e : m^1_e \rightarrow m^2_e)\); (3) \(S_3 = (f : m^1_f \rightarrow m^2_f)\). For \(S_1\) and \(S_3\), all components are Type A components, whilst for \(S_2\), only \(c\) and \(e\) are Type A components. For each scenario, the current possible mode and the target mode of each Type A component are also defined in Figure 4. For instance, for \(S_1\), \(m^1_f \rightarrow m^2_f\) means that \(S_1\) will imply the mode switch of \(f\) from \(m^1_f\) to \(m^2_f\). The given mode mappings imply that when \(b\) is running in \(m^1_b\), \(e\) can be in either \(m^1_e\) or \(m^2_e\) while \(f\) must be running in \(m^1_f\). Therefore, all three scenarios can be simultaneously triggered.
Table 1: The mode mapping table of \(a \)

<table>
<thead>
<tr>
<th>Component</th>
<th>Supported modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(m^1_a)</td>
</tr>
<tr>
<td>(b)</td>
<td>(m^1_b)</td>
</tr>
<tr>
<td>(c)</td>
<td>(m^1_c)</td>
</tr>
<tr>
<td>(d)</td>
<td>Deactivated</td>
</tr>
</tbody>
</table>

Table 2: The mode mapping table of \(c \)

<table>
<thead>
<tr>
<th>Component</th>
<th>Supported modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)</td>
<td>(m^1_c)</td>
</tr>
<tr>
<td>(e)</td>
<td>(m^1_e)</td>
</tr>
<tr>
<td>(f)</td>
<td>(m^1_f)</td>
</tr>
</tbody>
</table>

Figure 4: Mode switch scenarios

Suppose \(S_1 \) and \(S_3 \) are triggered at the same time. Then \(b \) and \(f \) will issue two different MSR primitives (say \(msr^{S_1} \) and \(msr^{S_3} \)) simultaneously. The MSP protocol indicates that \(a \) is the MSDM for both scenarios. After some time, a possible outcome is that \(msr^{S_1} \) arrives at \(a.Q_{msr} \) earlier than \(msr^{S_3} \). Applying the MSR/MSQ queue checking rule, \(a \) will first handle \(msr^{S_1} \). Suppose a system mode switch is successfully performed based on \(S_1 \). Upon mode switch completion, \(msr^{S_1} \) is dequeued from \(a.Q_{msr} \) and \(a \) is supposed to handle \(msr^{S_3} \). However, all components are Type A components for \(S_1 \), including the MSS of \(S_3 \); \(f \), whose current mode has become \(m^2_f \) rather than \(m^1_f \), will then be handled by \(a \).
than m_f^j. As a consequence, S_3 is no longer valid because it can only be triggered when the current mode of f is m_f^j. A reasonable action regarding such an invalid scenario would be to remove all the pending MSR primitives associated with S_3, including $msr^{S_3}_c$ in $a.Q_{msr}$, $msr^{S_3}_f$ in $c.Q_{msr}$, and $msr^{S_3}_f$ in $f.Q_{msr}$.

Sometimes a pending scenario may still remain valid in spite of the mode switch completion of another scenario. Suppose S_2 and S_3 are simultaneously triggered. A possible outcome is that msr^{S_2} arrives at $c.Q_{msr}$ earlier than msr^{S_3}. Evidently, c will first handle msr^{S_2}. If a mode switch is performed and completed based on S_2, the pending scenario S_3 is still valid because f (the MSS of S_3) is a Type B component for S_2 and is unaffected by S_1. In this case, the pending MSR primitives $msr^{S_3}_f$ in $c.Q_{msr}$ and $msr^{S_3}_f$ in $f.Q_{msr}$ should not be removed without handling.

Unfortunately, after each mode switch, it is impossible for each component to tell if a pending scenario is valid or not. The reason is that only an MSS itself knows that it is the MSS of a scenario (in order not to break component encapsulation). However, it is viable for each component to tell whether a pending MSR in its MSR queue is valid or not, guided by our MSR/MSQ queue updating rule:

Definition 9. The MSR/MSQ queue updating rule: Consider a component c_i and a scenario k. After the mode switch completion of c_i based on k ($T_{c_i}^k = A$) or after c_i has received an MSC from all $c_j \in SC_{c_i}(k)$ ($c_i \in CC, T_{c_i}^k = B$),

- If $c_i \in PC$, then $T_{c_i}^k = A$. If $\exists msr_{c_i}^{k'} \in c_i.Q_{msr}$ ($k' \neq k$), then c_i must be the MSS of k'. Hence c_i will remove $msr_{c_i}^{k'}$ from $c_i.Q_{msr}$.

- If $c_i \in CC$, a pending MSR in $c_i.Q_{msr}$ can derive from either c_i or $c_j \in SC_{c_i}$. If $\exists msr_{c_i}^{k'} \in c_i.Q_{msr}$ ($k' \neq k$), then (1) if $T_{c_i}^k = A$, then $msr_{c_i}^{k'}$ will be removed from $c_i.Q_{msr}$; (2) if $T_{c_i}^k = B$, then $msr_{c_i}^{k'}$ will be kept in $c_i.Q_{msr}$. If $\exists msr_{c_j}^{k'} \in c_i.Q_{msr}$, then (1) if $T_{c_j}^k = A$, $msr_{c_j}^{k'}$ will be removed from $c_i.Q_{msr}$; (2) if $T_{c_j}^k = B$, $msr_{c_j}^{k'}$ will be kept in $c_i.Q_{msr}$. In Case (2), if $msr_{c_j}^{k'}$ is locked, c_i will handle it as a new MSR. As an exception, if $\exists msr_{c_j}^{k'} \in c_i.Q_{msr}$ which arrives while c_i is waiting for the MSC from SC_{c_i}, this $msr_{c_j}^{k'}$ will be kept for the current round of $c_i.Q_{msr}$ updating, even if $T_{c_j}^k = A$.

- If $c_i = Top$, $T_{c_i}^k = A$, and $\exists msq_{c_i}^{k'} \in c_i.Q_{msq}$, then $msq_{c_i}^{k'}$ will be removed from $c_i.Q_{msq}$.

The essence of the MSR/MSQ queue updating rule is to remove a pending MSR/MSQ which becomes invalid due to the mode switch of a previous scenario. It should be noted that the MSR/MSQ queue updating rule does
not remove any \(msr^k \) or \(msq^k \) since \(k \) is the currently handled scenario instead of a pending scenario. A \(msr^k \) or \(msq^k \) is dequeued when the dequeuing condition (see Section 3.1) is satisfied.

One may wonder why \(c_i \in \tilde{CC} \) does not remove a pending MSQ. It can be inferred that an incoming MSQ is pending in \(c_i.Q_{msq} \) only when \(c_i \) is in transition state. Otherwise, the MSQ will be immediately handled by \(c_i \). Suppose \(c_i \) is in transition state for Scenario \(k \), with a pending \(msq^k \) in \(c_i.Q_{msq} \). Then \(c_i \) must be the MSDM for \(k \). Otherwise, if \(c_i \) is not the MSDM for \(k \), \(P_{c_i} \) must also be in transition state for \(k \) and should not send \(msq^k \) until it leaves this transition state. Now that \(c_i \) is the MSDM for \(k \), components out of \(c_i \) must be all Type B components for \(k \). Therefore, \(k' \) must be valid and should not be removed.

Additional attention must be paid to the exception that \(c_i \) receives a \(msr^k \) from \(c_j \in SC_{c_i} \), while waiting for the MSC from \(SC_{c_i} \). Under this condition, \(msr^k \) is not removed from \(c_i.Q_{msr} \) even if \(T_{c_j}^k = A \). The reason is ascribed to the mode switch dependency rule which ensures that \(c_j \) must complete mode switch before \(c_i \). Hence \(msr^k \) must be sent after the mode switch of \(c_j \) based on \(k \) and must be valid.

3.4 Discussion

The MSR/MSQ queue checking rule assigns higher priority to MSQ queue than MSR queue such that MSQ queue is always checked before MSR queue. A potential problem of this priority assignment is the bias towards scenarios triggered by a component closer to Top. For instance, let’s compare two scenarios, \(k_1 \) and \(k_2 \), triggered by \(c_1 \) and \(c_2 \) respectively at the same time. Top is the MSDM for both scenarios and \(c_1 \) is much closer to Top. Since it takes more steps for \(msr^{k_2} \) to reach Top compared with \(msr^{k_1} \), \(k_1 \) is more likely to be handled by Top before \(k_2 \) despite their simultaneous triggering. When a component \(c_k \), with \(msq^{k_1} \) in \(c_k.Q_{msq} \) and \(msr^{k_2} \) in \(c_k.Q_{msr} \), checks its MSR/MSQ queues, \(msq^{k_1} \) will be first handled while \(msr^{k_2} \) may be even removed afterwards due to the MSR/MSQ queue updating rule.

However, \(\forall c_i \in \tilde{CC} \), since a pending MSQ will eventually be handled without the risk of being removed by the MSR/MSQ queue updating rule, it is better to assign higher priority to MSQ queue than the other way round. For instance, if \(\exists msq^k \in c_i.Q_{msq} \) and \(\exists msr^{k'} \in c_i.Q_{msr} \), the mode switch completion based on \(k \) may skip the subsequent handling of \(msr^{k'} \) due to the MSR/MSQ queue updating rule. Conversely, if \(msr^{k'} \) is first handled, \(msq^k \) will be handled later anyway. Therefore, assigning higher priority to MSQ queue can benefit more from the MSR/MSQ queue updating rule.
4 Analysis of the MSR/MSQ queue sizes

Section 3 has described how multiple scenarios can be handled by MSR and MSQ queues. Now the question is: Are MSR queue and MSQ queue always necessary for all components? And what about their queue sizes? The answers are as follows:

Theorem 1. For a component $c_i \in PC$, if c_i is never an MSS, c_i has no MSR queue; if c_i is the MSS of at least one scenario, c_i has an MSR queue with the maximum size 1.

Proof. An incoming MSR to be enqueued in the MSR queue of a component c_k can only come from SC_{c_k} (if $c_k \in CC$) or from c_k itself (if c_k is the corresponding MSS). Since $c_i \in PC$, $SC_{c_i} = \emptyset$, thus an MSR enqueued into $c_i.Q_{msr}$ can only come from c_i itself. If c_i is never an MSS, $c_i.Q_{msr}$ will always be empty, hence no MSR queue is needed. If c_i is the MSS of at least one scenario, c_i can enqueue an MSR issued by itself in $c_i.Q_{msr}$. Since it is assumed that an MSS does not trigger a new scenario before its current scenario is completely handled, c_i cannot enqueue another self-triggered MSR before the previous MSR issued by it is dequeued from $c_i.Q_{msr}$. Therefore, the maximum size of $c_i.Q_{msr}$ is 1.

Theorem 2. The maximum size of the MSQ queue of a component $c_i \neq Top$ is 2.

Proof. Consider a component c_i with an MSQ queue $c_i.Q_{msg}$. Let N be the number of elements in $c_i.Q_{msg}$ and $c_j = P_{c_i}$. When $c_i.Q_{msg} = \emptyset$, c_i can receive a msg^k from P_{c_i}. According to Definition 6, after sending msg^k to c_i, c_j must be in transition state for k. Apparently, c_j cannot send another MSQ to c_i before it leaves the transition state.

If a mode switch is performed based on k, the mode switch dependency rule specifies that c_i must complete mode switch before c_j. As c_i completes the mode switch for k, msg^k will be removed from $c_i.Q_{msg}$. Therefore, if c_j sends another MSQ $msg^{k'}$ to c_i right after c_j completes its mode switch for k, N will become 1 from 0. The condition will be the same as when c_i receives msg^k.

If k is rejected, c_j leaves transition state by sending a msd^k to c_i. Then c_i may leave transition state after it receives msd^k (if $c_i \in PC \lor SC_{c_i}^A(k) = \emptyset$), or after it propagates msd^k to $SC_{c_i}^A$ (if $SC_{c_i}^A(k) \neq \emptyset$). Since it may take some time for c_i to dequeue msg^k after it receives msd^k, if c_j immediately sends another MSQ $msg^{k'}$ to c_i as c_j leaves transition state, by the time c_i receives $msg^{k'}$, msg^k may have not been removed from $c_i.Q_{msg}$. Therefore, N can reach 2. By the time c_i leaves transition state for k and dequeues msg^k, N will become 1 while c_j must be in transition state for k' and cannot send another MSQ. Hence, c_j can never send any MSQ to c_i when $N = 2.$
The reasoning above proves that \(N \) cannot be bigger than 2, i.e. the maximum size of \(c_i.Q_{msq} \) is 2 when \(c_i \neq \text{Top} \).

Theorem 3. The maximum size of the MSQ queue of a component \(c_i = \text{Top} \) is 1.

Proof. Since \(c_i \) has no parent, \(c_i.Q_{msq} \) may only contain an MSQ issued by \(c_i \) itself as the MSS. Therefore, if \(c_i \) is never an MSS, there is no need to have \(c_i.Q_{msq} \). If \(c_i \) is the MSS of at least one scenario, \(c_i.Q_{msq} \) can never contain multiple MSQ primitives due to the assumption that an MSS will not trigger a new scenario until the current scenario triggered by itself is completely handled. Therefore, the maximum size of \(c_i.Q_{msq} \) is 1 when \(c_i = \text{Top} \). \(\square \)

Lemma 1. For \(c_i \in CC \), at any instant, there are at most two MSR primitives from \(c_j \in SC_{c_i} \) in \(c_i.Q_{msr} \).

Proof. Suppose \(\exists m_{sr_{c_j}^k} \in c_i.Q_{msr} \). Usually, this implies that \(c_j \) has a locked \(m_{sr_{c_j}^k} \) at the head of \(c_j.Q_{msr} \). Obviously, \(c_j \) will not send another MSR \(m_{sr_{c_j}^k} \) to \(c_i \) before \(m_{sr_{c_j}^k} \) is completely handled. Therefore, there is supposed to be at most one MSR from \(c_j \) in \(c_i.Q_{msr} \) at any instant. However, the mode switch dependency rule requires that \(c_j \) completes mode switch before \(c_i \). Consequently, a special case is that \(c_j \) sends another \(m_{sr_{c_j}^k} \) to \(c_i \) right after its mode switch. At that instant, \(c_j \) must have removed \(m_{sr_{c_j}^k} \) from \(c_i.Q_{msr} \). However, \(c_i \) may have not completed its mode switch. By the time \(c_i \) receives \(m_{sr_{c_j}^k} \), there will be two MSR primitives from \(c_j \): \(m_{sr_{c_j}^k} \) and \(m_{sr_{c_j}^k} \). After \(c_i \) completes its mode switch based on \(k \), according to the dequeuing condition for an MSR and the MSR/MSQ queue updating rule, \(m_{sr_{c_j}^k} \) will be dequeued while \(m_{sr_{c_j}^k} \) is kept in \(c_i.Q_{msr} \). At that moment, \(c_j \) cannot send any other MSR to \(c_i \) because \(m_{sr_{c_j}^k} \) is till locked. Therefore, there are at most two MSR primitives from \(c_j \) in \(c_i.Q_{msr} \) at any instant. \(\square \)

Theorem 4. For a component \(c_i \in CC \), if \(c_i \) is never an MSS, the maximum size of \(c_i.Q_{msr} \) is \(2 \times |SC_{c_i}| \). If \(c_i \neq \text{Top} \) and \(c_i \) is the MSS of at least one scenario, the maximum size of \(c_i.Q_{msr} \) is \(2 \times |SC_{c_i}| + 1 \).

Proof. If \(c_i \) is never an MSS, any MSR in \(c_i.Q_{msr} \) must come from a subcomponent of \(c_i \). Lemma 1 has proved that for each \(c_j \in SC_{c_i} \), there are at most two MSR primitives from \(c_j \) in \(c_i.Q_{msr} \) at any instant. If any subcomponent of \(c_i \) can send an MSR to \(c_i \), the maximum number of elements of \(c_i.Q_{msr} \) will be \(2 \times |SC_{c_i}| \). If \(c_i \neq \text{Top} \) and \(c_i \) is the MSS of at least one scenario, \(c_i.Q_{msr} \) can also include one and at most one MSR issued by \(c_i \) itself at any instant. Hence, the maximum size of \(c_i.Q_{msr} \) is \(2 \times |SC_{c_i}| + 1 \). \(\square \)

In summary, Table 3 shows the allocation of MSR and MSQ queues to different types of components together with the maximum possible size of each queue.
Table 3: The allocation of MSR and MSQ queues

<table>
<thead>
<tr>
<th>c_i</th>
<th>MSR queue</th>
<th>MSQ queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $c_i \in PC, c_i \neq MSS$</td>
<td>No</td>
<td>Yes (Size: 2)</td>
</tr>
<tr>
<td>(2) $c_i \in PC, c_i = MSS$</td>
<td>Yes (Size: 1)</td>
<td>Yes (Size: 2)</td>
</tr>
<tr>
<td>(3) $c_i \in CC, c_i \neq MSS$</td>
<td>Yes (Size: $2 \cdot</td>
<td>SC_{c_i}</td>
</tr>
<tr>
<td>(4) $c_i \in CC, c_i = MSS$</td>
<td>Yes (Size: $2 \cdot</td>
<td>SC_{c_i}</td>
</tr>
<tr>
<td>(5) $c_i = Top, c_i \neq MSS$</td>
<td>Yes (Size: $2 \cdot</td>
<td>SC_{c_i}</td>
</tr>
<tr>
<td>(6) $c_i = Top, c_i = MSS$</td>
<td>Yes (Size: $2 \cdot</td>
<td>SC_{c_i}</td>
</tr>
</tbody>
</table>

5 Implementing the conflict handling mechanism

In this section, we implement our conflict handling mechanism as algorithms. In general, the conflict handling mechanism of a component can be realized by at most three tasks:

- **MS_detection(c_i):** This task triggers a scenario of an MSS c_i. It is only executed when c_i does not have any pending scenario to be handled.

- **MSR,MSQ_enqueue(c_i):** This task checks the arrival of an MSR or MSQ and puts it in the corresponding queue of c_i. Furthermore, if c_i has sent a msr^k to P_{c_i} and msr^k is directly rejected by the MSDM, c_i will receive a msd^k from P_{c_i}. Then c_i should dequeue the locked msr^k from $c_i.Q_{msr}$ (and further propagate the msd^k to $c_j \in SC_{c_i}$ if $c_i \in CC$ and msr^k comes from c_j).

- **CheckQueue(c_i):** This task implements the MSR/MSQ queue checking rule. It is only executed when c_i is not in any transition state. It calls functions `HandleMSQ(c_i)` and `HandleMSR(c_i)`.

Tasks **MSR,MSQ_enqueue(c_i)** and **CheckQueue(c_i)** are essential for any component, while task **MS_detection(c_i)** is only essential if c_i is the MSS of at least one scenario. With respect to these three tasks, the following notations deserve extra explanation:

- **MS_event_detected** is a boolean variable set to true when the MSS c_i detects a mode switch event.

- **Derive_new_mode(c_i)** is a function that derives the new mode $m^\text{new}_{c_i}$ of c_i when c_i detects a mode switch event as the MSS.

- **Wait(c_i, A, B)** and **Signal(c_i, A, B)** are used for c_i to receive and send primitive B via the dedicated mode switch port A, which is either p^MSX (the port for exchanging primitives with P_{c_i}) or p^MSX_{in} (the port for exchanging primitives with SC_{c_i}).
• $msr^k(c_i, m_{c_i}, m_{c_i}^{new})$ represents an MSR associated with a scenario k with the immediate sender c_i requesting to switch from mode m_{c_i} to $m_{c_i}^{new}$. Similarly, $msr^k(c_i, m_{c_i}^{new})$ represents a primitive other than MSR for k.

• MSC_Collecting is a boolean variable set to true when a composite component is expecting an MSC from its subcomponents.

• $valid^k$ is a boolean variable of $c_i \in CC$ set to true when c_i receives an $msr^k_{c_j}$ from $c_j \in SC_{c_i}$ while MSC_Collecting is true.

• $k \leftarrow c_j$: Scenario k comes from c_j.

• locked is a boolean variable of c_i set to true if the first MSR in $c_i.Q_{msr}$ is locked.

• $enqueue(A, B)$ is a function enqueuing the primitive A (either MSR or MSQ) in queue B.

• $Dequeue(c_i, k)$: If $\exists msq^k \in c_i.Q_{msq}$, then c_i will remove msq^k from $c_i.Q_{msq}$; if $\exists msr^k \in c_i.Q_{msr}$, then c_i will remove msr^k from $c_i.Q_{msr}$. Besides, after c_i removes msr^k, if locked is true, c_i will set it to false.

• $TransitionS$ is a boolean variable of c_i set to true when c_i is in transition state.

• $HandleMSQ(c_i)$ and $HandleMSR(c_i)$ are functions for the handling of an MSQ and MSR, respectively, following the mode switch runtime mechanism presented in Section 2.

Algorithm 1 $MS_detection(c_i)$

```
loop
  if MS\_event\_detected then
    Derive\_new\_mode(c_i);
    if $c_i \neq Top$ then
      enqueue(msr$^k_{c_i}$, $c_i.Q_{msr}$);
    else {$c_i = Top$}
      enqueue(msq$^k$, $c_i.Q_{msq}$);
  end if
end if
end loop
```

Consistent with the MSR/MSQ queue checking rule, Algorithm 3 only checks $c_i.Q_{msr}$ and $c_i.Q_{msq}$ when c_i is not in transition state. Since $c_i.Q_{msq}$ is always checked before $c_i.Q_{msr}$, this implies that $c_i.Q_{msq}$ has a higher priority. Algorithm 3 further calls $HandleMSQ(c_i)$ and $HandleMSR(c_i)$. Depending on the type of c_i (primitive, non-top composite, or the top component),
Algorithm 2 $MSR_MSQ_enqueue(c_i)$

\[
\text{loop}
\begin{align*}
&\text{Wait}(c_i, p_{MSX} \lor p_{MSX}^{in}, \text{primitive}); \\
&\text{if } \text{primitive} = \text{msr}^k(c_j \in SC_{c_i}, m_{c_j}, m_{c_j}^{new}) \text{ then} \\
&\hspace{1em}\text{if } c_i \in CC \& \& \text{MSC_Collecting} \text{ then} \\
&\hspace{2em}\text{valid}^k := \text{true}; \\
&\hspace{1em}\text{enqueue}(msr^k_{c_i}, c_i, Q_{msr}); \\
&\text{else if } \text{primitive} = \text{msq}^k(c_i, m_{c_i}^{new}) \text{ then} \\
&\hspace{1em}\text{enqueue}(msq^k, c_i, Q_{msq}); \\
&\text{else } \text{primitive} = \text{msd}^k(c_i, m_{c_i}^{new}) \text{ then} \\
&\hspace{1em}\text{if } c_i \in CC \& \& k \leftarrow c_j \in SC_{c_i} \text{ then} \\
&\hspace{2em}\text{Signal}(c_i, p_{in}^{MSX}, msd^k(c_j, m_{c_j}^{new})); \\
&\hspace{1em}\text{Dequeue}(c_i, k); \\
&\text{end if}
\end{align*}
\]

end loop

Algorithm 3 $CheckQueue(c_i)$

\[
\text{loop}
\begin{align*}
&\text{if } \neg \text{TransitionS} \text{ then} \\
&\text{if } c_i, Q_{msq} \neq \emptyset \text{ then} \\
&\hspace{1em}\text{HandleMSQ}(c_i); \\
&\text{else} \\
&\hspace{1em}\text{if } c_i, Q_{msr} \neq \emptyset \& \& \neg \text{locked} \text{ then} \\
&\hspace{2em}\text{HandleMSR}(c_i); \\
&\hspace{1em}\text{end if}
\end{align*}
\]

end loop
$HandleMSQ(c_i)$ is described by algorithms 4, 6, 8 while $HandleMSR(c_i)$ is described by algorithms 5, 7, 9. Generally speaking, algorithms 4-9 handle an MSR or an MSQ based on a single mode switch scenario. They are essentially the same as the algorithms of the mode switch runtime mechanism given in [4], yet they additionally consider transition state, locked MSR, the dequeuing of an MSR or MSQ, as well as the MSR/MSQ queue updating rule which is implemented in Algorithm 11.

Algorithms 6-9 further call another function $ModeSwitch(c_i, MSDM, Top)$ described in Algorithm 10 which extends the same algorithm in [4] with the additional concerns mentioned above. Function $ModeSwitch(c_i, MSDM, Top)$ implements the behavior of c_i when c_i is about to propagate an MSQ to $SC_{c_i}^A$. $MSDM$ is a boolean variable set to true when c_i is the MSDM for a specific mode switch scenario; Top is a boolean variable set to true when $c_i = Top$.

Please note that atomic component execution is not considered in this report as the handling of atomic component execution is a separate topic which has already been discussed in [4]. Since atomic component execution can be easily handled by delaying the MSQ propagation to some components, our conflict handling mechanism also works when atomic component execution is considered. Algorithms 4-10 contain the following functions:

- $Reconfiguration(c_i, m_{c_i}, m_{c_i}^{new})$ is a function reconfiguring c_i from its current mode m_{c_i} to its new mode $m_{c_i}^{new}$.

- $Stop_running(c_i, m_{c_i})$ and $Resume(c_i, m_{c_i})$ mean that c_i stops and resumes execution in the current mode m_{c_i}. Similarly, $Start_running(c_i, m_{c_i}^{new})$ starts the execution of c_i in its new mode. The mode switch runtime mechanism requires that c_i stops its current execution when it enters transition state as a Type A component. When c_i leaves transition state, it will either run in the new mode, or resume its execution in the current mode.

- $MS_possible(c_i, m_{c_i})$ is a boolean function returning true if the current state of c_i in the mode m_{c_i} allows a mode switch.

- $ModeMapping(c_i)$ is a function performing the mode mapping of $c_i \in CC$ in its current mode.

- $MSOKNOK_Collection(c_i)$ is a boolean function returning true if c_i has received an MSOK from all c_j in $SC_{c_i}^A$. Similarly, $MSC_Collection(c_i)$ is a boolean function returning true if c_i has received an MSC from all c_j in $SC_{c_i}^A$.

- $UpdateQueue(c_i, k)$, i.e. Algorithm 11, is a function implementing the MSR/MSQ queue updating rule.
Algorithm 4 HandleMSQ($c_i \in PC$)

$\text{Transition}_S := \text{true;}$
$\text{Stop}_\text{running}(c_i, m_{c_i});$

if $\text{MS_possible}(c_i, m_{c_i})$ then
 $\text{Signal}(c_i, p^{\text{MSX}}, \text{msok}^k(c_i, m_{c_i}^{\text{new}}));$
 $\text{Wait}(c_i, p^{\text{MSX}}, \text{primitive});$

 if $\text{primitive} = \text{msi}^k(c_i, m_{c_i}^{\text{new}})$ then
 $\text{Reconfiguration}(c_i, m_{c_i}, m_{c_i}^{\text{new}});$
 $\text{Signal}(c_i, p^{\text{MSX}}, \text{msc}^k(c_i, m_{c_i}^{\text{new}}));$
 $\text{UpdateQueue}(c_i, k);$
 $\text{Transition}_S := \text{false};$
 $\text{Start}_\text{running}(c_i, m_{c_i}^{\text{new}});$
 else
 $\text{Dequeue}(c_i, k);$
 $\text{Transition}_S := \text{false};$
 $\text{Resume}(c_i, m_{c_i});$
 end if
else
 $\{c_i \text{ receives an MSD}\}$
 $\text{Dequeue}(c_i, k);$
 $\text{Transition}_S := \text{false};$
 $\text{Resume}(c_i, m_{c_i});$
end if

else
 $\{\text{The current state of } c_i \text{ does not allow a mode switch}\}$
 $\text{Signal}(c_i, p^{\text{MSX}}, \text{msnok}^k(c_i, m_{c_i}^{\text{new}}));$
 $\text{Wait}(c_i, p^{\text{MSX}}, \text{primitive});$

 if $\text{primitive} = \text{msd}^k(c_i, m_{c_i}^{\text{new}})$ then
 $\text{Dequeue}(c_i, k);$
 $\text{Transition}_S := \text{false};$
 $\text{Resume}(c_i, m_{c_i});$
 end if
end if

Algorithm 5 HandleMSR($c_i \in PC$)

$\text{Signal}(c_i, p^{\text{MSX}}, \text{msr}^k(c_i, m_{c_i}, m_{c_i}^{\text{new}}));$
$\text{locked} := \text{true};$
Algorithm 6 HandleMSQ($c_i \in \overline{CC}$)

\begin{algorithmic}
\State $\text{TransitionS} := \text{true}$;
\State $\text{Stop_running}(c_i, m_{c_i})$;
\If {\text{MS_possible}(c_i, m_{c_i})}
\State $\text{ModeMapping}(c_i)$;
\If {$SC_{c_i} = \emptyset$}
\State $\text{Signal}(c_i, p^{MSX}, m_{so_k}(c_i, m_{c_i}^{new}))$;
\State $\text{Wait}(c_i, p^{MSX}, \text{primitive})$;
\If {\text{primitive} = msd_k(c_i, m_{c_i}^{new})}
\State $\text{Dequeue}(c_i, k)$;
\State $\text{TransitionS} := \text{false}$;
\State $\text{Resume}(c_i, m_{c_i})$;
\EndIf
\Else {\text{primitive} = msi_k(c_i, m_{c_i}^{new})}
\State $\text{Reconfiguration}(c_i, m_{c_i}, m_{c_i}^{new})$;
\State $\text{Signal}(c_i, p^{MSX}, m_{sc_k}(c_i, m_{c_i}^{new}))$;
\State $\text{UpdateQueue}(c_i, k)$;
\State $\text{TransitionS} := \text{false}$;
\State $\text{Start_running}(c_i, m_{c_i}^{new})$;
\EndIf
\Else {$SC_{c_i} \neq \emptyset$}
\State $\text{ModeSwitch}(c_i, \text{false}, \text{false})$;
\EndIf
\Else {\text{The current state of } c_i \text{ does not allow a mode switch}}
\State $\text{Signal}(c_i, p^{MSX}, m_{sn_ok}(c_i, m_{c_i}^{new}))$;
\State $\text{Wait}(c_i, p^{MSX}, \text{primitive})$;
\If {\text{primitive} = msd_k(c_i, m_{c_i}^{new})}
\If {$k \leftarrow c_j \in SC_{c_i}$}
\State $\text{Signal}(c_i, p^{MSX}, msd_k(c_j, m_{c_j}^{new}))$;
\EndIf
\State $\text{Dequeue}(c_i, k)$;
\State $\text{TransitionS} := \text{false}$;
\State $\text{Resume}(c_i, m_{c_i})$;
\EndIf
\EndIf
\EndIf
\end{algorithmic}
Algorithm 7 \textit{HandleMSR}(c_i \in \tilde{CC})

\begin{verbatim}
ModeMapping(c_i);
if \(m_{c_i}^{new} = m_{c_i} \) then
 TransitionS := true;
 ModeSwitch(c_i, true, false);
else \{\(m_{c_i}^{new} \neq m_{c_i} \)\}
 if MS_possible(c_i, m_{c_i}) then
 Signal(c_i, p_{MS}^{MSX}, msr^k(c_i, m_{c_i}, m_{c_i}^{new}));
 locked := true;
 else \{\neg MS_possible(c_i, m_{c_i})\}
 Signal(c_i, p_{m}^{MSX}, msd^k(c_j, m_{c_j}^{new})); \{\{ k \leftarrow c_j \}\}
 Dequeue(c_i, k);
end if
end if
\end{verbatim}

Algorithm 8 \textit{HandleMSQ}(c_i = \text{Top})

\begin{verbatim}
TransitionS := true;
if SC_{c_i}^A = \emptyset then
 Reconfiguration(c_i, m_{c_i}, m_{c_i}^{new});
 UpdateQueue(c_i, k);
 TransitionS := false;
 Start_running(c_i, m_{c_i}^{new});
else
 Stop_running(c_i, m_{c_i});
 ModeSwitch(c_i, true, true);
end if
\end{verbatim}

Algorithm 9 \textit{HandleMSR}(c_i = \text{Top})

\begin{verbatim}
ModeMapping(c_i);
if \(m_{c_i}^{new} = m_{c_i} \) \text{||} MS_possible(c_i, m_{c_i}) then
 if \(m_{c_i}^{new} \neq m_{c_i} \) then
 Stop_running(c_i, m_{c_i});
 end if
 TransitionS := true;
 ModeSwitch(c_i, true, true);
else \{\neg MS_possible(c_i, m_{c_i})\}
 Signal(c_i, p_{m}^{MSX}, msd^k(c_j, m_{c_j}^{new})); \{\{ k \leftarrow c_j \}\}
 Dequeue(c_i, k);
end if
\end{verbatim}
Algorithm 10 ModeSwitch\((c_i \in CC, MSDM, Top) \)

\[
\forall c_j \in SC^A_{c_i} : Signal(c_i, p^\text{MSX}_m, msq^k(c_j, m^\text{new}_{c_j}));
\]

if MSOKNOK\(_i\)_Collection\((c_i) \) then

if MSDM || Top then

\[
\forall c_j \in SC^A_{c_i} : Signal(c_i, p^\text{MSX}_m, msi^k(c_j, m^\text{new}_{c_j}));
\]

if \(T_{c_i} = A \) then

Reconfiguration\((c_i, m_{c_i}, m^\text{new}_{c_i}); \)

end if

if MSC\(_i\)_Collection\((c_i) \) then

UpdateQueue\((c_i, k); \)

Transition\(S := \text{false}; \)

if \(T_{c_i} = A \) then

Start_running\((c_i, m^\text{new}_{c_i}); \)

else \(\{ T_{c_i} = B \} \)

Resume\((c_i, m_{c_i}); \)

end if

end if

else \(\{ c_i \text{ is neither an MSDM nor the top component} \} \)

Signal\((c_i, p^\text{MSX}_m, msok^k(c_i, m^\text{new}_{c_i})); \)

Wait\((c_i, p^\text{MSX}_m, \text{primitive}); \)

if primitive = msi^k\((c_i, m^\text{new}_{c_i}) \) then

\[
\forall c_j \in SC^A_{c_i} : Signal(c_i, p^\text{MSX}_m, msi^k(c_j, m^\text{new}_{c_j}));
\]

Reconfiguration\((c_i, m_{c_i}, m^\text{new}_{c_i}); \)

if MSC\(_i\)_Collection\((c_i) \) then

Signal\((c_i, p^\text{MSX}_m, ms\text{c}^k(c_i, m^\text{new}_{c_i})); \)

UpdateQueue\((c_i, k); \)

Transition\(S := \text{false}; \)

Start_running\((c_i, m^\text{new}_{c_i}); \)

end if

else \(\{ c_i \text{ receives an MSD} \} \)

\[
\forall c_j \in SC^A_{c_i} : Signal(c_i, p^\text{MSX}_m, msd^k(c_j, m^\text{new}_{c_j}));
\]

Dequeue\((c_i, k); \)

Transition\(S := \text{false}; \)

Resume\((c_i, m_{c_i}); \)

end if

end if
else \{ c_i receives at least one MSNOK \}

if MSDM || Top then
 $\forall c_j \in SC^{A}_{c_i}$: $\text{Signal}(c_i, p^{\text{MSX}}_{in}, \text{msd}^k(c_j, m^{new}_{c_j}))$;
 $\text{Dequeue}(c_i, k)$;
 $\text{TransitionS} := \text{false}$;
 $\text{Resume}(c_i, m_{c_i})$;
else \{ c_i is neither an MSDM nor the top component \}
 $\text{Signal}(c_i, p^{\text{MSX}}, \text{msnok}^k(c_i, m^{new}_{c_i}))$;
 $\text{Wait}(c_i, p^{\text{MSX}}, \text{primitive})$;
 if $\text{primitive} = \text{msd}^k(c_i, m^{new}_{c_i})$ then
 $\forall c_j \in SC^{A}_{c_i}$: $\text{Signal}(c_i, p^{\text{MSX}}_{in}, \text{msd}^k(c_j, m^{new}_{c_j}))$;
 $\text{Dequeue}(c_i, k)$;
 $\text{TransitionS} := \text{false}$;
 $\text{Resume}(c_i, m_{c_i})$;
 end if
end if

The MSR/MSQ queue updating rule is implemented as Algorithm 11, where $\text{dequeue}(A, B)$ is a function dequeuing a primitive A from queue B. Actually, $\text{dequeue}(A, B)$ can be considered as a sub-function of $\text{Dequeue}(c_i, k)$.

The relations between algorithms 3-11 are illustrated in Figure 5.

![Figure 5: The call graph of algorithms 3-11](image)

6 Verification of the conflict handling mechanism

The conflict handling mechanism, represented by the MSR/MSQ queue checking rule and the MSR/MSQ queue updating rule, extends the mode switch runtime mechanism of MSL with the support of multiple scenarios. The correctness of the conflict handling mechanism can be proved by the satisfaction of a number of properties, among which the two most important are:
Algorithm 11 UpdateQueue(c_i, k)

```plaintext
if $c_i \in PC$ then
    if $\exists msr_{c_i}^k \in c_i.Q_{msr}$ then
        dequeue(msr_{c_i}^k, c_i.Q_{msr});
    end if
else ($c_i \in CC$)
    if $\exists msr_{c_i}^k \in c_i.Q_{msr}$ && ($T_{c_i}^k = A$) then
        dequeue(msr_{c_i}^k, c_i.Q_{msr});
    end if
    if $\exists msr_{c_i}^k \in c_i.Q_{msr}$ && ($c_j \in SC_{c_i}$) then
        if $T_{c_j}^k = A$ && $\neg valid_{c_j}^k$ then
            dequeue(msr_{c_j}^k, c_i.Q_{msr});
        end if
    end if
    if ($c_i = Top$) && ($T_{c_i}^k = A$) && ($\exists msq_{c_i}^k \in c_i.Q_{msq}$) then
        dequeue(msq_{c_i}^k, c_i.Q_{msq});
    end if
valid_{c_i}^k := false;
end if
end if
locked := false;
```

1. The conflict handling mechanism is deadlock-free.
2. A triggered scenario will eventually be handled.

For Property 2, a scenario is also considered to be handled if its associated primitives are removed by the MSR/MSQ queue updating rule.

We resort to the combination of model checking and mathematical induction for the verification of the conflict handling mechanism. In the following subsections, we shall shed light on the modeling of the conflict handling mechanism and its verification, respectively.

6.1 Modeling the conflict handling mechanism

The conflict handling mechanism is modeled in the model checker UPPAAL [7] with regard to the six cases listed in Table 3. In each case, the conflict handling mechanism is implemented in a target component. Shown in Figure 6, the target component can have a parent stub or two child stubs for some cases which simulate the behaviors of its parent and subcomponents by running the same conflict handling mechanism. Both the parent stub and child stub can trigger scenarios at any time, as long as they do not have any self-triggered pending scenarios.

Next we shall elaborate on the UPPAAL models that implement the conflict handling mechanism. We have built six sets of UPPAAL models based on the six cases identified in Table 3. As indicated in Figure 6, only
cases (3) and (4) require both the parent stub and child stubs. Compared with Case (3), Case (4) additionally considers the self-triggered scenario from the target component itself. Therefore, we shall focus on describing the UPPAAL model for Case (4) which basically covers all the important issues addressed by the models for the other five cases.

The UPPAAL model for Case (4) consists of four automata, each automaton being a UPPAAL template:

- MSRMSQenqueue: It implements the algorithms $MS_{\text{detection}}(c_i)$ and $MSR_{\text{MSQ}.enque}(c_i)$ (i.e. algorithms 1 and 2).
- TargetComp: It implements the parent stub.
- ParentStub: It implements the target component with the conflict handling mechanism.
- ChildStub: It implements the child stub and can be instantiated into arbitrary number of child stubs. In our model, two child stubs are instantiated.

In our model, the transmission of a primitive is realized by channels which can synchronize different automata. A primitive is sent by a channel ending with "!" while the primitive is received by the same channel, yet ending with "?". Figure 7 depicts MSRMSQenqueue whose transitions are numbered in red. Transitions 1 and 2 enqueue an incoming MSR or MSQ. Besides, the target component itself can also trigger a scenario by Transition 7, if it does not have any pending scenario to be handled. Transition 3 handles an MSD sent from the parent. If this MSD is associated with an MSR that comes from a child stub, the target component will further propagate the MSD to the child stub by Transition 4. Otherwise, if this MSD is associated with an MSR issued by the target component, Transition 5 will be taken without further MSD propagation. Transition 6 is simply a modeling artifact used to synchronize an urgent channel.

The parent stub is illustrated in Figure 8. The parent stub can receive an MSR from the target component at any time when the parent stub is in
its initial state \texttt{Init}. After receiving an MSR from the target component, the parent stub will set a boolean variable \texttt{MSRpending} to true. When \texttt{MSRpending} is true, the parent stub can take one of three possible actions: (1) to send an MSQ not associated with the MSR from the target component; (2) to send an MSQ associated with the MSR from the target component; (3) to send an MSD associated with the MSR from the target component. Actions (1) and (2) correspond to Transition 5, yet with different scenario IDs. Action (3) corresponds to Transition 3. If \texttt{MSRpending} is false, the parent stub can only take Action (1) by transitions 4 and 5. The other transitions exchange primitives with the target component, simulating a real parent of the target component. The parent exhibits some random behavior in the sense that it may send either an MSI or MSD to the target component after it receives an MSOK from the target component.
exchange primitives with the target component, simulating a real child of the target component. A child stub can trigger a scenario by Transition 1. If this scenario is directly rejected by the MSDM, the child stub will receive an MSD from the target component, realized by Transition 2. Note that such an MSD is modeled by a channel $MSD[Me]$ in UPPAAL, with Me as the identity of the child stub. This distinguishes the case when the child stub receives an MSD for a different reason by the channel $MSD[Me]$. The child stub also has random behavior as it can send either an MSOK or MSNOK in response to the MSQ from the target component.

![UPPAAL model of the target component](image)

Figure 9: The UPPAAL model for the child stub

The UPPAAL model of the target component is presented in Figure 10. In its initial state **Idle**, it checks its MSQ and MSR queues. If its MSQ is not empty, it will handle the first MSQ in its MSQ queue by Transition 7. If the current state of the target component allows such a mode switch, it will fire Transition 8 or 9. Transition 8 is taken if the MSQ being handled is associated with the MSR sent by the target component before. In this case, the target component can reuse the mode mapping result based on the MSR. Otherwise, Transition 9 is taken and mode mapping must be performed. Alternatively, if the current state of the target component does not allow such a mode switch, it will send an MSNOK to the parent stub by Transition 10. After that it will receive an MSD from the parent stub by Transition 11. If the scenario being handled comes from a child stub, the target component will propagate the MSD to the child stub by Transition 13. Otherwise, if this scenario is triggered by the target component itself, Transition 12 will be taken with no further MSD propagation.

State **MSQprop** has two outgoing transitions 14 (if the target component has at least one Type A subcomponent for the current scenario) and 35 (if the target component has no Type A subcomponents for the current scenario). If Transition 8 is taken, the next transition must be 14 because the current scenario comes from a child stub which must be Type A.
sition 9 is taken, then the next transition can be either 14 or 35. The target component propagates an MSQ to its Type A subcomponents by transitions 14-16. Then in State **OKCollection** the target component can receive either an MSOK (Transition 17) or MSNOK (Transition 18) from its child stub(s). Depending on whether the target component is the MSDM for the current scenario and the response from the child stub(s), four alternative transitions 19-22 can be fired subsequently. Transition 19 means that the target component is the MSDM and it receives at least one MSNOK, hence it propagates an MSD to its Type A child stubs by transitions 26 and 27, and then leaves transition state by Transition 28. Transition 21 also means that the target component is the MSDM which yet only receives MSOK. This leads to the MSI propagation to its Type A child stubs by transitions 29-31. Transitions 20 and 22 are fired when the target component is not the MSDM. Transition 20 is taken, i.e. the target component sends an MSNOK to the parent stub, if the target component receives at least one MSNOK and it is followed by Transition 25 as the target component receives an MSD from the parent stub. Transition 22 is taken as the target component sends an MSOK to the parent stub. This is followed by Transition 23, where the target component receives an MSI from the parent stub. After the MSI propagation to the Type A child stubs, the target component can receive MSC from a child stub via Transition 32. After that, the target component can leave transition state by Transition 33 by sending an MSC to the parent stub to indicate mode switch completion (if the target component is not the MSDM), or by Transition 34 (if the target component is the MSDM).

Transitions 35-38 are taken only when the target component has no Type A subcomponents. Therefore, the target component will only interact with the parent stub. Furthermore, the initial handling of an MSR is realized by transitions 1-6. Transition 3 represents a self-triggered scenario which always leads to the MSR transmission to the parent stub by Transition 6. Transitions 1 and 2 represent a scenario from a child stub which could be approved (Transition 4), or rejected (Transition 5), or forwarded to the parent stub (Transition 6). The MSR/MSQ queue updating rule is implemented in the functions updateQueue() and updateQueue2(), which can be found in transitions 33, 34 and 38. If the target component is the MSDM (i.e. a Type B component), updateQueue2() is applied so that the target component does not remove a pending MSR issued by itself. Otherwise, updateQueue() is applied which also removes any pending MSR issued by the target component.

6.2 Model equivalence between a component and a stub

In order to ensure that a parent stub indeed behaves as a real parent and a child stub indeed behaves as a real child, we need to prove the equivalence between a stub and the corresponding component. A composite component
Figure 10: The UPPAAAL model for the target component

should be equivalent to a parent stub for its subcomponents. A non-Top component should be equivalent to a child stub for its parent. Our focus here will be on Case (4) since a non-Top composite component can take both roles, either being a parent stub for its subcomponents or being a child stub for its parent. In Case (4), the complete behavior of the target component is jointly represented by the automata in figures 10 and 7. Basically, the model of the target component includes the interaction (i.e. exchanging primitives) with the parent and subcomponents, as well as local computations. If the target component is considered as a parent stub, its observable behavior should only be the interaction with a single subcomponent. Likewise, if the target component is considered as a child stub, its observable behavior should only be the interaction with the parent. Therefore, the observable behavior of the target component should be extracted from its complete model and then compared with the corresponding stub.

First let’s consider the target component as a parent stub for one of its subcomponents. Then the observable behavior of the target component is only the interaction with this subcomponent. The first step of extracting the observable behavior of the target component is to remove all the guards, assignments as well as transitions related to the primitive exchange with the parent stub. Also, since a single subcomponent is unaware of the interaction between the target component and its other subcomponents, the MSQ/MSI/MSD propagation in the model of the target component can be changed to the single transmission of a primitive to an individual subcomponent. After this transformation, the model of the target component
(see Figure 10) will be simplified to the model depicted in Figure 11. We can further remove some redundant committed locations in Figure 11 and combine it with the model in Figure 7. In addition, transitions 7, 8 and 13 in Figure 11 are actually used to receive a primitive from all the Type A subcomponents of the target component, thus can be changed while considering a single subcomponent. Figure 12 depicts the model of the target component after the second step of transformation. Comparing Figure 12 and Figure 8, we can conclude that the simplified model of the target component is equivalent to a parent stub for a single subcomponent. It should be noted that Transition 2 in Figure 12 is only taken if an MSR is pending after Transition 1.

Figure 11: Manual model transformation from the target component to a parent stub (Step 1)

For the parent of the target component, the target component will take the role of a child stub. Similarly, by removing all the guards, assignments as well as interactions with the subcomponents, the model of the target component can be reduced to the model shown in Figure 13. The model in Figure 13 can be further simplified by removing some redundant transitions and combining the model in Figure 7. The model after this transformation is depicted in Figure 14. According to Figure 14, some redundant transitions can be found. For instance, as a child stub, transitions 4 and 5 are essentially the same as transitions 6-9. Transitions 14-17 are essentially the same as transitions 10-13. After removing these redundant transitions, we can compare the simplified model in Figure 15 with the model of a child stub in Figure 9, which are equivalent with regard to the interaction with the parent.
6.3 Verification

Based on the UPPAAL model described in Section 6.1, Property 1 can be easily verified by the UPPAAL verifier, where Property 1 can be expressed
Figure 14: Manual model transformation from the target component to a child stub (Step 2)

Figure 15: Manual model transformation from the target component to a child stub (Step 3)

by $A// not deadlock$. Table 4 shows the verification time\(^1\) for each case, yet without considering Case (4).

All the five cases in Table 4 are proved to be deadlock-free with reasonable verification time. The verification for Case (4) demands for more efforts in that UPPAAL ends up with memory exhaustion due to the growing model complexity. This problem is remedied by two means. The first is to use Compact Data Structure in UPPAAL for state space representation.

\(^1\)Verification was performed on MacBook Pro, with 2.66GHz Intel Core 2 Duo CPU and 8GB 1067 MHz DDR3 memory.
Table 4: Verification time of deadlock-freeness, excluding Case (4)

<table>
<thead>
<tr>
<th>Case</th>
<th>Verification time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $c_i \in PC, c_i \neq MSS$</td>
<td>0.002s</td>
</tr>
<tr>
<td>(2) $c_i \in PC, c_i = MSS$</td>
<td>0.013s</td>
</tr>
<tr>
<td>(3) $c_i \in CC, c_i \neq MSS$</td>
<td>33.539s</td>
</tr>
<tr>
<td>(5) $c_i = Top, c_i \neq MSS$</td>
<td>0.268s</td>
</tr>
<tr>
<td>(6) $c_i = Top, c_i = MSS$</td>
<td>2.56s</td>
</tr>
</tbody>
</table>

instead of the default representation DBM (Difference Bound Matrices). A direct consequence of this is longer verification time but much less memory consumption. In addition, we divide the model for Case (4) into four simpler models that can be verified separately. Case (4) considers $c_i \in \overline{CC}$ which is an MSS. Each scenario k triggered by c_i can affect $SC_{\overline{CC}}(k)$. Since c_i has two subcomponents (e.g. c_1 and c_2) in the model, k can lead to four sub-cases concerning $SC_{\overline{CC}}^A(k)$: (a) $T_{c_1}^k = T_{c_2}^k = A$; (b) $T_{c_1}^k = A, T_{c_2}^k = B$; (c) $T_{c_1}^k = B, T_{c_2}^k = A$; (d) $T_{c_1}^k = T_{c_2}^k = B$. Cases (b) and (c) are symmetrical, hence it is sufficient to only consider three cases, e.g. (a), (b) and (d). Using Compact Data Structure and taking (a), (b) and (d) as three sub-cases of Case (4), we successfully verified the deadlock-freeness for Case (4), with the verification time summarized in Table 5.

Table 5: Verification time of deadlock-freeness: Case (4) (using Compact Data Structure)

<table>
<thead>
<tr>
<th>Sub-case</th>
<th>Verification time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $T_{c_1}^k = T_{c_2}^k = A$</td>
<td>475.1s</td>
</tr>
<tr>
<td>(b) $T_{c_1}^k = A, T_{c_2}^k = B$</td>
<td>523.855s</td>
</tr>
<tr>
<td>(d) $T_{c_1}^k = T_{c_2}^k = B$</td>
<td>286.052s</td>
</tr>
</tbody>
</table>

Property 2 cannot be directly verified by the UPPAAL models made for the verification of Property 1 except for cases (1) and (5). The reason is that these models allow the triggering of a scenario at any time if it is possible. Since the conflict handling mechanism assigns higher priority to MSQ queue, if the parent stub keeps sending a msq^k (not associated with the msr sent from the child stubs) to the target component, a pending $msr^{k'}$ from a child stub which is Type B for k may never be handled. This problem should not exist in a real-world system because the triggering of a scenario is usually not a frequent event. In order to make Property 2 verifiable, we slightly modify the parent stub for cases (2), (3) and (4) such that for every
two consecutive MSQ primitives \((msq^k\) and \(msq^{k'}\)) sent by the parent stub, at least either \(k\) or \(k'\) originates from a child stub. The modified parent stub is shown in Fig. 16. Since this modification does not alter the conflict handling mechanism, the modified models can be used to verify both properties. For Case (6), we modify the target component so that each two consecutive scenarios triggered by itself must be separated by the handling of a scenario coming from a child stub. Since Case (1) only considers scenarios from the parent stub while Case (5) only considers scenarios from the child stubs, they do not need any modification.

Figure 16: The UPPAAL model for the modified parent stub

Based on the modified UPPAAL models, Property 1 and Property 2 are both satisfied for cases (1)-(6). Property 2 splits into three sub-properties:

- Property 2.1—\(MSQqueueN > 0 \rightarrow MSQqueueN == 0\): A scenario from the parent stub can eventually be handled. \(MSQqueueN\) is the number of elements in the MSQ queue of the target component. When \(MSQqueueN\) is greater than 0, it will eventually become 0.

- Property 2.2—\(pending \rightarrow !pending\): A scenario triggered by the target component itself can eventually be handled. \(pending\) is a boolean variable set to true when the target component triggers a scenario, and set to false when it is completely handled by the target component.

- Property 2.3—\(ChildStub1.MSRpending \rightarrow !ChildStub1.MSRpending\): A scenario from a child stub can eventually be handled. \(MSRpending\) is a boolean variable set to true when a child stub triggers a scenario, and set to false when it is completely handled by the child stub.

Table 6 summaries the verification times of properties 1 and 2, excluding Case (4). Note that some sub-properties of Property 2 is only valid
for certain cases. For instance, Property 2.2 is only valid when the target component is an MSS, i.e. for cases (2), (4) and (6).

Table 6: Verification times of properties 1 and 2, excluding Case (4)

<table>
<thead>
<tr>
<th>Case</th>
<th>Property 1</th>
<th>Property 2.1</th>
<th>Property 2.2</th>
<th>Property 2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $c_i \in PC, c_i \neq MSS$</td>
<td>0.002s</td>
<td>0.003s</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(2) $c_i \in PC, c_i = MSS$</td>
<td>0.009s</td>
<td>0.008s</td>
<td>0.009s</td>
<td>–</td>
</tr>
<tr>
<td>(3) $c_i \in CC, c_i \neq MSS$</td>
<td>25.14s</td>
<td>22.361s</td>
<td>–</td>
<td>33.915s</td>
</tr>
<tr>
<td>(5) $c_i = Top, c_i \neq MSS$</td>
<td>0.268s</td>
<td>–</td>
<td>–</td>
<td>0.283s</td>
</tr>
<tr>
<td>(6) $c_i = Top, c_i = MSS$</td>
<td>3.585s</td>
<td>–</td>
<td>3.514s</td>
<td>4.143s</td>
</tr>
</tbody>
</table>

The verification of properties 1 and 2 for Case (4) is carried out for the sub-cases listed in Table 5, using Compact Data Structure. The verification times for each case are summarized in Table 7.

Table 7: Verification times of properties 1 and 2 for Case (4) (using Compact Data Structure)

<table>
<thead>
<tr>
<th>Sub-case</th>
<th>Property 1</th>
<th>Property 2.1</th>
<th>Property 2.2</th>
<th>Property 2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $T^k_{c_1} = T^k_{c_2} = A$</td>
<td>385.772s</td>
<td>385.793s</td>
<td>617.648s</td>
<td>589.801s</td>
</tr>
<tr>
<td>(b) $T^k_{c_1} = A, T^k_{c_2} = B$</td>
<td>429.765s</td>
<td>446.608s</td>
<td>709.125s</td>
<td>700.909s</td>
</tr>
<tr>
<td>(d) $T^k_{c_1} = T^k_{c_2} = B$</td>
<td>240.807s</td>
<td>239.164s</td>
<td>419.807s</td>
<td>398.801s</td>
</tr>
</tbody>
</table>

Apart from properties 1 and 2, we additionally verified the maximum sizes of MSQ and MSR queues, as indicated in Table 3. However, our UPPAAL models assume that the handling of a primitive for each component is atomic and instantaneous, as the handling of a primitive in UPPAAL can be realized by committed states such as $ MSI_{prop}$ and $ MSI_{prop2}$ in Figure 10. This assumption is actually not required by the conflict handling mechanism, nevertheless, without such an assumption, many committed states in our UPPAAL models must be replaced with normal states. As a consequence, the verification for each sub-case of Case (4) will end up with state explosion, even if Compact Data Structure is used. Due to this assumption, the maximum number of elements in the MSQ queue is 1 but not 2. In our models, the maximum size of the MSQ queue is set to be 1 and the maximum size of the MSR queue is defined based on Table 3. The verification results show that the maximum number of elements can be reached for both MSQ and MSR queues, yet cannot be exceeded, otherwise
an error will occur during the verification.

Now that the correctness of the conflict handling mechanism has been verified by model checking assuming that each composite component has two subcomponents, we can further prove its correctness for a more general system. Since the conflict handling mechanism is not dependent on the number of subcomponents of any composite component, the conflict handling mechanism works for a CBMMS where each composite component has arbitrary number of subcomponents.

7 Related work

The extended MECHATRONIC UML (EUML) [8] by Heinzemann et al. is currently the most closely related work to our MSL. In EUML, each component has reconfiguration ports which resemble the dedicated mode switch ports of our mode-aware component model. Each composite EUML component internally has a manager and executor which play the same role as our mode switch runtime mechanism. Components can propagate messages for requesting reconfiguration or executing reconfiguration. The propagation of these messages can be compared with our MSP protocol. However, the MSP protocol highly relies on the mode mapping between components whereas the message propagation in EUML is controlled by some reconfiguration rules defined in the manager of each component. EUML requires that reconfiguration should be performed bottom-up; this is similar to our mode switch dependency rule which yet allows concurrent reconfigurations of different components. The major difference between EUML and MSL is that EUML focuses more on component reconfiguration while mode is not addressed. In general, MSL is relatively more mature since EUML is more recently developed. EUML is also aware of the transmission of multiple request messages, which is comparable to the triggering of multiple scenarios described in this paper, however, no concrete solutions have been provided yet.

Another recent work related to MSL is the oracle-based approach by Pop et al. [9]. The basic idea is to abstract component behaviors into a property network spread throughout the component hierarchy. The mode of each component is modeled as a property and mapped from a set of properties to their valuations. A single property change can be propagated throughout the property network, potentially leading to the valuation change of other properties. And then the new mode of each component can be derived after the update of the property network. A finite-state machine called Oracle is offline constructed to guarantee predictable update time of the property network. The construction of Oracle implies that the mode switch handling requires global information of the property network. In contrast, MSL is fully distributed, requiring no global information.
Mode switch has been addressed in a number of component models, such as SaveCCM [10], COMDES-II [11] and MyCCM-HI [12], to name a few. There are also some other component models which have been commercialized, e.g. Koala [13] (targeting consumer electronics) and Rubus [14] (targeting ground vehicles). These component models have different notions of mode switch handling. In Koala and SaveCCM, a special switch is introduced to achieve the structural diversity of a component. Depending on the input data, switch can select one of multiple outgoing connections. COMDES-II uses a state-machine component to switch component configurations in different modes. In Rubus, mode is treated as a system property. A system-wide static configuration of components is defined for each mode. MyCCM-HI provides a more advanced mechanism for handling mode switch. Each MyCCM-HI component is mode-aware and is associated with a mode automaton which implements its mode switch mechanism. In addition, mode switch is also addressed by languages such as the Architecture Analysis & Design Language [15], where a state machine is used to represent the mode switch behavior of a component. Each state machine consists of a number of states (modes), transitions between these states (mode switches) and input/output event ports used for mode switch triggering. Compared with MSL, none of these works provide any systematic strategy to coordinate the mode switches of different components, due to the common assumption of independent mode switches between components.

8 Conclusion

In this paper, we have proposed a conflict handling mechanism as a supplement to the Mode Switch Logic (MSL) which is dedicated to the development of Component-Based Multi-Mode Systems (CBMMSs) as well as their mode switch handling. The conflict handling mechanism enables MSL to deal with concurrent triggering of multiple scenarios. The correctness of the conflict handling mechanism has been verified by model checking and inductive arguments.

The current conflict handling mechanism can be ameliorated in future by prioritizing scenarios so that scenarios with higher priorities can be handled earlier. Another potential improvement is the consideration of timeout. After triggering a scenario, a component may expect it to be handled within a specified time interval. If the pending scenario cannot be handled in time, a timeout event may be issued for further actions. We also intend to adapt MSL to safety-critical systems. According to the mode switch runtime mechanism of MSL, a scenario is rejected even if a Type A component is not ready to switch mode. In a safety-critical system, some mode switch can be rather urgent and should not be rejected. Such a mode switch would require special treatment.
Acknowledgment

This work is supported by the Swedish Research Council via the ARROWS project at Mälardalen University.

References

