
Handling multiple mode switch scenarios in

component-based multi-mode systems

Yin Hang, Hans Hansson
Mälardalen Real-Time Research Centre

Mälardalen University
Väster̊as, Sweden

{young.hang.yin,hans.hansson}@mdh.se

June 13, 2013

Abstract

The growing complexity of embedded systems software entails new
development techniques. Component-Based Software Engineering is
undoubtedly suitable for the development of complex systems thanks
to its inherent component reuse. Another approach to reduce software
complexity is by partitioning the system behavior into different opera-
tional modes. Each mode is associated with a unique behavior and the
system can change behavior by switching between modes. When such
a multi-mode system is developed by reusable software components, a
crucial issue is how to achieve a seamless composition of multi-mode
components and also how to handle mode switch properly. As an
integrated solution to the challenges of multi-mode component-based
software system development we have proposed the Mode Switch Logic
(MSL). The current version of MSL assumes independent handling of
a single mode switch scenario, i.e. that no other mode switch is trig-
gered until an ongoing mode switch is completed. For a wide class of
systems, this is an unrealistic assumption. In this report we lift this
assumption by proposing an extension of MSL to handle multiple mode
switch scenarios concurrently triggered by different components.

1 Introduction

The software complexity of embedded systems is growing rapidly in recent
years, imposing challenges on traditional developing techniques. As a con-
sequence, there is a strong demand for new techniques to reduce software
complexity. Among these new techniques, Component-Based Software En-
gineering (CBSE) [1] provides a promising paradigm for the development of
complex systems, as it allows a system to be built by reusable components

1

which can be independently developed. The success of CBSE has been ev-
idenced by a number of component models proposed both in industry and
academia [2] [3].

Apart from CBSE, another alternative to reduce software complexity is
to partition system behavior into different operational modes. Such a multi-
mode system usually runs in one of its supported modes and can switch to
another mode under certain circumstances. A representative example is the
control software of an airplane, which could run in the modes taxi (the initial
mode), taking off, flight and landing. Different subsystems are running in
different modes. For instance, the subsystem for controlling the wheels only
runs in taxi mode whereas the navigation subsystem may only run in flight
mode.

Combining CBSE and multi-mode systems, we get a Component-Based
Multi-Mode System (CBMMS), i.e. a multi-mode system developed in a
component-based manner. Figure 1 illustrates a conceptual CBMMS, with
its component hierarchy on the left and its component connections on the
right. The system, i.e. Component a, consists of three components: b, c and
d. Component c is composed by e and f. According to the terminology of
CBSE, we distinguish primitive components and composite components. A
primitive component is directly implemented by source code whilst a com-
posite component is composed by other components. In Figure 1, b, d, e and
f are primitive components while a and c are composite components. Since
the component hierarchy has a tree structure, a composite component and
its subcomponents have a parent-and-children relationship. For instance,
c is the parent of e and f, which in turn are the children of c. Moreover,
the system can run in two modes: m1

a and m2
a. When the system is in m1

a,
Component d is deactivated (i.e. not running), shown in the component hi-
erarchy in Figure 1 by not displaying d in mode m1

a. In contrast, when the
system is in m2

a, d is activated while f is deactivated. Besides, Component
b has different mode-specific behaviors represented by black and grey colors
in Figure 1.

The predominant challenge that a CBMMS exhibits is its mode switch
handling. Figure 1 implies that the mode switch of a system may amount
to the joint mode switches of many different components at various levels.
For instance, the mode switch from m1

a to m2
a requires the activation of d,

the deactivation of f, and the behavior change of b. In order to overcome
this challenge, we have developed a Mode Switch Logic (MSL) [4] [5], a
systematic approach to the development of CBMMSs and its mode switch
handling. In MSL, some component can detect a mode switch event and
trigger a mode switch scenario that is propagated to some other components
which may also switch mode as a consequence. Currently, MSL is limited
by an assumption that only a single mode switch scenario is handled each
time. However, in reality, it is possible that multiple scenarios are triggered
simultaneously, thus leading to a conflict situation. The contribution of this

2

Figure 1: A component-based multi-mode system

report is to handle multiple mode switch scenarios based on MSL.
The remainder of the report is organized as follows: Section 2 gives a

brief introduction of MSL. In Section 3, a conflict handling mechanism is
proposed for MSL to resolve the conflict due to the triggering of multiple
mode switch scenarios. The correctness of the conflict handling mechanism
is verified in Section 6. Related work is reviewed in Section 7. Section 8
concludes the report and discusses our future work.

2 The Mode Switch Logic

The Mode Switch Logic (MSL) includes three major elements: (1) a mode-
aware component model; (2) a mode mapping mechanism; and (3) a mode
switch runtime mechanism. The focus of this paper is on the mode switch
runtime mechanism which is extended to cope with multiple mode switch
scenarios.

The mode-aware component model defines essential features for a com-
ponent to be mode-aware. Depicted in Figure 2, a component can support
multiple modes, each of which represents a unique configuration. The mode
switch of an individual component is realized by reconfiguration, viz. chang-
ing its configuration in the current mode to the configuration in the new
mode. Furthermore, to enable cooperative mode switch, dedicated mode
switch ports are introduced for the cross-layer communication in the com-
ponent hierarchy. A multi-mode primitive component has a dedicated mode
switch port pMSX , which is used to exchange mode related information with
its parent during a mode switch. A multi-mode composite component has
two dedicated mode switch ports: apart from pMSX that has the same role
as for primitive components, the other one is pMSX

in , used to exchange mode

3

related information with its subcomponents during a mode switch. The
dedicated mode switch ports are marked in blue in Figure 2.

Figure 2: The mode-aware component model

The mode mapping mechanism describes the mode correlation between
different components in a compositional manner. Given the current mode of
a component at runtime, mode mapping can tell the current modes of other
components. In addition, it also determines the new modes of different
components when a mode switch is taking place. More details of the mode-
aware component model and the mode mapping mechanism can be found
in [4].

The mode switch runtime mechanism coordinates the mode switches of
different components at runtime. It defines the following roles:

• The Mode Switch Source (MSS): a (primitive or composite) component
which can detect a mode switch event (e.g. the value of a sensor reaches
a threshold) and actively request to switch mode by triggering a mode
switch scenario that can be denoted as ck : mi

ck
→ mj

ck , i.e. an MSS
ck requests to switch mode from its current mode mi

ck
to the target

mode mj
ck . We hereafter shall use ”scenario” to indicate ”mode switch

scenario”.

• The Mode Switch Decision Maker (MSDM): a component which has
the authority to approve or reject a mode switch scenario. This com-
ponent is scenario-dependent and must be either directly or indirectly
composed by the MSS that triggers the scenario. A mode switch is
triggered only when the MSDM approves a scenario.

• Type A/B components: For a given scenario, a Type A component
must switch mode as a consequence, while a Type B component should
keep running in its current mode without being affected. Type A
and Type B components are determined by mode mapping and are

4

scenario-dependent. In this paper, we use Tci = A or Tci = B to
denote that ci is a Type A or Type B component.

The mode switch runtime mechanism consists of a Mode Switch Prop-
agation (MSP) protocol and a mode switch dependency rule. The MSP
protocol propagates a scenario to all Type A components without affecting
Type B components. The MSDM is also identified by the MSP protocol for
a specific scenario. If the MSDM approves a scenario by triggering a mode
switch, the mode switch dependency rule guarantees the mode consistency
between different components upon each mode switch completion.

The MSP protocol to some extent resembles the 2-phase commit protocol
for distributed database [6], as a mode switch is triggered when all Type A
components are ready to switch mode. For a component ck, let Sci denote
that the current state of ci allows a mode switch, and let ¬Sci denote that
the current state of ci does not allow a mode switch. Also, let Pci be the
parent of ci and Top be the top component in the component hierarchy.
Now consider a scenario triggered by an MSS ci, with cj as the MSDM and
CM as the set of vertically intermediate components between ci and cj in
the component hierarchy. We slightly extend the MSP protocol presented
in [4] as follows:

Definition 1. The Mode Switch Propagation (MSP) protocol: When
ci detects a mode switch event, it will request to switch mode by triggering a
scenario. If ci 6= Top, ci will issue an MSR (Mode Switch Request) primitive
which is sent to Pci, eventually reaching cj through CM . The MSDM cj is
identified upon receiving the MSR under three conditions; (1) Tcj = B; (2)
Tcj = A and ¬Sck ; (3) Tcj = A and Sck and cj = Top. For each ck ∈ CM ,
identified when Tck = A and Sck upon receiving the MSR, ck forwards the MSR

to Pck . The MSDM cj makes the following decisions:

• In Condition (2), cj will reject the MSR by issuing an MSD (Mode Switch
Denial) primitive that is propagated back to ci via CM . Mode switch
propagation is terminated when ci receives the MSD and no component
will switch mode.

• In conditions (1) and (3), cj will approve the MSR by issuing an MSQ

(Mode Switch Query) primitive that is propagated downstream and
stepwise to all Type A components. After receiving an MSQ, a com-
ponent ck is required to reply to Pck with either an MSOK or MSNOK

primitive. Component ck replies with an MSOK if Sck (and all its Type
A subcomponents reply with an MSOK if ck is composite). Otherwise, if
¬Sck , ck will reply with an MSNOK (without propagating the MSQ down-
stream further if ck is composite). If ck receives at least one MSNOK

from a subcomponent, it will also reply with an MSNOK.

5

• If all the Type A subcomponents of cj have replied with an MSOK, cj
will trigger a mode switch by issuing an MSI (Mode Switch Instruction)
primitive that follows the propagation trace of the MSQ. Mode switch
propagation is completed when all Type A components have received
the MSI. In contrast, if cj receives at least one MSNOK, it will abort the
mode switch plan by issuing an MSD that follows the propagation trace
of the MSQ. Mode switch propagation is terminated when all Type A
components have received the MSD and no component will switch mode.

If ci = Top, then cj = ci and CM = ∅. When ci detects a mode switch
event, it will directly issue an MSQ to its Type A subcomponents.

The difference between the MSP protocol in [4] and the extended MSP
protocol above is only the way of directly rejecting an MSR. In the old version,
an MSDM does nothing when it directly rejects an MSR, whereas in the
extended version here, an MSD must be sent back from the MSDM all the
way down to the MSS if the MSR is directly rejected. This extension serves
as an initial purpose for the handling of multiple scenarios.

When an MSDM triggers a mode switch by issuing an MSI, all Type
A components will switch mode after its MSI propagation, following the
mode switch dependency rule, which specifies the conditions of mode switch
completion:

Definition 2. The mode switch dependency rule: Let cj be the MSDM
for a mode switch scenario and cj triggers a mode switch by issuing an
MSI that is propagated downstream and stepwise to all Type A components.
Then,

• For any primitive component ci (Tci = A), ci starts its mode switch
by reconfiguring itself upon receiving an MSI. The mode switch comple-
tion of ci equals its reconfiguration completion. An MSC (Mode Switch
Completion) primitive will be sent from ci to Pci when ci completes its
mode switch.

• For any composite component ci (Tci = A), ci starts its mode switch by
reconfiguring itself after its MSI propagation. Component ci completes
its mode switch when it completes its reconfiguration and it has received
an MSC from all its Type A subcomponents. After that, if ci 6= cj, an
MSC will be sent from ci to Pci after ci completes its mode switch.

• If Tcj = A, the system mode switch is completed after the mode switch
of cj. Otherwise, if Tcj = B, the system mode switch is completed
after cj has received an MSC from all its Type A subcomponents.

The mode switch dependency rule guarantees that all Type A compo-
nents must be running in their new modes after the mode switch completion
of a system, which is a key property ensuring mode consistency.

6

The mode switch runtime mechanism, chiefly represented by the MSP
protocol and the mode switch dependency rule, can be demonstrated by a
complete mode switch process illustrated by Figure 3 based on the example
in Figure 1. In Figure 3, c triggers a scenario by issuing an MSR as an MSS.
The MSR from c is sent to its parent a which is the MSDM of this scenario.
Component a approves the MSR by issuing an MSQ that is propagated to all
Type A components. It should be noted that e is a Type B component,
thus not affected by this scenario. After receiving the MSQ, each Type A
component checks its current state. Here the current state of each Type A
component allows a mode switch, therefore an MSOK is sent back in response
to MSQ. Once the MSDM a receives the MSOK from its Type A subcomponents
b, c and d, it will trigger a mode switch by issuing an MSI that follows
the propagation trace of the MSQ. The propagation of MSI results in the
reconfiguration of each Type A component, represented by black bars in
Figure 3. Finally, MSC primitives are sent bottom-up to indicate mode switch
completion. The white bars mean that the mode switch of a composite
component is blocked by its subcomponents, i.e. a composite component
has completed its reconfiguration but is still waiting for at least one MSC.
Since the MSDM a is a Type A component, the system mode switch is
completed upon the mode switch completion of a.

Figure 3: A complete mode switch process

7

3 The handling of multiple mode switch scenarios

The mode switch runtime mechanism presented in Section 2 assumes that no
new scenarios are triggered until the current scenario is completely handled.
However, it is likely that a system has multiple MSSs potentially triggering
concurrent scenarios. In this section, we propose a conflict handling mech-
anism to cope with multiple scenarios based on the following assumptions:

1. An ongoing mode switch cannot be aborted or rolled back.

2. An MSS will not trigger a new scenario until the current scenario
triggered by itself is completely handled.

3. There is no mode switch failure.

In essence, the conflict handling mechanism introduces separate queues
for storing incoming MSR and MSQ and updates these queues according to a
set of pre-defined criteria.

3.1 MSR and MSQ queues

When multiple scenarios are considered, each component must be able to dis-
tinguish different scenarios. Hence we introduce the concept (mode switch)
scenario ID :

Definition 3. Mode switch scenario ID is a unique ID of a scenario ck :
mi

ck
→ mj

ck . Any MSX primitive must carry a (mode switch) scenario ID x
that it is associated with, denoted as msxx.

For a system where concurrent scenario triggering is allowed, each com-
ponent may receive multiple primitives simultaneously or within a short
interval, each primitive being associated with a specific scenario. Since a
component can only handle a single primitive each time, other primitives
must be buffered somewhere to be handled afterwards. Therefore, we in-
troduce MSR and MSQ queues. For a CBMMS, let PC be the set of its
primitive components and let CC be the set of its composite components.
We also use C̃C to denote the set of composite components excluding Top.
Let SCci be the set of subcomponents of a composite component ci. Fur-
thermore, let T k

ci = A or T k
ci = B denote that ci is a Type A or Type B

component for Scenario k and let SCA
ci (k) denote the set of Type A sub-

components of ci for k, then:

Definition 4. An MSR queue of ci, denoted as ci.Qmsr, is a FIFO queue
storing any incoming MSR from SCci (and from ci itself if ci is an MSS and
ci 6= Top). An MSR in this queue is denoted as msrk, or msrkcj where k is
the scenario ID and cj ∈ SCci ∪ {ci} is the immediate sender of this MSR.

8

Whenever ci receives an MSR from a subcomponent or decides to trigger
a scenario by issuing an MSR (ci 6= Top) as an MSS, the MSR will be enqueued
in ci.Qmsr. Conversely, an MSR msrkcj is dequeued from ci.Qmsr when any
one of the following conditions is satisfied:

1. ci completes its mode switch based on scenario k (T k
ci = A).

2. ci has received an MSC from all cj ∈ SCA
ci (k) (T k

ci = B).

3. ci receives a msdk (ci ∈ PC ∨ SCA
ci (k) = ∅).

4. ci has propagated a msdk to SCA
ci (k) (SCA

ci (k) 6= ∅).

In addition to the MSR queue, MSQ queue is defined in a similar fashion:

Definition 5. An MSQ queue of ci, denoted as ci.Qmsq, is a FIFO queue
storing an incoming MSQ from Pci (or from ci itself if ci is an MSS and
ci = Top). An MSQ in this queue is denoted as msqk where k is the scenario
ID.

Whenever ci receives an MSQ from Pci or decides to trigger a scenario by
issuing an MSQ (ci = Top), the MSQ is enqueued in ci.Qmsq. The dequeue
conditions of an msqk in ci.Qmsq are exactly the same as those of the msrkcj
in ci.Qmsr.

Based on the definition of MSR/MSQ queues together with their en-
queuing and dequeuing conditions, we propose the MSR/MSQ queue check-
ing rule and MSR/MSQ queue updating rule, which constitute our conflict
handling mechanism.

3.2 The MSR/MSQ queue checking rule

The MSR/MSQ queue checking rule includes two additional prerequisite
terms: transition state and locked MSR:

Definition 6. A component ci is in a transition state within the interval
[t1, t2] for Scenario k, where

• If ci ∈ PC, t1 is the time when ci handles a msqk from Pci, while t2
is the time when the dequeuing conditions (1) or (3) are satisfied for
either ci.Qmsr or ci.Qmsq for k.

• If ci ∈ C̃C, t1 is the time when (1) ci issues a msqk to SCA
ci (k) as

an MSDM; or (2) ci handles a msqk from Pci. In addition, t2 is the
time when one of the dequeuing conditions (1)-(4) is satisfied for either
ci.Qmsr or ci.Qmsq for k.

9

• If ci = Top, t1 is the time when ci issues an msqk to SCA
ci (k), while t2

is the time when the dequeuing conditions (1), (2), or (4) are satisfied
for either ci.Qmsr or ci.Qmsq for k.

Definition 7. An MSR in ci.Qmsr is locked if it has been forwarded by ci to
Pci.

Based on the aforementioned definitions, the MSR/MSQ queue checking
rule is described as follows:

Definition 8. The MSR/MSQ queue checking rule: If ci is not in
transition state, then: If ci.Qmsq 6= ∅, the first MSQ in ci.Qmsq will be im-
mediately handled, else if ci.Qmsr 6= ∅ and the first MSR in ci.Qmsr is not
locked, the first MSR will be immediately handled. The handling of the MSQ

or MSR follows the mode switch runtime mechanism presented in Section 2.

The MSR/MSQ queue checking rule enables a component to handle mul-
tiple scenarios sequentially. When a component is in transition state for
Scenario k, it is dedicated to the handling of k until it leaves the transition
state, i.e. when it has completely handled k. By this means, its handling
of k can never be interfered by the arrival of another scenario k′ which is
simply enqueued and handled afterwards.

3.3 The MSR/MSQ queue updating rule

The MSR/MSQ queue checking rule alone is still insufficient to handle mul-
tiple scenarios correctly, as it is unaware of the impact of a scenario upon
other pending scenarios, implicitly assuming that different scenarios are in-
dependent of each other. Nevertheless, after a component completes its
mode switch for Scenario k, if ∃msrk

′
cj in ci.Qmsr (cj ∈ SCci ∪ {ci}), msrk

′
cj

may not be valid any more. This problem can be illustrated by a small
example. Let’s consider a system with its component hierarchy presented in
Figure 1. Tables 1 and 2 give the basic mode mappings of the two composite
components a and c. In each table, modes in the same column are mapped.
For example, according to Table 1, when a is running in mode m1

a, b must be
running in m1

b , c can run in either m1
c or m2

c , and d is deactivated. Figure 4
depicts three scenarios: (1) S1 = (b : m1

b → m2
b); (2) S2 = (e : m1

e → m2
e);

(3) S3 = (f : m1
f → m2

f). For S1 and S3, all components are Type A
components, whilst for S2, only c and e are Type A components. For each
scenario, the current possible mode and the target mode of each Type A
component are also defined in Figure 4. For instance, for S1, m1

f → m2
f

means that S1 will imply the mode switch of f from m1
f to m2

f . The given

mode mappings imply that when b is running in m1
b , e can be in either m1

e

or m2
e while f must be running in m1

f . Therefore, all three scenarios can be
simultaneously triggered.

10

Table 1: The mode mapping table of a

Component Supported modes

a m1
a m2

a

b m1
b m2

b

c m1
c m2

c m3
c

d Deactivated m1
d

Table 2: The mode mapping table of c

Component Supported modes

c m1
c m2

c m3
c

e m1
e m2

e Deactivated

f m1
f m2

f

Figure 4: Mode switch scenarios

Suppose S1 and S3 are triggered at the same time. Then b and f will issue
two different MSR primitives (say msrS1 and msrS3) simultaneously. The
MSP protocol indicates that a is the MSDM for both scenarios. After some
time, a possible outcome is that msrS1 arrives at a.Qmsr earlier than msrS3 .
Applying the MSR/MSQ queue checking rule, a will first handle msrS1 .
Suppose a system mode switch is successfully performed based on S1. Upon
mode switch completion, msrS1 is dequeued from a.Qmsr and a is supposed
to handle msrS3 . However, all components are Type A components for
S1, including the MSS of S3, f, whose current mode has become m2

f rather

11

than m1
f . As a consequence, S3 is no longer valid because it can only be

triggered when the current mode of f is m1
f . A reasonable action regarding

such an invalid scenario would be to remove all the pending MSR primitives
associated with S3, including msrS3

c in a.Qmsr, msrS3
f in c.Qmsr, and msrS3

f

in f.Qmsr.
Sometimes a pending scenario may still remain valid in spite of the mode

switch completion of another scenario. Suppose S2 and S3 are simultane-
ously triggered. A possible outcome is that msrS2 arrives at c.Qmsr earlier
than msrS3 . Evidently, c will first handle msrS2 . If a mode switch is per-
formed and completed based on S2, the pending scenario S3 is still valid
because f (the MSS of S3) is a Type B component for S2 and is unaffected
by S1. In this case, the pending MSR primitives msrS3

f in c.Qmsr and msrS3
f

in f.Qmsr should not be removed without handling.
Unfortunately, after each mode switch, it is impossible for each compo-

nent to tell if a pending scenario is valid or not. The reason is that only
an MSS itself knows that it is the MSS of a scenario (in order not to break
component encapsulation). However, it is viable for each component to tell
whether a pending MSR in its MSR queue is valid or not, guided by our
MSR/MSQ queue updating rule:

Definition 9. The MSR/MSQ queue updating rule: Consider a com-
ponent ci and a scenario k. After the mode switch completion of ci based
on k (T k

ci = A) or after ci has received an MSC from all cj ∈ SCA
ci (k)

(ci ∈ CC, T k
ci = B),

• If ci ∈ PC, then T k
ci = A. If ∃msrk

′
ci ∈ ci.Qmsr (k′ 6= k), then ci must

be the MSS of k′. Hence ci will remove msrk
′

ci from ci.Qmsr.

• If ci ∈ CC, a pending MSR in ci.Qmsr can derive from either ci or
cj ∈ SCci. If ∃msrk

′
ci ∈ ci.Qmsr (k′ 6= k), then (1) if T k

ci = A, then

msrk
′

ci will be removed from ci.Qmsr; (2) if T k
ci = B, then msrk

′
ci will

be kept in ci.Qmsr. If ∃msrk
′

cj ∈ ci.Qmsr, then (1) if T k
cj = A, msrk

′
cj

will be removed from ci.Qmsr; (2) if T k
cj = B, msrk

′
cj will be kept in

ci.Qmsr. In Case (2), if msrk
′

cj is locked, ci will handle it as a new

MSR. As an exception, if ∃msrk
′

cj ∈ ci.Qmsr which arrives while ci is

waiting for the MSC from SCci, this msrk
′

cj will be kept for the current

round of ci.Qmsr updating, even if T k
cj = A.

• If ci = Top, T k
ci = A, and ∃msqk

′ ∈ ci.Qmsq, then msqk
′

will be
removed from ci.Qmsq.

The essence of the MSR/MSQ queue updating rule is to remove a pend-
ing MSR/MSQ which becomes invalid due to the mode switch of a previous
scenario. It should be noted that the MSR/MSQ queue updating rule does

12

not remove any msrk or msqk since k is the currently handled scenario
instead of a pending scenario. A msrk or msqk is dequeued when the de-
queuing condition (see Section 3.1) is satisfied.

One may wonder why ci ∈ C̃C does not remove a pending MSQ. It can
be inferred that an incoming MSQ is pending in ci.Qmsq only when ci is in
transition state. Otherwise, the MSQ will be immediately handled by ci.
Suppose ci is in transition state for Scenario k, with a pending msqk

′
in

ci.Qmsq. Then ci must be the MSDM for k. Otherwise, if ci is not the
MSDM for k, Pci must also be in transition state for k and should not send
msqk

′
until it leaves this transition state. Now that ci is the MSDM for k,

components out of ci must be all Type B components for k. Therefore, k′

must be valid and should not be removed.
Additional attention must be paid to the exception that ci receives a

msrk
′

cj from cj ∈ SCci while waiting for the MSC from SCci . Under this

condition, msrk
′

cj is not removed from ci.Qmsr even if T k
cj = A. The reason

is ascribed to the mode switch dependency rule which ensures that cj must
complete mode switch before ci. Hence msrk

′
cj must be sent after the mode

switch of cj based on k and must be valid.

3.4 Discussion

The MSR/MSQ queue checking rule assigns higher priority to MSQ queue
than MSR queue such that MSQ queue is always checked before MSR queue.
A potential problem of this priority assignment is the bias towards scenarios
triggered by a component closer to Top. For instance, let’s compare two
scenarios, k1 and k2, triggered by c1 and c2 respectively at the same time.
Top is the MSDM for both scenarios and c1 is much closer to Top. Since it
takes more steps for msrk2 to reach Top compared with msrk1 , k1 is more
likely to be handled by Top before k2 despite their simultaneous triggering.
When a component ck, with msqk1 in ck.Qmsq and msrk2 in ck.Qmsr, checks
its MSR/MSQ queues, msqk1 will be first handled while msrk2 may be even
removed afterwards due to the MSR/MSQ queue updating rule.

However, ∀ci ∈ C̃C, since a pending MSQ will eventually be handled
without the risk of being removed by the MSR/MSQ queue updating rule,
it is better to assign higher priority to MSQ queue than the other way round.
For instance, if ∃msqk ∈ ci.Qmsq and ∃msrk

′ ∈ ci.Qmsr, the mode switch
completion based on k may skip the subsequent handling of msrk

′
due to

the MSR/MSQ queue updating rule. Conversely, if msrk
′

is first handled,
msqk will be handled later anyway. Therefore, assigning higher priority to
MSQ queue can benefit more from the MSR/MSQ queue updating rule.

13

4 Analysis of the MSR/MSQ queue sizes

Section 3 has described how multiple scenarios can be handled by MSR
and MSQ queues. Now the question is: Are MSR queue and MSQ queue
always necessary for all components? And what about their queue sizes?The
answers are as follows:

Theorem 1. For a component ci ∈ PC, if ci is never an MSS, ci has no
MSR queue; if ci is the MSS of at least one scenario, ci has an MSR queue
with the maximum size 1.

Proof. An incoming MSR to be enqueued in the MSR queue of a component
ck can only come from SCck (if ck ∈ CC) or from ck itself (if ck is the
corresponding MSS). Since ci ∈ PC, SCci = ∅, thus an MSR enqueued into
ci.Qmsr can only come from ci itself. If ci is never an MSS, ci.Qmsr will
always be empty, hence no MSR queue is needed. If ci is the MSS of at
least one scenario, ci can enqueue an MSR issued by itself in ci.Qmsr. Since
it is assumed that an MSS does not trigger a new scenario before its current
scenario is completely handled, ci cannot enqueue another self-triggered MSR

before the previous MSR issued by it is dequeued from ci.Qmsr. Therefore,
the maximum size of ci.Qmsr is 1.

Theorem 2. The maximum size of the MSQ queue of a component ci 6= Top
is 2.

Proof. Consider a component ci with an MSQ queue ci.Qmsq. Let N be the
number of elements in ci.Qmsq and cj = Pci . When ci.Qmsq = ∅, ci can
receive a msqk from Pci . According to Definition 6, after sending msqk to
ci, cj must be in transition state for k. Apparently, cj cannot send another
MSQ to ci before it leaves the transition state.

If a mode switch is performed based on k, the mode switch dependency
rule specifies that ci must complete mode switch before cj . As ci completes
the mode switch for k, msqk will be removed from ci.Qmsq. Therefore, if cj
sends another MSQ msqk

′
to ci right after cj completes its mode switch for k,

N will become 1 from 0. The condition will be the same as when ci receives
msqk.

If k is rejected, cj leaves transition state by sending a msdk to ci. Then ci
may leave transition state after it receives msdk (if ci ∈ PC∨SCA

ci (k) = ∅),
or after it propagates msdk to SCA

ci (if SCA
ci (k) 6= ∅). Since it may take

some time for ci to dequeue msqk after it receives msdk, if cj immediately
sends another MSQ msqk

′
to ci as cj leaves transition state, by the time ci

receives msqk
′
, msqk may have not been removed from ci.Qmsq. Therefore,

N can reach 2. By the time ci leaves transition state for k and dequeues
msqk, N will become 1 while cj must be in transition state for k′ and cannot
send another MSQ. Hence, cj can never send any MSQ to ci when N = 2.

14

The reasoning above proves that N cannot be bigger than 2, i.e. the
maximum size of ci.Qmsq is 2 when ci 6= Top.

Theorem 3. The maximum size of the MSQ queue of a component ci = Top
is 1.

Proof. Since ci has no parent, ci.Qmsq may only contain an MSQ issued by ci
itself as the MSS. Therefore, if ci is never an MSS, there is no need to have
ci.Qmsq. If ci is the MSS of at least one scenario, ci.Qmsq can never contain
multiple MSQ primitives due to the assumption that an MSS will not trigger
a new scenario until the current scenario triggered by itself is completely
handled. Therefore, the maximum size of ci.Qmsq is 1 when ci = Top.

Lemma 1. For ci ∈ CC, at any instant, there are at most two MSR primi-
tives from cj ∈ SCci in ci.Qmsr.

Proof. Suppose ∃msrkcj ∈ ci.Qmsr. Usually, this implies that cj has a locked

msrk at the head of cj .Qmsr. Obviously, cj will not send another MSR msrk
′

to ci before msrk is completely handled. Therefore, there is supposed to
be at most one MSR from cj in ci.Qmsr at any instant. However, the mode
switch dependency rule requires that cj completes mode switch before ci.
Consequently, a special case is that cj sends another msrk

′
to ci right after

its mode switch. At that instant, cj must have removed msrk from cj .Qmsr.
However, ci may have not completed its mode switch. By the time ci receives
msrk

′
, there will be two MSR primitives from cj : msrkcj and msrk

′
cj . After ci

completes its mode switch based on k, according to the dequeuing condition
for an MSR and the MSR/MSQ queue updating rule, msrkcj will be dequeued

while msrk
′

cj is kept in ci.Qmsr. At that moment, cj cannot send any other

MSR to ci because msrk
′

is till locked. Therefore, there are at most two MSR

primitives from cj in ci.Qmsr at any instant.

Theorem 4. For a component ci ∈ CC, if ci is never an MSS, the maximum
size of ci.Qmsr is 2 ∗ |SCci |. If ci 6= Top and ci is the MSS of at least one
scenario, the maximum size of ci.Qmsr is 2 ∗ |SCci |+ 1.

Proof. If ci is never an MSS, any MSR in ci.Qmsr must come from a subcom-
ponent of ci. Lemma 1 has proved that for each cj ∈ SCci , there are at most
two MSR primitives from cj in ci.Qmsr at any instant. If any subcomponent
of ci can send an MSR to ci, the maximum number of elements of ci.Qmsr

will be 2 ∗ |SCci |. If ci 6= Top and ci is the MSS of at least one scenario,
ci.Qmsr can also include one and at most one MSR issued by ci itself at any
instant. Hence, the maximum size of ci.Qmsr is 2 ∗ |SCci |+ 1.

In summary, Table 3 shows the allocation of MSR and MSQ queues to
different types of components together with the maximum possible size of
each queue.

15

Table 3: The allocation of MSR and MSQ queues

ci MSR queue MSQ queue

(1) ci ∈ PC, ci 6= MSS No Yes (Size: 2)

(2) ci ∈ PC, ci = MSS Yes (Size: 1) Yes (Size: 2)

(3) ci ∈ C̃C, ci 6= MSS Yes (Size: 2 ∗ |SCci |) Yes (Size: 2)

(4) ci ∈ C̃C, ci = MSS Yes (Size: 2 ∗ |SCci |+ 1) Yes (Size: 2)

(5) ci = Top, ci 6= MSS Yes (Size: 2 ∗ |SCci |) No

(6) ci = Top, ci = MSS Yes (Size: 2 ∗ |SCci |) Yes (Size: 1)

5 Implementing the conflict handling mechanism

In this section, we implement our conflict handling mechanism as algorithms.
In general, the conflict handling mechanism of a component can be realized
by at most three tasks:

• MS detection(ci): This task triggers a scenario of an MSS ci. It is only
executed when ci does not have any pending scenario to be handled.

• MSR MSQ enqueue(ci): This task checks the arrival of an MSR or MSQ
and puts it in the corresponding queue of ci. Furthermore, if ci has
sent a msrk to Pci and msrk is directly rejected by the MSDM, ci
will receive a msdk from Pci . Then ci should dequeue the locked msrk

from ci.Qmsr (and further propagate the msdk to cj ∈ SCci if ci ∈ CC
and msrk comes from cj).

• CheckQueue(ci): This task implements the MSR/MSQ queue checking
rule. It is only executed when ci is not in any transition state. It calls
functions HandleMSQ(ci) and HandleMSR(ci).

Tasks MSR MSQ enqueue(ci) and CheckQueue(ci) are essential for any
component, while task MS detection(ci) is only essential if ci is the MSS
of at least one scenario. With respect to these three tasks, the following
notations deserve extra explanation:

• MS event detected is a boolean variable set to true when the MSS ci
detects a mode switch event.

• Derive new mode(ci) is a function that derives the new mode mnew
ci of

ci when ci detects a mode switch event as the MSS.

• Wait(ci, A,B) and Signal(ci, A,B) are used for ci to receive and send
primitive B via the dedicated mode switch port A, which is either
pMSX (the port for exchanging primitives with Pci) or pMSX

in (the port
for exchanging primitives with SCci).

16

• msrk(ci,mci ,m
new
ci) represents an MSR associated with a scenario k

with the immediate sender ci requesting to switch from mode mci to
mnew

ci . Similarly, msxk(ci,m
new
ci) represents a primitive other than MSR

for k.

• MSC Collecting is a boolean variable set to true when a composite
component is expecting an MSC from its subcomponents.

• validk is a boolean variable of ci ∈ CC set to true when ci receives an
msrkcj from cj ∈ SCci while MSC Collecting is true.

• k ← cj : Scenario k comes from cj .

• locked is a boolean variable of ci set to true if the first MSR in ci.Qmsr

is locked.

• enqueue(A,B) is a function enqueuing the primitive A (either MSR or
MSQ) in queue B.

• Dequeue(ci, k): If ∃msqk ∈ ci.Qmsq, then ci will remove msqk from
ci.Qmsq; if ∃msrk ∈ ci.Qmsr, then ci will remove msrk from ci.Qmsr.
Besides, after ci removes msrk, if locked is true, ci will set it to false.

• TransitionS is a boolean variable of ci set to true when ci is in tran-
sition state.

• HandleMSQ(ci) and HandleMSR(ci) are functions for the handling
of an MSQ and MSR, respectively, following the mode switch runtime
mechanism presented in Section 2.

Algorithm 1 MS detection(ci)

loop
if MS event detected then

Derive new mode(ci);
if ci 6= Top then
enqueue(msrkci , ci.Qmsr);

else{ci = Top}
enqueue(msqk, ci.Qmsq);

end if
end if

end loop

Consistent with the MSR/MSQ queue checking rule, Algorithm 3 only
checks ci.Qmsr and ci.Qmsq when ci is not in transition state. Since ci.Qmsq is
always checked before ci.Qmsr, this implies that ci.Qmsq has a higher priority.
Algorithm 3 further calls HandleMSQ(ci) and HandleMSR(ci). Depending
on the type of ci (primitive, non-top composite, or the top component),

17

Algorithm 2 MSR MSQ enqueue(ci)

loop
Wait(ci, p

MSX ∨ pMSX
in , primitive);

if primitive = msrk(cj ∈ SCci ,mcj ,m
new
cj) then

if ci ∈ CC && MSC Collecting then
validk := true;

end if
enqueue(msrkcj , ci.Qmsr);

else if primitive = msqk(ci,m
new
ci) then

enqueue(msqk, ci.Qmsq);
else{primitive = msdk(ci,m

new
ci)}

if ci ∈ CC&& k ← cj ∈ SCci then
Signal(ci, p

MSX
in ,msdk(cj ,m

new
cj));

end if
Dequeue(ci, k);

end if
end loop

Algorithm 3 CheckQueue(ci)

loop
if ¬TransitionS then

if ci.Qmsq 6= ∅ then
HandleMSQ(ci);

else
if ci.Qmsr 6= ∅ && ¬locked then

HandleMSR(ci);
end if

end if
end if

end loop

18

HandleMSQ(ci) is described by algorithms 4, 6, 8 while HandleMSR(ci) is
described by algorithms 5, 7, 9. Generally speaking, algorithms 4-9 handle
an MSR or an MSQ based on a single mode switch scenario. They are essen-
tially the same as the algorithms of the mode switch runtime mechanism
given in [4], yet they additionally consider transition state, locked MSR, the
dequeuing of an MSR or MSQ, as well as the MSR/MSQ queue updating rule
which is implemented in Algorithm 11.

Algorithms 6-9 further call another function ModeSwitch(ci,MSDM ,Top)
described in Algorithm 10 which extends the same algorithm in [4] with the
additional concerns mentioned above. Function ModeSwitch(ci,MSDM ,Top)
implements the behavior of ci when ci is about to propagate an MSQ to SCciA.
MSDM is a boolean variable set to true when ci is the MSDM for a specific
mode switch scenario; Top is a boolean variable set to true when ci = Top.

Please note that atomic component execution is not considered in this
report as the handling of atomic component execution is a separate topic
which has already been discussed in [4]. Since atomic component execution
can be easily handled by delaying the MSQ propagation to some components,
our conflict handling mechanism also works when atomic component execu-
tion is considered. Algorithms 4-10 contain the following functions:

• Reconfiguration(ci,mci ,m
new
ci) is a function reconfigurating ci from its

current mode mci to its new mode mnew
ci .

• Stop running(ci,mci) and Resume(ci,mci) mean that ci stops and re-
sumes execution in the current mode mci . Similarly, Start running(ci,m

new
ci)

starts the execution of ci in its new mode. The mode switch runtime
mechanism requires that ci stops its current execution when it enters
transition state as a Type A component. When ci leaves transition
state, it will either run in the new mode, or resume its execution in
the current mode.

• MS possible(ci,mci) is a boolean function returning true if the current
state of ci in the mode mci allows a mode switch.

• ModeMapping(ci) is a function performing the mode mapping of ci ∈
CC in its current mode.

• MSOKNOK Collection(ci) is a boolean function returning true if ci has
received an MSOK from all cj in SCA

ci . Similarly, MSC Collection(ci) is
a boolean function returning true if ci has received an MSC from all cj
in SCA

ci .

• UpdateQueue(ci, k), i.e. Algorithm 11, is a function implementing the
MSR/MSQ queue updating rule.

19

Algorithm 4 HandleMSQ(ci ∈ PC)

TransitionS := true;
Stop running(ci,mci);
if MS possible(ci,mci) then

Signal(ci, p
MSX ,msokk(ci,m

new
ci));

Wait(ci, p
MSX , primitive);

if primitive = msik(ci,m
new
ci) then

Reconfiguration(ci,mci ,m
new
ci);

Signal(ci, p
MSX ,msck(ci,m

new
ci));

UpdateQueue(ci, k);
TransitionS := false;
Start running(ci,m

new
ci);

else{ci receives an MSD}
Dequeue(ci, k);
TransitionS := false;
Resume(ci,mci);

end if
else{The current state of ci does not allow a mode switch}

Signal(ci, p
MSX ,msnokk(ci,m

new
ci));

Wait(ci, p
MSX , primitive);

if primitive = msdk(ci,m
new
ci) then

Dequeue(ci, k);
TransitionS := false;
Resume(ci,mci);

end if
end if

Algorithm 5 HandleMSR(ci ∈ PC)

Signal(ci, p
MSX ,msrk(ci,mci ,m

new
ci));

locked := true;

20

Algorithm 6 HandleMSQ(ci ∈ C̃C)

TransitionS := true;
Stop running(ci,mci);
if MS possible(ci,mci) then

ModeMapping(ci);
if SCA

ci = ∅ then

Signal(ci, p
MSX ,msokk(ci,m

new
ci));

Wait(ci, p
MSX , primitive);

if primitive = msdk(ci,m
new
ci) then

Dequeue(ci, k);
TransitionS := false;
Resume(ci,mci);

else{primitive = msik(ci,m
new
ci)}

Reconfiguration(ci,mci ,m
new
ci);

Signal(ci, p
MSX ,msck(ci,m

new
ci));

UpdateQueue(ci, k);
TransitionS := false;
Start running(ci,m

new
ci);

end if
else{SCA

ci 6= ∅}
ModeSwitch(ci, false, false);

end if
else{The current state of ci does not allow a mode switch}

Signal(ci, p
MSX ,msnokk(ci,m

new
ci));

Wait(ci, p
MSX , primitive);

if primitive = msdk(ci,m
new
ci) then

if k ← cj ∈ SCci then
Signal(ci, p

MSX
in ,msdk(cj ,m

new
cj));

end if
Dequeue(ci, k);
TransitionS := false;
Resume(ci,mci);

end if
end if

21

Algorithm 7 HandleMSR(ci ∈ C̃C)

ModeMapping(ci);
if mnew

ci = mci then
TransitionS := true;
ModeSwitch(ci, true, false);

else{mnew
ci 6= mci}

if MS possible(ci,mci) then
Signal(ci, p

MSX ,msrk(ci,mci ,m
new
ci));

locked := true;
else{¬MS possible(ci,mci)}

Signal(ci, p
MSX
in ,msdk(cj ,m

new
cj)); {k ← cj}

Dequeue(ci, k);
end if

end if

Algorithm 8 HandleMSQ(ci = Top)

TransitionS := true;
if SCA

ci = ∅ then
Reconfiguration(ci,mci ,m

new
ci);

UpdateQueue(ci, k);
TransitionS := false;
Start running(ci,m

new
ci);

else
Stop running(ci,mci);
ModeSwitch(ci, true, true);

end if

Algorithm 9 HandleMSR(ci = Top)

ModeMapping(ci);
if mnew

ci = mci || MS possible(ci,mci) then
if mnew

ci 6= mci then
Stop running(ci,mci);

end if
TransitionS := true;
ModeSwitch(ci, true, true);

else{¬MS possible(ci,mci)}
Signal(ci, p

MSX
in ,msdk(cj ,m

new
cj)); {k ← cj}

Dequeue(ci, k);
end if

22

Algorithm 10 ModeSwitch(ci ∈ CC,MSDM ,Top)

∀cj ∈ SCA
ci : Signal(ci, p

MSX
in ,msqk(cj ,m

new
cj));

if MSOKNOK Collection(ci) then
if MSDM || Top then
∀cj ∈ SCA

ci : Signal(ci, p
MSX
in ,msik(cj ,m

new
cj));

if Tci = A then
Reconfiguration(ci,mci ,m

new
ci);

end if
if MSC Collection(ci) then

UpdateQueue(ci, k);
TransitionS := false;
if Tci = A then

Start running(ci,m
new
ci);

else{Tci = B}
Resume(ci,mci);

end if
end if

else{ci is neither an MSDM nor the top component}
Signal(ci, p

MSX ,msokk(ci,m
new
ci));

Wait(ci, p
MSX , primitive);

if primitive = msik(ci,m
new
ci) then

∀cj ∈ SCA
ci : Signal(ci, p

MSX
in ,msik(cj ,m

new
cj));

Reconfiguration(ci,mci ,m
new
ci);

if MSC Collection(ci) then
Signal(ci, p

MSX ,msck(ci,m
new
ci));

UpdateQueue(ci, k);
TransitionS := false;
Start running(ci,m

new
ci);

end if
else{ci receives an MSD}
∀cj ∈ SCA

ci : Signal(ci, p
MSX
in ,msdk(cj ,m

new
cj));

Dequeue(ci, k);
TransitionS := false;
Resume(ci,mci);

end if
end if

23

else{ci receives at least one MSNOK}
if MSDM || Top then
∀cj ∈ SCA

ci : Signal(ci, p
MSX
in ,msdk(cj ,m

new
cj));

Dequeue(ci, k);
TransitionS := false;
Resume(ci,mci);

else{ci is neither an MSDM nor the top component}
Signal(ci, p

MSX ,msnokk(ci,m
new
ci));

Wait(ci, p
MSX , primitive);

if primitive = msdk(ci,m
new
ci) then

∀cj ∈ SCA
ci : Signal(ci, p

MSX
in ,msdk(cj ,m

new
cj));

Dequeue(ci, k);
TransitionS := false;
Resume(ci,mci);

end if
end if

end if

The MSR/MSQ queue updating rule is implemented as Algorithm 11,
where dequeue(A,B) is a function dequeuing a primitive A from queue B.
Actually, dequeue(A,B) can be considered as a sub-function of Dequeue(ci, k).

The relations between algorithms 3-11 are illustrated in Figure 5.

Figure 5: The call graph of algorithms 3-11

6 Verification of the conflict handling mechanism

The conflict handling mechanism, represented by the MSR/MSQ queue
checking rule and the MSR/MSQ queue updating rule, extends the mode
switch runtime mechanism of MSL with the support of multiple scenarios.
The correctness of the conflict handling mechanism can be proved by the
satisfaction of a number of properties, among which the two most important
are:

24

Algorithm 11 UpdateQueue(ci, k)

if ci ∈ PC then
if ∃msrk

′

ci ∈ ci.Qmsr then

dequeue(msrk
′

ci , ci.Qmsr);
end if

else{ci ∈ CC}
if (∃msrk

′

ci ∈ ci.Qmsr) && (T k
ci = A) then

dequeue(msrk
′

ci , ci.Qmsr);
end if
if (∃msrk

′

cj ∈ ci.Qmsr) && (cj ∈ SCci) then

if T k
cj = A && ¬validk′

then

dequeue(msrk
′

cj , ci.Qmsr);
end if

end if
if (ci = Top) && (T k

ci = A) && (∃msqk
′ ∈ ci.Qmsq) then

dequeue(msqk
′

cj , ci.Qmsq);
end if
validk

′
:= false;

end if
locked := false;

1. The conflict handling mechanism is deadlock-free.

2. A triggered scenario will eventually be handled.

For Property 2, a scenario is also considered to be handled if its associ-
ated primitives are removed by the MSR/MSQ queue updating rule.

We resort to the combination of model checking and mathematical induc-
tion for the verification of the conflict handling mechanism. In the following
subsections, we shall shed light on the modeling of the conflict handling
mechanism and its verification, respectively.

6.1 Modeling the conflict handling mechanism

The conflict handling mechanism is modeled in the model checker UP-
PAAL [7] with regard to the six cases listed in Table 3. In each case, the
conflict handling mechanism is implemented in a target component. Shown
in Figure 6, the target component can have a parent stub or two child stubs
for some cases which simulate the behaviors of its parent and subcompo-
nents by running the same conflict handling mechanism. Both the parent
stub and child stub can trigger scenarios at any time, as long as they do not
have any self-triggered pending scenarios.

Next we shall elaborate on the UPPAAL models that implement the
conflict handling mechanism. We have built six sets of UPPAAL models
based on the six cases identified in Table 3. As indicated in Figure 6, only

25

Figure 6: The modeling structure in UPPAAL

cases (3) and (4) require both the parent stub and child stubs. Compared
with Case (3), Case (4) additionally considers the self-triggered scenario
from the target component itself. Therefore, we shall focus on describing
the UPPAAL model for Case (4) which basically covers all the important
issues addressed by the models for the other five cases.

The UPPAAL model for Case (4) consists of four automata, each au-
tomaton being a UPPAAL template:

• MSRMSQenqueue: It implements the algorithms MS detection(ci) and
MSR MSQ enqueue(ci) (i.e. algorithms 1 and 2).

• TargetComp: It implements the parent stub.

• ParentStub: It implements the target component with the conflict
handling mechanism.

• ChildStub: It implements the child stub and can be instantiated into
arbitrary number of child stubs. In our model, two child stubs are
instantiated.

In our model, the transmission of a primitive is realized by channels
which can synchronize different automata. A primitive is sent by a channel
ending with ”!” while the primitive is received by the same channel, yet
ending with ”?”. Figure 7 depicts MSRMSQenqueue whose transitions are
numbered in red. Transitions 1 and 2 enqueue an incoming MSR or MSQ.
Besides, the target component itself can also trigger a scenario by Transition
7, if it does not have any pending scenario to be handled. Transition 3
handles an MSD sent from the parent. If this MSD is associated with an MSR

that comes from a child stub, the target component will further propagate
the MSD to the child stub by Transition 4. Otherwise, if this MSD is associated
with an MSR issued by the target component, Transition 5 will be taken
without further MSD propagation. Transition 6 is simply a modeling artifact
used to synchronize an urgent channel.

The parent stub is illustrated in Figure 8. The parent stub can receive
an MSR from the target component at any time when the parent stub is in

26

Figure 7: The UPPAAL model for enqueuing MSR and MSQ

its initial state Init. After receiving an MSR from the target component,
the parent stub will set a boolean variable MSRpending to true. When
MSRpending is true, the parent stub can take one of three possible actions:
(1) to send an MSQ not associated with the MSR from the target component;
(2) to send an MSQ associated with the MSR from the target component; (3) to
send an MSD associated with the MSR from the target component. Actions (1)
and (2) correspond to Transition 5, yet with different scenario IDs. Action
(3) corresponds to Transition 3. If MSRpending is false, the parent stub can
only take Action (1) by transitions 4 and 5. The other transitions exchange
primitives with the target component, simulating a real parent of the target
component. The parent exhibits some random behavior in the sense that it
may send either an MSI or MSD to the target component after it receives an
MSOK from the target component.

Figure 8: The UPPAAL model for the parent stub

Figure 9 delineates the common template for the child stub. It can

27

exchange primitives with the target component, simulating a real child of
the target component. A child stub can trigger a scenario by Transition 1.
If this scenario is directly rejected by the MSDM, the child stub will receive
an MSD from the target component, realized by Transition 2. Note that such
an MSD is modeled by a channel MSD2[Me] in UPPAAL, with Me as the
identity of the child stub. This distinguishes the case when the child stub
receives an MSD for a different reason by the channel MSD[Me]. The child
stub also has random behavior as it can send either an MSOK or MSNOK in
response to the MSQ from the target component.

Figure 9: The UPPAAL model for the child stub

The UPPAAL model of the target component is presented in Figure 10.
In its initial state Idle, it checks its MSQ and MSR queues. If its MSQ is
not empty, it will handle the first MSQ in its MSQ queue by Transition 7.
If the current state of the target component allows such a mode switch, it
will fire Transition 8 or 9. Transition 8 is taken if the MSQ being handled is
associated with the MSR sent by the target component before. In this case,
the target component can reuse the mode mapping result based on the MSR.
Otherwise, Transition 9 is taken and mode mapping must be performed.
Alternatively, if the current state of the target component does not allow
such a mode switch, it will send an MSNOK to the parent stub by Transition
10. After that it will receive an MSD from the parent stub by Transition 11.
If the scenario being handled comes from a child stub, the target component
will propagate the MSD to the child stub by Transition 13. Otherwise, if this
scenario is triggered by the target component itself, Transition 12 will be
taken with no further MSD propagation.

State MSQprop has two outgoing transitions 14 (if the target compo-
nent has at least one Type A subcomponent for the current scenario) and
35 (if the target component has no Type A subcomponents for the current
scenario). If Transition 8 is taken, the next transition must be 14 because
the current scenario comes from a child stub which must be Type A. If Tran-

28

sition 9 is taken, then the next transition can be either 14 or 35. The target
component propagates an MSQ to its Type A subcomponents by transitions
14-16. Then in State OKCollection the target component can receive ei-
ther an MSOK (Transition 17) or MSNOK (Transition 18) from its child stub(s).
Depending on whether the target component is the MSDM for the current
scenario and the response from the child stub(s), four alternative transitions
19-22 can be fired subsequently. Transition 19 means that the target com-
ponent is the MSDM and it receives at least one MSNOK, hence it propagates
an MSD to its Type A child stubs by transitions 26 and 27, and then leaves
transition state by Transition 28. Transition 21 also means that the target
component is the MSDM which yet only receives MSOK. This leads to the MSI
propagation to its Type A child stubs by transitions 29-31. Transitions 20
and 22 are fired when the target component is not the MSDM. Transition 20
is taken, i.e. the target component sends an MSNOK to the parent stub, if the
target component receives at least one MSNOK and it is followed by Transition
25 as the target component receives an MSD from the parent stub. Transition
22 is taken as the target component sends an MSOK to the parent stub. This
is followed by Transition 23, where the target component receives an MSI

from the parent stub. After the MSI propagation to the Type A child stubs,
the target component can receive MSC from a child stub via Transition 32.
After that, the target component can leave transition state by Transition 33
by sending an MSC to the parent stub to indicate mode switch completion (if
the target component is not the MSDM), or by Transition 34 (if the target
component is the MSDM).

Transitions 35-38 are taken only when the target component has no
Type A subcomponents. Therefore, the target component will only inter-
act with the parent stub. Furthermore, the initial handling of an MSR is
realized by transitions 1-6. Transition 3 represents a self-triggered scenario
which always leads to the MSR transmission to the parent stub by Transition
6. Transitions 1 and 2 represent a scenario from a child stub which could
be approved (Transition 4), or rejected (Transition 5), or forwarded to the
parent stub (Transition 6). The MSR/MSQ queue updating rule is imple-
mented in the functions updateQueue() and updateQueue2(), which can be
found in transitions 33, 34 and 38. If the target component is the MSDM
(i.e. a Type B component), updateQueue2() is applied so that the target
component does not remove a pending MSR issued by itself. Otherwise, up-
dateQueue() is applied which also removes any pending MSR issued by the
target component.

6.2 Model equivalence between a component and a stub

In order to ensure that a parent stub indeed behaves as a real parent and a
child stub indeed behaves as a real child, we need to prove the equivalence
between a stub and the corresponding component. A composite component

29

Figure 10: The UPPAAL model for the target component

should be equivalent to a parent stub for its subcomponents. A non-Top
component should be equivalent to a child stub for its parent. Our focus
here will be on Case (4) since a non-Top composite component can take both
roles, either being a parent stub for its subcomponents or being a child stub
for its parent. In Case (4), the complete behavior of the target component is
jointly represented by the automata in figures 10 and 7. Basically, the model
of the target component includes the interaction (i.e. exchanging primitives)
with the parent and subcomponents, as well as local computations. If the
target component is considered as a parent stub, its observable behavior
should only be the interaction with a single subcomponent. Likewise, if
the target component is considered as a child stub, its observable behavior
should only be the interaction with the parent. Therefore, the observable
behavior of the target component should be extracted from its complete
model and then compared with the corresponding stub.

First let’s consider the target component as a parent stub for one of
its subcomponents. Then the observable behavior of the target component
is only the interaction with this subcomponent. The first step of extract-
ing the observable behavior of the target component is to remove all the
guards, assignments as well as transitions related to the primitive exchange
with the parent stub. Also, since a single subcomponent is unaware of the
interaction between the target component and its other subcomponents,
the MSQ/MSI/MSD propagation in the model of the target component can
be changed to the single transmission of a primitive to an individual sub-
component. After this transformation, the model of the target component

30

(see Figure 10) will be simplified to the model depicted in Figure 11. We
can further remove some redundant committed locations in Figure 11 and
combine it with the model in Figure 7. In addition, transitions 7, 8 and
13 in Figure 11 are actually used to receive a primitive from all the Type
A subcomponents of the target component, thus can be changed while con-
sidering a single subcomponent. Figure 12 depicts the model of the target
component after the second step of transformation. Comparing Figure 12
and Figure 8, we can conclude that the simplified model of the target com-
ponent is equivalent to a parent stub for a single subcomponent. It should
be noted that Transition 2 in Figure 12 is only taken if an MSR is pending
after Transition 1.

Figure 11: Manual model transformation from the target component to a
parent stub (Step 1)

For the parent of the target component, the target component will take
the role of a child stub. Similarly, by removing all the guards, assignments
as well as interactions with the subcomponents, the model of the target
component can be reduced to the model shown in Figure 13. The model in
Figure 13 can be further simplified by removing some redundant transitions
and combining the model in Figure 7. The model after this transformation
is depicted in Figure 14. According to Figure 14, some redundant transi-
tions can be found. For instance, as a child stub, transitions 4 and 5 are
essentially the same as transitions 6-9. Transitions 14-17 are essentially the
same as transitions 10-13. After removing these redundant transitions, we
can compare the simplified model in Figure 15 with the model of a child
stub in Figure 9, which are equivalent with regard to the interaction with
the parent.

31

Figure 12: Manual model transformation from the target component to a
parent stub (Step 2)

Figure 13: Manual model transformation from the target component to a
child stub (Step 1)

6.3 Verification

Based on the UPPAAL model described in Section 6.1, Property 1 can be
easily verified by the UPPAAL verifier, where Property 1 can be expressed

32

Figure 14: Manual model transformation from the target component to a
child stub (Step 2)

Figure 15: Manual model transformation from the target component to a
child stub (Step 3)

by A[] not deadlock. Table 4 shows the verification time1 for each case, yet
without considering Case (4).

All the five cases in Table 4 are proved to be deadlock-free with rea-
sonable verification time. The verification for Case (4) demands for more
efforts in that UPPAAL ends up with memory exhaustion due to the grow-
ing model complexity. This problem is remedied by two means. The first is
to use Compact Data Structure in UPPAAL for state space representation

1Verification was performed on MacBook Pro, with 2.66GHz Intel Core 2 Duo CPU
and 8GB 1067 MHz DDR3 memory.

33

Table 4: Verification time of deadlock-freeness, excluding Case (4)

Case Verification time

(1) ci ∈ PC, ci 6= MSS 0.002s

(2) ci ∈ PC, ci = MSS 0.013s

(3) ci ∈ C̃C, ci 6= MSS 33.539s

(5) ci = Top, ci 6= MSS 0.268s

(6) ci = Top, ci = MSS 2.56s

instead of the default representation DBM (Difference Bound Matrices). A
direct consequence of this is longer verification time but much less mem-
ory consumption. In addition, we divide the model for Case (4) into four

simpler models that can be verified separately. Case (4) considers ci ∈ C̃C
which is an MSS. Each scenario k triggered by ci can affect SCA

ci (k). Since
ci has two subcomponents (e.g. c1 and c2) in the model, k can lead to four
sub-cases concerning SCA

ci (k): (a) T k
c1 = T k

c2 = A; (b) T k
c1 = A, T k

c2 = B; (c)
T k
c1 = B, T k

c2 = A; (d) T k
c1 = T k

c2 = B. Cases (b) and (c) are symmetrical,
hence it is sufficient to only consider three cases, e.g. (a), (b) and (d). Using
Compact Data Structure and taking (a), (b) and (d) as three sub-cases of
Case (4), we successfully verified the deadlock-freeness for Case (4), with
the verification time summarized in Table 5.

Table 5: Verification time of deadlock-freeness: Case (4) (using Compact
Data Structure)

Sub-case Verification time

(a) T k
c1 = T k

c2 = A 475.1s

(b) T k
c1 = A, T k

c2 = B 523.855s

(d) T k
c1 = T k

c2 = B 286.052s

Property 2 cannot be directly verified by the UPPAAL models made
for the verification of Property 1 except for cases (1) and (5). The reason
is that these models allow the triggering of a scenario at any time if it is
possible. Since the conflict handling mechanism assigns higher priority to
MSQ queue, if the parent stub keeps sending a msqk (not associated with
the MSR sent from the child stubs) to the target component, a pending msrk

′

from a child stub which is Type B for k may never be handled. This problem
should not exist in a real-world system because the triggering of a scenario
is usually not a frequent event. In order to make Property 2 verifiable, we
slightly modify the parent stub for cases (2), (3) and (4) such that for every

34

two consecutive MSQ primitives (msqk and msqk
′
) sent by the parent stub, at

least either k or k′ originates from a child stub. The modified parent stub is
shown in Fig. 16. Since this modification does not alter the conflict handling
mechanism, the modified models can be used to verify both properties. For
Case (6), we modify the target component so that each two consecutive
scenarios triggered by itself must be separated by the handling of a scenario
coming from a child stub. Since Case (1) only considers scenarios from the
parent stub while Case (5) only considers scenarios from the child stubs,
they do not need any modification.

Figure 16: The UPPAAL model for the modified parent stub

Based on the modified UPPAAL models, Property 1 and Property 2 are
both satisfied for cases (1)-(6). Property 2 splits into three sub-properties:

• Property 2.1—MSQqueueN>0–>MSQqueueN==0 : A scenario from
the parent stub can eventually be handled. MSQqueueN is the num-
ber of elements in the MSQ queue of the target component. When
MSQqueueN is greater than 0, it will eventually become 0.

• Property 2.2—pending–>!pending : A scenario triggered by the target
component itself can eventually be handled. pending is a boolean
variable set to true when the target component triggers a scenario, and
set to false when it is completely handled by the target component.

• Property 2.3—ChildStub1.MSRpending–>!ChildStub1.MSRpending : A
scenario from a child stub can eventually be handled. MSRpending is
a boolean variable set to true when a child stub triggers a scenario,
and set to false when it is completely handled by the child stub.

Table 6 summaries the verification times of properties 1 and 2, exclud-
ing Case (4). Note that some sub-properties of Property 2 is only valid

35

for certain cases. For instance, Property 2.2 is only valid when the target
component is an MSS, i.e. for cases (2), (4) and (6).

Table 6: Verification times of properties 1 and 2, excluding Case (4)

Case Property 1 Property 2.1 Property 2.2 Property 2.3

(1) ci ∈ PC, ci 6= MSS 0.002s 0.003s – –

(2) ci ∈ PC, ci = MSS 0.009s 0.008s 0.009s –

(3) ci ∈ C̃C, ci 6= MSS 25.14s 22.361s – 33.915s

(5) ci = Top, ci 6= MSS 0.268s – – 0.283s

(6) ci = Top, ci = MSS 3.585s – 3.514s 4.143s

The verification of properties 1 and 2 for Case (4) is carried out for the
sub-cases listed in Table 5, using Compact Data Structure. The verification
times for each case are summarized in Table 7.

Table 7: Verification times of properties 1 and 2 for Case (4) (using Compact
Data Structure)

Sub-case Property 1 Property 2.1 Property 2.2 Property 2.3

(a) T k
c1 = T k

c2 = A 385.772s 385.793s 617.648s 589.801s

(b) T k
c1 = A, T k

c2 = B 429.765s 446.608s 709.125s 700.909s

(d) T k
c1 = T k

c2 = B 240.807s 239.164s 419.807s 398.801s

Apart from properties 1 and 2, we additionally verified the maximum
sizes of MSQ and MSR queues, as indicated in Table 3. However, our UP-
PAAL models assume that the handling of a primitive for each component
is atomic and instantaneous, as the handling of a primitive in UPPAAL can
be realized by committed states such as MSIprop and MSIprop2 in Fig-
ure 10. This assumption is actually not required by the conflict handling
mechanism, nevertheless, without such an assumption, many committed
states in our UPPAAL models must be replaced with normal states. As
a consequence, the verification for each sub-case of Case (4) will end up
with state explosion, even if Compact Data Structure is used. Due to this
assumption, the maximum number of elements in the MSQ queue is 1 but
not 2. In our models, the maximum size of the MSQ queue is set to be
1 and the maximum size of the MSR queue is defined based on Table 3.
The verification results show that the maximum number of elements can be
reached for both MSQ and MSR queues, yet cannot be exceeded, otherwise

36

an error will occur during the verification.
Now that the correctness of the conflict handling mechanism has been

verified by model checking assuming that each composite component has
two subcomponents, we can further prove its correctness for a more gen-
eral system. Since the conflict handling mechanism is not dependent on the
number of subcomponents of any composite component, the conflict han-
dling mechanism works for a CBMMS where each composite component has
arbitrary number of subcomponents.

7 Related work

The extended MECHATRONICUML (EUML) [8] by Heinzemann et al. is cur-
rently the most closely related work to our MSL. In EUML, each compo-
nent has reconfiguration ports which resemble the dedicated mode switch
ports of our mode-aware component model. Each composite EUML com-
ponent internally has a manager and executor which play the same role as
our mode switch runtime mechanism. Components can propagate messages
for requesting reconfiguration or executing reconfiguration. The propaga-
tion of these messages can be compared with our MSP protocol. However,
the MSP protocol highly relies on the mode mapping between components
whereas the message propagation in EUML is controlled by some reconfig-
uration rules defined in the manager of each component. EUML requires
that reconfiguration should be performed bottom-up; this is similar to our
mode switch dependency rule which yet allows concurrent reconfigurations
of different components. The major difference between EUML and MSL is
that EUML focuses more on component reconfiguration while mode is not
addressed. In general, MSL is relatively more mature since EUML is more
recently developed. EUML is also aware of the transmission of multiple re-
quest messages, which is comparable to the triggering of multiple scenarios
described in this paper, however, no concrete solutions have been provided
yet.

Another recent work related to MSL is the oracle-based approach by Pop
et al. [9]. The basic idea is to abstract component behaviors into a property
network spread throughout the component hierarchy. The mode of each
component is modeled as a property and mapped from a set of properties
to their valuations. A single property change can be propagated throughout
the property network, potentially leading to the valuation change of other
properties. And then the new mode of each component can be derived after
the update of the property network. A finite-state machine called Oracle
is offline constructed to guarantee predictable update time of the property
network. The construction of Oracle implies that the mode switch handling
requires global information of the property network. In contrast, MSL is
fully distributed, requiring no global information.

37

Mode switch has been addressed in a number of component models, such
as SaveCCM [10], COMDES-II [11] and MyCCM-HI [12], to name a few.
There are also some other component models which have been commer-
cialized, e.g. Koala [13] (targeting consumer electronics) and Rubus [14]
(targeting ground vehicles). These component models have different no-
tions of mode switch handling. In Koala and SaveCCM, a special switch is
introduced to achieve the structural diversity of a component. Depending
on the input data, switch can select one of multiple outgoing connections.
COMDES-II uses a state-machine component to switch component configu-
rations in different modes. In Rubus, mode is treated as a system property.
A system-wide static configuration of components is defined for each mode.
MyCCM-HI provides a more advanced mechanism for handling mode switch.
Each MyCCM-HI component is mode-aware and is associated with a mode
automaton which implements its mode switch mechanism. In addition, mode
switch is also addressed by languages such as the Architecture Analysis &
Design Language [15], where a state machine is used to represent the mode
switch behavior of a component. Each state machine consists of a number
of states (modes), transitions between these states (mode switches) and in-
put/output event ports used for mode switch triggering. Compared with
MSL, none of these works provide any systematic strategy to coordinate the
mode switches of different components, due to the common assumption of
independent mode switches between components.

8 Conclusion

In this paper, we have proposed a conflict handling mechanism as a supple-
ment to the Mode Switch Logic (MSL) which is dedicated to the develop-
ment of Component-Based Multi-Mode Systems (CBMMSs) as well as their
mode switch handling. The conflict handling mechanism enables MSL to
deal with concurrent triggering of multiple scenarios. The correctness of
the conflict handling mechanism has been verified by model checking and
inductive arguments.

The current conflict handling mechanism can be ameliorated in future by
prioritizing scenarios so that scenarios with higher priorities can be handled
earlier. Another potential improvement is the consideration of timeout.
After triggering a scenario, a component may expect it to be handled within
a specified time interval. If the pending scenario cannot be handled in
time, a timeout event may be issued for further actions. We also intend to
adapt MSL to safety-critical systems. According to the mode switch runtime
mechanism of MSL, a scenario is rejected even if a Type A component is
not ready to switch mode. In a safety-critical system, some mode switch
can be rather urgent and should not be rejected. Such a mode switch would
require special treatment.

38

Acknowledgment

This work is supported by the Swedish Research Council via the ARROWS
project at Mälardalen University.

References

[1] I. Crnković and M. Larsson, Building reliable component-based software
systems. Artech House, 2002.

[2] I. Crnković, S. Sentilles, A. Vulgarakis, and M. R. V. Chaudron, “A
classification framework for software component models,” IEEE Trans-
actions on Software Engineering, vol. 37, no. 5, 2011.

[3] P. Hošek, T. Pop, T. Bureš, P. Hnětynka, and M. Malohlava, “Com-
parison of component frameworks for real-time embedded systems,” in
Component-Based Software Engineering, vol. 6092 of Lecture Notes in
Computer Science, 2010.

[4] Y. Hang, Mode switch for component-based multi-mode systems. Licen-
tiate thesis, Mälardalen University, Väster̊as, Sweden, December 2012.

[5] Y. Hang, J. Carlson, and H. Hansson, “Towards mode switch handling
in component-based multi-mode systems,” in Proceedings of 15th In-
ternational ACM SIGSOFT Symposium on Component Based Software
Engineering, 2012.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. Addison Wesley, 1987.

[7] K. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” STTT-
International Journal on Software Tools for Technology Transfer, vol. 1,
no. 1-2, pp. 134–152, 1997.

[8] C. Heinzemann and S. Becker, “Executing reconfigurations in hierar-
chical component architectures,” in Proceedings of 16th International
ACM SIGSOFT Symposium on Component Based Software Engineer-
ing, 2013.

[9] T. Pop, F. Plasil, M. Outly, M. Malohlava, and T. Bureš, “Property
networks allowing oracle-based mode-change propagation in hierarchi-
cal components,” in Proceedings of 15th International ACM SIGSOFT
Symposium on Component Based Software Engineering, 2012.

[10] H. Hansson, M. Åkerholm, I. Crnković, and M. Törngren, “SaveCCM -
a component model for safety-critical real-time systems,” in Proceedings
of Euromicro Conference, Special Session on Component Models for
Dependable Systems, 2004.

39

[11] X. Ke, K. Sierszecki, and C. Angelov, “COMDES-II: A component-
based framework for generative development of distributed real-time
control systems,” in Proceedings of 13th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications,
2007.

[12] E. Borde, G. Häık, and L. Pautet, “Mode-based reconfiguration of crit-
ical software component architectures,” in Proceedings of Conference
on Design, Automation and Test in Europe, 2009.

[13] R. V. Ommering, F. V. D. Linden, J. Kramer, and J. Magee, “The
Koala component model for consumer electronics software,” Computer,
vol. 33, no. 3, 2000.

[14] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg, J. Lundbäck, and
K. Lundbäck, “The Rubus component model for resource constrained
real-time systems,” in Proceedings of 3rd International Symposium on
Industrial Embedded Systems, 2008.

[15] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture analysis
& design language (AADL): An introduction,” Tech. Rep. CMU/SEI-
2006-TN-011, Software engineering institute, MA, Feb. 2006.

40

