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Abstract. ISO 26262 is a functional safety standard that targets the
automotive domain. This standard focuses on single system certifica-
tion1 and does not contain guidelines to certify product lines. Thus, to
be ISO 26262-compliant, for each product of a product line, a company
must provide almost from scratch all the work products required by
the standard, including a safety case. Current product lines engineer-
ing methods represent an effective solution to systematize reuse. These
methods, however, are not aligned with safety standards and thus they
lose their strength when adopted to engineer safety-critical product lines.
To enable and accelerate systematic reuse, we introduce VROOM & cC,
a new method that by integrating traceable management of commonali-
ties and variabilities at each step of the first two phases of the ISO 26262
safety life-cycle as well as at each stage of the safety case life-cycle permits
safety managers to argue about functional safety of product line mem-
bers by reusing argumentation fragments. To illustrate our approach, we
consider a small-sized safety-critical product line.

Keywords: ISO 26262, Safety-critical product lines, Reusability, Variability
management, Families of safety cases, GSN for product lines

1 Introduction

Product lines (PLs) represent sets of products that exhibit significant common
characteristics and thus can be developed concurrently in order to systematize
and maximize reuse. Within the automotive domain, PLs can be identified very
frequently. The road vehicles (e.g. cars) for instance may be treated as a PL.
Similarly, the majority of the sub-systems that compose road vehicles may be
treated as PLs. These PLs, however, exhibit one additional common character-
istic: they all have to guarantee a certain level of functional safety. Some classes

1 In this paper, we use the term certification to denote demonstration of functional
safety of a given product in compliance with a given standard.
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of road vehicles are already expected to comply with ISO 26262 [1] (the re-
cently issued functional safety standard), some others (e.g. trucks and buses)
are expected to be compliant with it only by 2016 [2].

The traditional Product Line Engineering (PLE) methods are not aligned
with safety standards and thus they are not adequate to engineer safety-critical
PLs. Similarly, ISO 26262 mainly addresses single product development and
certification and no guidelines are at disposal to address PLs. As a consequence,
currently, very little reuse can be systematically planned since no methodological
framework is available. To overcome this lack, we propose to align the ISO 26262
safety life-cycle as well as the typical safety case life-cycle with traditional PLE
methods. More specifically, we propose a new method called VROOM (Vehicle
Road Obligation Oriented Method) & controlled CRASHES (Claim Reuse for
Arguing Safely on Hazards Elimination and or Softening). VROOM & cC allows
users to specify, trace, and manage commonalities and variabilities within work-
products at each step of the first two phases of the ISO 26262 life-cycle as
well as safety case life-cycle. Since these work-products are used as evidence
for certification purposes to claim for functional safety, by specifying what is
common and what varies within them, we also specify what is common and what
varies within certification artefacts (i.e. safety case). Thus, from a PL-oriented
certification artefact it is easy to derive/build certification artefacts for single
products by reusing what is common in combination with adequate variations.
To show the effectiveness of VROOM & cC as a reuse catalyst, we apply it to a
small-sized safety critical PL (a simplified version of the one considered in [3]).

The rest of the paper is organized as follows. In Section 2 we recall essential
background. In Section 3, we present VROOM & cC and in Section 4 we apply
it to the small-sized safety critical PL. In Section 5, we present some related
work. Finally, concluding remarks and future work can be found in Section 6.

2 Background

In this section we recall the essential background on which we base our work.
In Section 2.1, we recall the basic principles of PLE. In Section 2.2, we give an
overview of ISO 26262. In Section 2.3, we recall the definition of safety case and
how sets of safety cases can be documented. Finally, in Section 2.4 we introduce
the safety-critical PL to be developed in compliance with ISO 26262.

2.1 Product Lines Engineering (PLE)

A (Software) PL is a set of (software-intensive) systems sharing a common,
managed set of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set of core assets
in a prescribed way [4]. PLE methods deal with the concurrent engineering of
a family of products. These methods are characterized by two phases: domain
engineering and application engineering. In the first phase, commonalities and
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VROOM &controlled CRASHES 3

variabilities are engineered; while in the second one, they are reused to derive
single products.

To make the paper self-contained, in what follows we provide some basic def-
initions used within the PL community. A commonality is the ability of an asset
to be maintained as a constant; while a variability is the ability of an asset to
be changed (customized) for use in a particular context. Variabilities are defined
through variation points and variants. A variation point is the place within an
artefact where a decision can be made [5]. Variants represent the alternatives
associated to a variation point. A Feature Diagram (FD) is a graphical repre-
sentation of a hierarchically arranged set of features (properties of a system that
are relevant to some stakeholder and are used to capture commonalities or dis-
criminate among systems in a family). Features might be mandatory (in case of
commonalities), optional or alternative (in case of variabilities).

2.2 ISO 26262-compliant Safety-critical Systems Engineering

The ISO 26262 functional safety standard [1] provides appropriate development
processes, requirements and safety integrity levels, called ASILs, specific for
the automotive domain. More specifically, ISO 26262 addresses the functional
safety of electrical/electronic and programmable electronic safety-related sys-
tems within road vehicles with a maximum gross weight of 3.5 tons.

To develop a system in compliance with the standard, the development pro-
cess shall be adopted and all the work-products shall be provided, including a
safety case. The reference system development process model mandated by the
standard is a V-model, which consists of three phases: Concept, Product devel-
opment, and Production and operation phases. In this paper, we mainly focus
on the first two phases, which are briefly recalled in what follows.

Concept phase (part 3)- During this phase, the item which could be a system
or array of systems is firstly defined. This entails in defining the requirements of
the item as well as the purpose, the primarily assumed architecture, boundary
and interfaces of the item. Secondly, potential hazards of the item are identified
and ASIL-classified through hazard analysis and risk assessment, by consider-
ing the severity, controllability and exposure combinations. Concurrently, Safety
Goals (SGs), which inherit the ASILs of the corresponding hazards, shall be
formulated for the identified hazards. These SGs describe requirements needed
to avoid hazards or to reduce the risk associated with hazards to an accept-
able level. Thirdly, Functional Safety Requirements (FSRs) shall be specified for
each SG. FSRs describe basic safety mechanisms, implementation- independent
safety-related behaviour, and safety measures that have to be provided by ele-
ments in the primarily assumed system architecture for complying with the SGs
and their ASILs. FSRs only consider functional aspects of the system and not
how these are technically implemented in hardware or software. FSRs inherit
the same ASILs as the corresponding SGs and shall be allocated to elements of
the primarily assumed system architecture.

Product development phase (part 4, 5 and 6)- This phase includes activities
that pertain to the entire system, the hardware and the software. In this pa-
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per, we limit our attention to the activities related to the entire system (part
4). At the system level, Technical Safety Requirements (TSRs) shall firstly be
specified for each FSR. TSRs shall detail and decompose the FSRs into require-
ments which describe how to implement the safety mechanisms described by the
FSRs. Secondly, a system design that meets the FSRs and TSRs shall be devel-
oped. Hence, the design must be verified against the TSRs. Verification may be
conducted using different methods e.g. Fault Tree Analysis, FTA.

ISO 26262 mainly targets single systems. However, to deal with series of sys-
tems, the Safety Element out of Context (SEooC) concept has been introduced.
SEooC denotes reusable subsystems or components which are not yet items and
which are developed without having in mind particular vehicle or customer.
Despite the introduction of this concept, reuse is not systematically supported.

2.3 Families of Safety Cases

To make the paper self-contained, we partly recall what was summarized in [6]
concerning safety cases for single products. The main focus of this subsection,
however, is on families of safety cases (that we call safety case lines) aimed at
arguing about functional safety of PLs.

A safety case is a contextualized structured argument containing process and
product-based arguments to link evidence with claims. Process-based arguments
show that the system has been developed in compliance with the processes man-
dated by the standards. Product-based arguments show that the product satisfies
the safety requirements derived during the hazards analysis. The purpose of a
safety case is to show that a system is acceptably safe. A safety case should
not be provided at the end of the development life-cycle. Its provision should be
aligned with the system development life-cycle and should go through at least
three (preliminary, interim, and operational) stages [7]. In the context of PLs,
a safety case exhibits commonalities as well as variabilities, thus it represents a
family of safety cases. Variabilities are classified into intrinsic (a variation due
to style variation used for arguing) and extrinsic (a variation due to a product
variation) [8]. In this paper we focus on the extrinsic ones.

To document safety cases, Goal Structuring Notation (GSN) [9] represents a
promising means. GSN, in particular, permits users to structure their argumen-
tation into flat or hierarchically nested graphs (constituted of a set of nodes and
a set of edges), called goal structures. Since GSN has limited modelling capabili-
ties, recently it has been extended to support variability modelling to document
safety cases of PLs [8]. This extension is of particular interest in the context
of this paper since it allows safety managers to document extrinsic variability,
which makes evident the impact onto the goal-structure due to the choices per-
formed during the application engineering phase. Thus, by introducing support
for variability, GSN offers implicitly the possibility to model a set of safety cases
(a safety case line). In Figure 1, we recall the concrete syntax of some core and
extended GSN modelling elements used in Section 4. In what follows, we also
briefly recall their informal semantics. The interested reader may refer to [8, 9]
for a complete introduction of GSN and its extensions: Goal : represents a claim
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VROOM &controlled CRASHES 5

Fig. 1. Subset of extended GSN modelling elements for PLs.

about the system. Strategy : represents a method that is used to decompose a
goal into sub goals. Solution: represents the evidence that a particular goal has
been achieved. Context : represents the domain or scope in which a goal, evi-
dence or strategy is given. Supported by : represents an inferential or evidential
relationship. Inferential relationships declare that there is an inference between
goals in the argument. Evidential relationships declare the link between a goal
and the evidence used to substantiate it. In context of : represents a contextual
relationship. Obligation: represents a condition related to a variation point due
to intrinsic or extrinsic variability. In section 4 we use the obligation for extrinsic
variability. Alternative: represents a XOR choice between different argumenta-
tion fragments. As Figure 1 shows, all the nodes as well as the obligation element
are characterized by an identifier (ID) and a statement in natural language.

2.4 PL of Fuel Level Estimation and Display Systems

The PL under examination is called Fuel Level Estimation and Display Product
Line (FLEDPL). Each single product (Fuel Level Estimation and Display Sys-
tem, shortened FLEDS [6]) is part of a system of systems aimed at providing the
controlling functionalities needed in heavy trucks and buses produced by Scania.
Thus each FLEDS plays a significant role in terms of global system safety.

The main common functionality characterizing all products of FLEDPL con-
sists of the estimation of the fuel level in the vehicle tank and presentation of
this level on the display located in the dashboard. Additionally, the driver must
be warned if the fuel level is below a predefined level. As Figure 2 shows, these
functionalities are deployed onto different ECUs (Electronic Control Units): In-
strument Cluster (ICL), Coordinator (COO), and Engine Management System
(EMS). In Figure 2, a filled bullet describes that an ECU is mandatory, while
an empty bullet describes that an ECU is optional. Thus, ICL and COO are
mandatory elements of the PL while EMS is an optional one, depending on the
vehicle type (truck or bus). EMS is responsible for calculating the fuel consump-
tion rate. COO is responsible for estimating the fuel level and determining if the
fuel level is low. To reduce noise (due to fuel fluctuations within the tank), COO
provides the estimation by filtering the fuel level using a Kalman filter in case of
trucks and a low-pass filter in case of buses. To do that, in case of trucks, it uses
the information provided by EMS. Finally, the ICL is responsible for displaying
the fuel level and activating the low fuel level warning, if needed. The ECUs are
interconnected by a CAN (Controller Area Network) bus.

Each product of the PL has one sensor located in the fuel tank to sense
the fuel volume and one actuator (fuel gauge) for displaying the fuel level to
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6 Barbara Gallina, Antonio Gallucci, Kristina Lundqvist, and Mattias Nyberg

the driver. Moreover, a lamp is used to warn the driver in case a low fuel level
has been reached. Products may differ with respect to various characteristics
e.g. tank capacity, tanks number, fuel type, vehicle type onto which they are
deployed. In this paper, we focus on the last characteristic and its implication
in the way the common functionalities are consequently differently developed.

The correct behavior of each FLEDS or at least a behavior qualifiable as
acceptably safe is necessary to contribute to the functional safety of the global
system. For instance, in the case of low fuel level, if the driver is not alerted
(omission failure), it may happen that suddenly the vehicle (truck or bus) stops
and, in case of normal traffic conditions, human life can be threatened.

Fig. 2. Fuel Level Estimation and Display Product Line.

3 VROOM & controlled CRASHES

As recalled in the background, PLE represents a valid solution to enable and
speed up reuse. However, when the PL is constituted of safety-critical systems,
PLE must be adapted [10] to take care of safety-related activities required for
certification purposes. As mentioned in the introduction and as experienced while
acquiring familiarity in building safety cases [6], ISO 26262 does not provide
systematic support for PL development and certification. As a consequence, to
be ISO 26262-compliant, a company that manufactures a set of products that
can be treated as a PL tends to re-invent the wheel each time a safety case for
single products is needed. To enable and accelerate the reuse of development
and argumentation artefacts, we propose a new method called VROOM & cC.
The main idea of VROOM & cC is to align PLE method with the ISO 26262
safety life-cycle as well as with the safety case life-cycle. To do that we propose
a double V reference model for both life-cycles (development and safety case).
The double V is motivated by the integration of the two-phase PLE method.
Figure 3 shows the double V for the development life-cycle. At each level of the
first two phases of the ISO 26262 safety life-cycle, we propose to focus on the
domain engineering phase first and then on the application engineering phase.
Based on literature results, at each level, we propose to adopt appropriate PLs-
oriented modelling capabilities, allowing for specification and management of
what varies and what remains constant. Whenever, no modeling capabilities
supporting PLs are at disposal, we extend the well-known single product-oriented
ones to overcome the lack. The key idea is to include placeholders for the points
that may vary and at the same time indicating the corresponding obligations
(which, as recalled in Section 2.3, represent conditions related to either intrinsic
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VROOM &controlled CRASHES 7

or extrinsic variability). For this reason we use the obligation term to name
our approach. Thanks to these placeholders and their corresponding obligations,
it is possible to provide a management means over all variation points in the
development and certification life-cycle allowing for navigation and resolution.
For space reasons, Figure 3 only sketches the proposed PLs-oriented modelling
capabilities. These modeling capabilities are partially used in Section 4 and thus
their PL-oriented features become clear during their usage.

Fig. 3. ISO 26262 safety life cycle and PLE alignment in VROOM & cC.

As Figure 3 shows, to define the item(s), we propose the adoption of FDs, as
well as extended SysML block and activity diagrams [3]. More specifically, FDs
are used to model the usage context and the PL requirements; while SysML block
and activity diagrams are used to define respectively the structure and behaviour
of the PL (preliminary architecture). To analyze the hazards and assess the risk,
we use an extended HAZard and OPerability analysis (HAZOP). As proposed
in the context of the course Safety-critical systems engineering [11], we consider
additional fields (namely, exposure, controllability, severity, and ASIL) in order
to be compliant with ISO 26262. Moreover, to deal with PLs, we add two fields:
one called Obligation and the other one called Variation points. We use the first
one to specify, trace and provide management support for interdependencies of
variants selection. We use the second one to specify variation points within the
HAZOP analysis. Variation points are specified by indicating the type of vari-
ation, which can be either optional (OPT) or alternative (ALT), as well as the
data that may vary with the possible values. To define the SGs as well as FSRs
and TSRs, we propose to use FDs enriched by obligations. To design the archi-
tecture, we propose to extend SysML block and activity diagrams in a similar
way as done with other modeling capabilities. To conduct safety analysis at the
architectural level, since within the safety community, safety analysis techniques
have been extended to reason about PLs, we propose to use [12] but we rename
the condition modeling element into obligation for naming conventions and con-
sistency within our approach. To document the safety case line, we propose to
use the extended GSN (which was partially recalled n Section 2.3) at each stage
of the safety case life-cycle.
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8 Barbara Gallina, Antonio Gallucci, Kristina Lundqvist, and Mattias Nyberg

All the models that constitute the work-products of the safety develop-
ment life-cycle and of the safety case life-cycle are not disconnected. Inclu-
sion/exclusion dependencies between variation points placed within different
models are carefully traced, either by using the Obligation symbol or by us-
ing semantic equivalents. Traceable management of variabilities allows VROOM
& cC users to accelerate controlled Claim Reuse for Arguing Safely on Hazards
Elimination and or Softening (CRASHES).

4 Applying VROOM & cC to the PL of FLEDS

In this section, we partially apply VROOM & cC to the small-sized product line
which was briefly introduced in Section 2.4. The purpose of this section is to
show the effectiveness of VROOM & cC as a reuse catalyst. For space reasons,
we only present some work-products obtained by applying VROOM & cC. The
interested reader may find a complete illustration in [3].

As indicated in Figure 3, to apply VROOM & cC, first of all we must define
the item. The FD, shown in Figure 4, models the usage context. The FDs related
to the PL requirements as well as the SysML block and activity diagrams related
to the preliminary architecture can be found in [3]. Figure 2, however, in Section 2
provides an informal description of the preliminary architecture.

Fig. 4. Usage Context.

In the context of this paper, the usage context models the deployment con-
text. Each FLEDS is deployed either onto a bus or onto a truck. In general, a
choice related to the variation point in the usage context has a significant im-
pact: it limits the choices that can be performed at the variation points related
to requirements, hazard analysis, system architecture and so on.

The second step to be performed is PLs-oriented hazards analysis and risk
assessment. The result of the adapted HAZOP is shown in Figure 5. As Figure 5

Fig. 5. Adapted HAZOP.

reports, we identify one hazard, named ”unpredictable lack of fuel” and due
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VROOM &controlled CRASHES 9

to its values in terms of severity, controllability and exposure, according to the
guidelines of ISO 26262, we classify it as ASIL C. This hazard is caused by the
deviation of the fuel level estimation function. As the variation point {V1} and
the Obligation field indicate, this deviation may be caused either by a failure in
the Kalman filter (in the case of trucks) or by a failure in the Low-Pass filter
(in the case of buses). Thus the impact of the choices performed in the usage
context is clearly traced within our adapted HAZOP.

Figure 6 shows SGs, FSRs and TSRs for the PL aimed at satisfying parts
(3-4) of the PL-aligned ISO 26262 development life-cycle. As Figure 6 shows,
concerning SGs and FSRs there is no variability. Instead, depending on the
vehicle type the FSR called FSR 1.1 is refined in a different way. In case of trucks,
FSR 1.1 is refined by TSR 1.1.1, while in case of buses by TSR 1.1.2. This is
due to the type of the filtering algorithm that is used. The definition of the PL
architecture using SysML block and activity diagrams as well as the verification
of TSRs by conducting hazard analysis, more specifically FTA technique can be
found in [3]. Verification has also been conducted through simulation.

According to ISO 26262, a safety case should compile the work products
that are generated during the safety development life cycle. In this section, our
aim is not to present a complete safety case line but to show how the reusable
development life-cycle-related work-products can be compiled to achieve argu-
mentation fragments to be integrated in the safety case line. Our safety case
line can be considered as a work-product of the safety case line life cycle at the
interim stage. A fragment of the safety case line is presented in Figure 7. The
left part of the fragment starts by instantiating the hazard avoidance pattern
[13]. It, thus, claims (G1) that each FLEDS is acceptably safe, given a definition
of acceptably safe. G1 is then refined into G2, by using the strategy S1 (i.e. by
arguing by claiming that all the identified hazards have been addressed). G2
is then broken down into G3 and G4. G4 is directly supported by the solution
E1. G3 is broken down either into G5 or into G6, depending on the filter type,
which in turn depends on the usage context variation point, as expressed in the
obligation O1. Finally, G5 and G6 are supported by direct evidence (E2 and E3).
From Figure 7 it clearly emerges what is common (directly reusable) and what
varies (partially reusable). Variants are clearly located as well as their depen-
dencies with extrinsic variabilities. From this safety case line, thus, safety cases
for single products can be easily derived. In particular, two safety cases can be
derived which only differ in the way G3 is refined (see alternative).

5 Related Work

Some studies have been conducted on adapting PLE method for safety-critical
systems and/or enabling reuse in safety certification. In [10], authors investigate
how to align PLE with the avionic standard. They propose a meta-model to cap-
ture the entities involved in PL certification and the relationships among them,
such as usage context, features, development activities to be performed and the
level of certification to be achieved. Authors mainly limit their attention to the
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10 Barbara Gallina, Antonio Gallucci, Kristina Lundqvist, and Mattias Nyberg

Fig. 6. SGs, FSRs, TSRs.

Fig. 7. Fragment of the Safety Case Line.

process aspects, i.e. the impact of a specific safety level onto the process activities
to be performed. In our work, we go beyond it since we also consider the impact
onto safety cases and we specify and manage how a different choice within an FD
influences the goal structure that documents a safety case. As mentioned in Sec-
tion 2, a GSN extension has been proposed to document safety cases addressing
product lines [8]. The authors show the usage of their extension by binding the
variation point related to the design choices with the corresponding variation
point related to the variants in terms of argumentation fragments within the
goal structure. In our approach, we use their GSN extensions and we explore
various binding possibilities (beyond design choices). In [14] a model based ap-
proach combined with a product line approach is considered. The intention of
including the definition of the safety case in the product line process is expressed,
but no approach is presented. In [15], authors examine how a safety case can be
developed for the assurance of the ISO 26262 functional safety concept. Authors
express the need of tracing the various models (e.g. context and feature models,
SysML models, and GSN goal structures) and give an intuition about how this
could be carried out for single systems. They also mention system variations but
they do not treat system variations according to a PL approach. In our work,
we also focus on the ISO 26262 functional safety concept, but in addition we
consider the entire Concept phase and part of the Product development phase.
Moreover, we explicitly consider PLE methods and their alignment with ISO
26262 and we propose how to model, trace and manage variability for each step
that we considered. In [16], authors focus their attention on safety-critical PLs
in the avionic domain and analyze the relations among usage context and cer-
tification levels. Their objective is to trace how certification issues influence PL
development in terms of activities to be performed. Our work also focuses on
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VROOM &controlled CRASHES 11

PLE for safety-critical systems. However, we focus on the automotive domain
and we take the alignment a step further since we also consider the impact on
safety cases. In [17] a language, called EAST-ADL is presented. This language
offers constructs for specifying automotive features at different abstraction levels
(e.g. vehicle, analysis, design, etc.), which recently in the context of ATTEST22

have been aligned with ISO 26262. A specific extension is available to manage
variability in case of PLs. Variants can be selected at variation points and config-
uration links (which play the role of our obligation element) allow these choices
to be traced throughout the development life-cycle. PL modeling/safety argu-
mentation and variability management, however, are not supported at each step
of the development and safety case life cycle (i.e. hazards analysis and safety
cases remain single product-oriented). VROOM & cC, instead, aims at guiding
(safety) engineers in systematizing reuse at each step.

6 Conclusion and Future Work

Recently, in the automotive domain, the ISO 26262 standard has been intro-
duced to ensure the functional safety of safety-critical systems. This standard
targets the development and certification of single products but does not pro-
vide guidelines to treat PLs. As a consequence reuse of artefacts is hindered.
To enable and accelerate reuse of development as well as certification artefacts,
in this paper we have proposed a novel approach called VROOM & cC. Our
approach aligns best development methods in (safety-critical) PLs engineering
with ISO 26262. More specifically, we have proposed how to specify, manage and
trace commonalities and variabilities at each step of part of the ISO 26262 safety
life-cycle and part of the safety case life-cycle. More precisely we have limited
our attention to the concept phase and part of the product development phase.
To show the effectiveness of our approach as reuse catalyst, we have considered
a small-sized safety-critical PL.

As mentioned in the background, the examined small-sized PL is part of a
bigger PL (constituted of the entire vehicles). In the mid-term future, to evaluate
the scalability of our approach, we aim at applying it to a more complex PL (e.g.
the entire instrument cluster). The ultimate goal would be to apply VROOM &
cC to the PL constituted of Scania vehicles. Moreover, inspired by [10] we in-
tended to analyze in which way features contribute to safety (work against, work
for, etc) to be able to better ponder ate their selection. In the mid-term future,
we also plan to cover the entire ISO 26262 safety life-cycle and thus propose
techniques to specify, manage and trace commonalities and variabilities within
the remaining phases. Currently, VROOM & cC consists of a set of guidelines,
in a long-term future, we plan to provide a tool-chain to allow users to apply
VROOM & cC (semi) automatically.

Acknowledgments. This work has been partially supported by the Swedish
SSF SYNOPSIS project [18].

2 http://www.atesst.org
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