
Towards Translational Execution of Action
Language for Foundational UML

Federico Ciccozzi, Antonio Cicchetti, Mikael Sjödin
Mälardalen University (MRTC) - Västerås, Sweden

email: [federico.ciccozzi, antonio.cicchetti, mikael.sjodin]@mdh.se

Abstract—Model-driven engineering has prominently gained
consideration as effective substitute of error-prone code-centric
development approaches especially for its capability of abstract-
ing the problem through models and then manipulating them
to automatically generate target code. Nowadays, thanks to
powerful modelling languages, a system can be designed by
means of well-specified models that capture both structural as
well as behavioural aspects. From them, target implementation
is meant to be automatically generated. An example of well-
established general purpose modelling language is the UML,
recently enhanced with the introduction of an action language
denominated ALF, both proposed by the OMG.

In this work we focus on enabling the execution of models
defined in UML–ALF and more specifically on the translational
execution of ALF towards non-UML target platforms.

Keywords-model-driven engineering; action language; transla-
tional execution; code generation; UML; ALF

I. INTRODUCTION

Model-Driven Engineering (MDE) proposes to face the
increasing complexity of modern software systems by shifting
the focus of the development from coding to modelling.
Models abstract the reality by providing only those details
that matter for the particular problem taken into account and
are built by following a set of rules prescribed by means of
a language definition, referred to as metamodel [1]. A core
objective of MDE is to provide automated generation of code
from design models, in order to tackle error-proneness typical
of code-centric approaches. On the one hand, automating the
code generation is a sensitive task, since its unreliability would
void most of the benefits of adopting MDE, strengthening the
predilection for manual approaches.

On the other hand, effective code generation can positively
impact economic factors, such as time-to-market as well as
overall costs and risks. This can be achieved thanks to, e.g., the
ability of abstracting from details not needed at design level
and that are typical of code-centric approaches. Qualitative
factors are also improved, such as overall quality and main-
tainability of the generated code and consistency between the
different artefacts along the entire development process (i.e.,
models at different abstraction levels and generated code) [1].
Being able to produce 100% of target code from design
models enforces consistency and thereby results from model-
based analysis are likely to be valid also at runtime (and the
other way around). Moreover, generated code aims to achieve
higher and more consistent quality with respect to errors,
maintainability and readability.

Nevertheless, in order to achieve generation of 100% code,
design models should provide proper means to specify com-
plex executable behaviours. In some cases, this is achieved by
means of target languages (e.g., Java) embedded somehow in
the modelling language. In this way, consistency at modelling
level can be hard to be achieved due to the abstraction gap
between modelling and programming languages that hinders
native code from being aware of the concepts defined in the
models. A preferrable way is instead to define model-aware
action languages. This is the case of the Action Language
for Foundational UML (ALF) [2] defined by the Object
Management Group (OMG) to act as the surface notation for
specifying executable behaviors within a wider model that is
primarily represented using the usual graphical notations of
UML [2].

The contribution of this research work consists into the
definition of an automatic mechanism for the translation of
ALF into executable non-UML code to be executed on a non-
UML target platform (namely translational execution – see
Section II). This work contributes to the generation of full-
fledged functional code from UML–ALF models in the context
of the round-trip support for preservation of extra-functional
properties already proposed in [3].

The remainder of the paper is structured as follows. In
Section II we provide the identification of the problem’s
context while leaving the details about the related state-of-the-
art to Section III. The addressed problem is formally defined
in terms of contribution and assumptions in Section IV. The
description of the proposed solution is presented in Section V.
The validation of the approach against industrial case-studies is
given in Section VI together with a discussion on the proposed
contribution. The paper is concluded by Section VII with a
summary of the presented work together with possible future
enhancements.

II. CONTEXT

According to the MDE paradigm, a system is developed by
designing models and refining them starting from higher and
moving to lower levels of abstraction until code is generated;
refinements are performed through transformations between
models. A model transformation translates a source model
into a target model (or text) while preserving their well-
formedness [4]. Since a model is an abstraction of the system
under development, rules and constraints for building it have
to be properly described through a corresponding language



definition. In this respect, a metamodel describes the set of
available concepts and well-formedness rules a correct model
must conform to [5].

In the scope of MDE applied to industrial development,
the UML by OMG has been widely adopted and many tool
vendors produce support tools, some of which reaching a no-
table degree of industrial acceptance. Moreover, the OMG has
strengthened the versatility and power of UML by equipping it
with the possibility to express textual surface representation of
its elements by means of the ALF. One of the primary goals of
ALF is to act as the surface notation for specifying executable
behaviours [2]. Being able to define models in a detailed
manner both concerning structural and behavioural aspects
allows to automatise the translation of them towards diverse
executable formats, even targeting non-UML platforms.

As prescribed in its specification [2], the execution seman-
tics for ALF is specified by a formal mapping to foundational
UML (fUML), which is a UML’s subset defining a basic
virtual machine for UML, the abstractions supported by it,
and thereby enabling conforming models to be translated
into diverse executable forms for different purposes, such as
verification, integration, and deployment [6]. There are three
prescribed ways in which ALF execution semantics may be
implemented [2], summarised as follows:

• Interpretive Execution: the ALF code is directly inter-
preted and executed;

• Compilative Execution: the ALF code is translated into
a UML model conforming to the fUML subset and
executes it according to the semantics specified in the
fUML specification;

• Translational Execution: the ALF code, as well as any
surrounding UML concept in the model, is translated into
some executable form on a non-UML target platform, and
executes on it.

In this work, we aim at providing a solution towards the
translation execution of ALF, using the UML–ALF implemen-
tation and related facilities (e.g., editors, parsers, metamodels)
provided along with Papyrus [7], an open-source integrated
environment for editing Eclipse Modeling Framework (EMF)
[8] models and particularly supporting UML and related
profiles such as SysML and MARTE, on the Eclipse platform.

III. RELATED WORK

Overall, several different approaches can be found in the
literature regarding translation of design models to non-
modelling platform target for execution purposes (i.e. code
generation). In [9] the authors propose a code generation
solution to produce C tailored for real-time embedded systems
from AADL focusing on flexibility of the code generator. This
supports the reasoning about the multi-step approach proposed
in our solution thought to be highly flexible and adapt-
able to different target platform languages. The usefulness
of introducing intermediate representations (i.e., intermediate
(meta)model in our solution) for increased abstraction, cleaner
separation between the front and back ends, and introduction
of possibilities for re-targeting as well as cross-generation

of code has already been proposed in the late 80’s [10].
In our solution we prefer to place intermediate artefacts at
the same abstraction level as the design models in order
to maintain domain-independence and enhance reusability.
Nevertheless, similar results could have been achieved through
direct translation from UML–ALF to the targeted language,
since these modelling formalisms already conceive common
object-oriented concepts, but to the detriment of the properties
mentioned above.

Several works, such as [11]–[13], just to mention a few,
provide solutions similar to ours from an abstract perspective
(i.e., using UML profiles and state-machine diagrams as source
artefacts), though not focusing on generating full-fledged code.
Other works, such as [14], [15], generate code exploiting
XML-based formalisms and scripts as well as specifying
behaviours by means of target languages (e.g., Java) instead of
model-aware formalisms such as ALF. In this way, consistency
at modelling level may be jeopardised since the abstraction
gap between modelling and programming languages does not
permit native code from being aware of modelling concepts.

Finally, at the best of our knowledge, no documented
attempt can be found in the literature concerning the definition
and implementation of transformation mechanisms towards
the translational execution of ALF, which represents the main
contribution of this work.

IV. PROBLEM FORMALISATION

In this section the problem is formalised in terms of intended
contribution and assumptions made to bound the scope of
problem and solution.

A. Contribution

The overall contribution of this research work consists into
the definition of an automatic mechanism for the translational
execution of ALF, meant as the translation of the ALF text, as
well as surrounding UML concepts, into a non-UML target
language to be executed on a non-UML target platform.
Specific contributions of this paper are:

• Definition and implementation of a target-agnostic inter-
mediate metamodel resembling common object-oriented
programming languages (such as Java, C++) to which
ALF concepts are translated to. The introduction of an
intermediate metamodel can be beneficial for several
reasons, namely, increased abstraction, cleaner separation
between the front and back ends, and introduction of
possibilities for re-targeting as well as cross-generation
of code. Moreover, intermediate representations may also
help in supporting advanced code optimizations through
ad-hoc manipulations of such artefacts achieved through
apposite model transformations, which are independent
of the code generating transformations. Doing so, the
translation process is broken down into smaller steps and
thereby the validation of the translation mechanisms is
simplified and the generation of different target languages
would only require the modification the target-specific



translation mechanisms (i.e., model-to-text transforma-
tions from intermediate concepts to target language);

• Definition and implementation of model transformations
(both model-to-model and model-to-text) to actually per-
form the translation from ALF concepts to a non-UML
target language (i.e., C++).

The translation of surrounding UML concepts is considered as
black-box in this work since the focus is on novel mechanisms
for the translation of ALF.

B. Assumptions

There are three levels of syntactical conformance defined
for ALF, namely minimum, full, and extended. In this work
we focus on the minimum conformance and we provide trans-
lation of most of the entailed concepts. The set of translated
concepts, although limited if considering the expressiveness
provided by ALF, reflect the ones which are usually found and
used in the target language (and target domain). This allowed
us to generated 100% of target code for an industrial case-
study in the telecommunications domain.

Moreover, regarding the surrounding UML concepts in the
model needed to be translated for allowing execution of the
generated implementation, we considered UML component
and composite component diagrams for the specification of the
structural aspects of the system under development, and state-
machine diagrams together with ALF code for the behavioural
description. Additionally, we delimited the number of state-
machines to one per non-composite component and we define
ALF code at component operation level. Behaviour of state-
machine transitions is defined within the component operation
triggering the specific transition1.

V. PROPOSED SOLUTION

In this section we describe the proposed solution focus-
ing on: (A) involved intermediate modelling artefacts, (B)
overview of the transformation process, (C-D) detailed de-
scription of the transformation steps and (E) application of
the solution to a sample operation.

A. Intermediate Metamodel

The intermediate metamodel has been defined by means of
Ecore in EMF. The employment of intermediate models eases
adaptability of the transformation process to target program-
ming languages different from C++. This is possible since the
intermediate model represents a generic object-oriented (OO)
abstraction of the system which is agnostic of the targeted
programming language.

The intermediate metamodel (ALF-related portion) is de-
picted in Figure 1 where we can distinguish two main portions
used to model the followings:

• Statements: identified by the abstract Statement meta-
class and the specialising metaclasses that represent the
different types of statement;

1This is due to some limitations of the ALF editor provided in Papyrus that
was still under development at the time we started our implementation.

• Expressions: identified by the abstract Expression
metaclass and the specialising metaclasses that represent
the different expression kinds.

According to this decomposition of the intermediate meta-
model, in the next paragraphs an overview on the main
metaclasses related to the translation of ALF concepts (i.e.,
Statements and Expressions) is given and depicted in Figure 1.
Statements
In our UML models, the body of the operations is specified
by means of ALF code in terms of a sequentially ordered
set of statements. This portion of the intermediate metamodel
is devoted to the definition of the concepts needed to model
statements. The main metaclasses are:

• Statement: is the core abstract metaclass;
• SimpleInvocation: represents the invocation of a

function and it contains an Invocation expression (see
next paragraph);

• Assign: represents the assignment of a value to a
variable. It contains a specific InstanceAccess ex-
pression (see next paragraph);

• Control: is the abstract metaclass representing state-
ments related to the control flow of the application. It is
specialised by specific metaclasses such as: If, for mod-
elling if loops and switch cases, ForRange, ForEver
and ForEach, for modelling the various different for
loops available in ALF, While, for modelling while
loops, and Return, for modelling the exit from an
operation body. If the operation has a defined return-type,
the statement includes an expression evaluating it;

• InjectionStatement represents the statement that
can be introduced in the code through injection markers;

• Inline: it is used to place inline statically defined
statements in the generated code. It should be employed
mainly for debugging and analysis purposes (e.g., check
the correctness of the control flow when testing the
application) and hence be avoided when generating the
final implementation version.

Expressions
Operations’ body can include expressions. This portion of the
metamodel defines the concepts needed to translate expres-
sions:

• Expression: is the core abstract metaclass;
• Invocation: represents the expression related to the

invocation of a function and defines input parameters and
expected return type;

• RTTI: represents an abstract metaclass that is specialised
by metaclasses, such as InstanceOf and Hastype,
defining type introspection provided by ALF;

• Alloc: is a metaclass used to define a memory allocation
in case the target programming languages would require
it;

• Define: represents the specification of symbolic con-
stant declarations (i.e., #DEFINE or similar, depending
on the target programming language);

• InstanceAccess: is an abstract metaclass for the



Fig. 1. Portion of the Intermediate Metamodel

definition of access to variables;
• ReferenceAccess: represents the access to a vari-

able’s reference;
• ValueAccess: represents the access to the value of a

variable;
• Literal: is an abstract metaclass representing the dif-

ferent constant literal values. It is specialised by other
metaclasses, such as IntegerValue, StringValue,
BooleanValue, that define the specific literal type;

• Computation: represents an abstract metaclass which
is specialised by Unary and Binary respectively defin-

ing an expression that executes a unary operator and an
expression that executes a binary operator.

The intermediate metamodel provides the means for hosting a
wide range of concepts that are then interpreted in a certain
way by the model-to-text transformation specific for the se-
lected target programming language. That is to say that, while
the syntax is fixed, the semantics that the various metaconcepts
assume might change from one target programming language
to another and is therefore embedded in the model-to-text
transformation. In the next sections, the transformations from
ALF to C++ passing through the intermediate model are



Fig. 2. Overview of the Transformation Process

described in detail. Due to the complexity and verbosity of
the transformations (around 4000 code lines divided into 180
transformation rules), only a set of core rules are reported,
by means of pseudo-code, in order to permit reasoning about
the overall transformation approach. Within the algorithms
describing the transformations the following abbreviations will
be employed:

• UML: UML metamodel
• UmlM: UML model
• AlfMM: ALF metamodel
• AlfOpM: ALF operation model
• InterMM: intermediate metamodel
• InterM: intermediate model

B. Transformation Process

The proposed solution is depicted in Figure 2 and is
constituted by a set of model transformations. Starting from
the UML model of the system under development, we start by
translating the structural definition from component, composite
component and state-machine diagrams into appropriate in-
termediate concepts through a model-to-model transformation
(Figure 2.a). Regarding the translation of state-machines, our
approach resembles the state design pattern, as defined in [16],
considering the component owning the state-machine as the
context for the related states. At this point, the behavioural
definition specified by means of ALF code for components’

operations has to be translated into intermediate concepts to
complete the process (Figure 2.c). This is achieved through
an in-place model-to-model transformation, whose details are
given in the following sections. Note that, thanks to a dedicated
parser provided by Papyrus, the action code related to each
operation can be retrieved (Figure 2.b) and manipulated as
a model, which would be conforming to the ALF operation
metamodel (in turn part of the ALF metamodel [2]; for
simplicity reasons we will consider the ALF operation models
as conforming to the ALF metamodel leaving apart the ALF
operation metamodel). The last step of the process entails the
transformation of the intermediate model into a specific target
language, in our case C++. This is achieved through a model-
to-text transformation (Figure 2.d). We will now focus on the
translation of ALF to intermediate concepts and thereby to
C++.

C. Translating ALF to Intermediate

Let us consider the structural specification of the system
defined by means of UML concepts (i.e., components, ports,
states, transitions) as already translated. The intermediate
model would then need to be completed by the behavioural
description which is defined in terms of ALF action code
within components’ operations. An in-place model-to-model
transformation defined using Operational QVT (QVTo) [17]
takes as input an ALF operation model and translates its ele-
ments into their counterpart in the intermediate representation.
The overall transformation workflow is summarised by means
of pseudo-code in Algorithm 1.

The transformation takes as input AlfOpM, UmlM and
InterM and as output it provides an enriched version of InterM.
For each of the parsed ALF operations present in UmlM, the
related operation body is navigated and for each of the found
ALF statements the appropriate handler function is called in
order to translate it into intermediate concepts. Each of these
handlers employs in turn further helpers and queries whose
size varies from few to several hundreds of lines of code (e.g.,
280 lines is the size of the transformation rule translating
boolean expressions). An example partially representing the
translation of the if statement is depicted in Section V-E.

The transformation is able to translate most of the concepts
defined within the minimum conformance in the ALF speci-
fication [2]. The concepts currently left out of the translation
process, most of which not commonly used in the target
language (and domain), are: Behavior Invocation Expressions,
Feature Invocation Expressions, Super Invocation Expressions,
Link Operation Expressions, Class Extent Expressions, Se-
quence Operation Expressions, Sequence Reduction Expres-
sions, Sequence Expansion Extensions, Isolation Expressions,
Classification Expressions, Conditional-Test Expressions, An-
notated Statements, Empty Statements, accept Statements, and
classify Statements. It is important to notice that the translation
of ALF concepts is independent of the underlying UML, and
that makes the related transformation process reusable in other
development processes which are, e.g., based on UML profiles.



Algorithm 1 M2M Transformation from ALF operation model
to intermediate model

Alf2Intermediate(in UmlM, in AlfOpM, out InterM){
for each AlfOperation op in UmlM do

transformAlfBlock(op.body){
for each statement st in op.body do

switch (st.type)
case Invocation/Assignment/Declaration:

handleInvAssDecl(st);
case IfStatement:

handleIf(st);
case ForStatement:

handleFor(st);
case ReturnStatement:

handleReturn(st);
case SwitchStatement:

handleSwitch(st);
case ThisInvocationStatement:

handleThis(st);
case InlineStatement:

handleInline(st);
case WhileStatement:

handleWhile(st);
case AnnotatedStatement:

handleAnnotation(st);
case EmptyStatement:

handleEmpty(st);
default:

nop;
end switch

end for
end for
}

D. Translating Intermediate to C++

Once the intermediate model is complete, the final step
of generating C++ code can be carried out. A model-to-text
transformation defined by using the Xpand [18] language is
in charge of generating the actual C++ taking as input the
intermediate model. The transformation takes as input InterM
and produces in output a header (.h) and an implementation
(.cpp) file, while configuration and make files are statically
defined since they do not depend on the concepts carried by
the intermediate model.

Overall, the transformation is composed of the following
five template files containing the actual transformation rules:

• Expressions: definition of the transformation rules trans-
lating the intermediate concepts concerning expressions
(i.e., Expression and specialising elements in Fig-
ure 1) to C++;

• Statements: definition of the rules that take care of trans-
forming the intermediate concepts concerning statements
(i.e., Statement and specialising elements in Figure 1)
to C++;

• Declarations: definition of the transformation rules that
transform the intermediate concepts (e.g., variables, meth-
ods, classes) into C++ forward declarations;

• Implementations: definition of the transformation rules

that generate the implementation of the methods defined
in the intermediate model;

• Main: representation of the core template that, exploiting
the other ones, generates a C++ header and a C++
implementation file.

Additionally, functional extensions have been defined in terms
of the Xtend [18] language in order to lighten the verbosity
of transformation rules and increase their readability and
understandability. Moreover, by exploiting the notion of poly-
morphic template invocation, we were able to considerably
contain the size of the transformation both in number of rules
and lines of code.

Thanks to the model-to-model transformation process that
manipulates the UML–ALF concepts to get an intermediate
representation, the model-to-text transformation task can be
considered as a fairly straightforward translation of modelling
concepts into C++. Moreover, the generality of the concepts
defined in the intermediate model makes it possible to easily
implement other transformations for generating code targeting
different languages (e.g., Java, C#).

E. Applying the Solution

In order to show an example of input and output of
the transformation process we consider the state-machine
depicted in Figure 3.A, which represents the behaviour
of the NodeConn component (part of an industrial case-
study, see Section VI) and for which we focus on
the ALF code specifying the behaviour of the operation
NodeConn_riDisconnectCfm (Figure 3.B). The C++
code generated for the NodeConn_riDisconnectCfm op-
eration is shown in Figure 3.C.

In order to better understand the transformation process,
let us first focus on the step between ALF and intermediate
concepts (refer to Figure 1). First, an Operation is created
with Signature set as NodeConn riDisconnectCfm and
owning passed parameters portId and serverConn r defined
as ScopedNamedInstance. Then, an IfStatement is en-
countered and handled. A control statement If is created
as well as a ConditionalBlock and an ElseBlock.
ConditionalBlock will contain a Binary expression as
condition (representing the if condition) and two Assign
statements. The Binary expression is of type AND (i.e.,
logic AND) and combines two furter Binary expressions
of type EQ (i.e., equal to). Moreover, value accesses are used
to represent the single variables within them. ElseBlock
will contain the body of the else (empty for the two outer
if statements in Figure 3). Within the IfStatement two more
nested IfStatement are encountered and properly handled. The
transformation rules translating an IfStatement are depicted in
Fig. 4.

To grasp how value accesses, assignments and invocations
work, let us consider the two Assign statements previously
mentioned. The first will be composed of a ValueAccess,
in turn composed of an IndexAccessPart (for
’connHalf[serverConn r.connHalf]’) and an AccessPart
(for ’.respondState’) as left hand side, as well as a



Fig. 3. UML State-machine (A) and NodeConn_riDisconnectCfm
Operation in ALF (B) and Related Generated C++ (C)

Fig. 4. Transformation from ALF’s if statement to Intermediate MM’s if
statement

FixedValue set to RI RESPONDED CFM as right
hand side. The second Assign will contain, except for
an AccessPart to a newly defined variable secondHalf
(as ScopedNamedInstance) as left hand side, an
Invocation of the operation with Signature
’NodeConn getSecondHalf’ and a ValueAccess for
the parameter ’serverConn r.connHalf’.

VI. VALIDATION & DISCUSSION

Besides several tests upon UML models, the approach has
been successfully validated within the CHESS project (see
Acknowledgements) against an industrial case-study [19] at
Ericsson Nikola Tesla (Zagreb, Croatia) under the leadership
of Ericsson AB (Stockholm, Sweden) using the CHESS Mod-
elling Language. The cross-domain Composition with Guar-
antees for High-integrity Embedded Software Components
Assembly modelling language (CHESS-ML) [20] has been
defined as a UML profile, including tailored subsets of SysML
and MARTE profiles. The CHESS-ML’s development style
follows the component-based pattern (as defined in the UML
Superstructure Specification [21]) and exploits component and
composite component diagrams for structural design while
state-machines and ALF for expressing functional behaviour.
Especially thanks to the possibility of defining executable



behaviours by means of ALF, we reached the necessary expres-
sive power to be able to generate 100% of the implementation
directly from the functional models with no need for manual
fine-tuning of the code after its generation [3].

The transformation process described in this work mainly
consists of two model transformations. The model-to-model
transformation transforming ALF into intermediate concepts
is composed of 104 transformation rules for a total of 3296
code lines (the most complex transformation within the whole
UML–ALF to C++ process). The model-to-text transformation
from intermediate model to C++ is made of 82 rules (most of
which dedicated to the translation of behavioural concepts) for
a total of 832 code lines.

Adopting a multi-step transformation approach and there-
fore exploiting intermediate modelling artefacts (i.e., inter-
mediate metamodel) gives us the possibility to easily extend
the transformation process to enable the generation of code
in programming languages different from C++. This can be
achieved by acting only on the model-to-text transformation,
which represents the least intricate transformation step in the
generation chain. Generation of C++ sister languages such
as Java or C# would require lightweight adaptations to the
existing model-to-text transformation while, for generating
other types of languages, the transformation would need to
be implemented from scratch. Instead, in the case of ALF
undergoing modifications, the model-to-model transformation
would need to be properly adapted.

The generality of the intermediate metamodel (and some-
what its intricacy) allowed us to be able to translate any
combination of (the covered) ALF statements and expressions
to intermediate concepts. Examples of this could be complex
conditional logic expressions embedding multiple nested in-
vocations, value accesses, and indexed values accesses, just
to mention a few. Regarding conditional logic and arithmetic
expressions, we enforced operator precedence defined in the
ALF specification [2] to adhere to C++ in order to achieve
correct translation. This was needed since the overuse of
parenthesized expressions in ALF would severely slow down
the parser provided by Papyrus. Such is due to the structure
of the ALF metamodel, that, for each parathesized expression
(at any level of the hierarchical tree) entails the generation
of a whole new tree branch. This problem, together with
other ALF-related minor issues found out along the way, has
been communicated to the Papyrus development team and has
recently been assigned for resolution.

VII. CONCLUSION

In this paper we described the definition of an automatic
mechanism for the translational execution of ALF, meant as
the translation of the ALF text, as well as surrounding UML
concepts, into a non-UML target language to be executed on
a non-UML target platform. More specifically, we defined a
target-agnostic intermediate metamodel resembling common
object-oriented programming languages to which ALF con-
cepts are translated to. The actual translation process from
ALF concepts to a non-UML target language (i.e., C++) is

defined and implemented by means of model-to-model and
model-to-text transformations.

The translation of surrounding UML concepts was con-
sidered as black-box in this work since the focus was on
novel mechanisms for the translation of ALF. While in this
work we covered most of the concepts for the ALF minimum
syntactical conformance level, future enhancements would
certainly consist in completing such coverage to achieve at
least full minimum conformance by entailing OCL-related
concepts (e.g., expressions related to sequences) too.

ACKNOWLEDGEMENTS

This research work was supported by the RALF3 (SSF, http:
//www.mrtc.mdh.se/projects/ralf3/) and CHESS (ARTEMIS,
http://chess-project.ning.com) projects.

REFERENCES

[1] J. Bézivin, “On the Unification Power of Models,” Software and System
Modeling, vol. 4, pp. 171–188, 2005.

[2] OMG, “Action Language For FoundationalUML - ALF,” http://www.
omg.org/spec/ALF/1.0/Beta2/, April 2013.

[3] F. Ciccozzi, A. Cicchetti, and M. Sjödin, “Round-Trip Support for
Extra-functional Property Management in Model-Driven Engineering
of Embedded Systems,” Information and Software Technology, August
2012.

[4] K. Czarnecki and S. Helsen, “Feature-based survey of model transfor-
mation approaches,” IBM Syst. J., vol. 45, no. 3, pp. 621–645, 2006.

[5] S. Kent, “Model Driven Engineering,” in Procs of IFM’02. Springer-
Verlag, pp. 286–298.

[6] OMG, “Foundational Subset For Executable UML Models (FUML),”
http://www.omg.org/spec/FUML/1.1/, April 2013.

[7] Eclipse Projects, “Papyrus,” http://www.eclipse.org/papyrus/, April
2013.

[8] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. Grose, Eclipse
Modeling Framework. Addison Wesley, 2003.

[9] M. Brun, J. Delatour, and Y. Trinquet, “Code Generation from AADL
to a Real-Time Operating System: An Experimentation Feedback on the
Use of Model Transformation,” in Procs of ICECCS 2008, april 2008,
pp. 257–262.

[10] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers. Principles, techniques,
and tools”. SAO/NASA Astrophysics Data System, 1986.

[11] M. Fredj, A. Radermacher, S. Gerard, and F. Terrier, in Procs of
NOTERE 2010, title=eC3M: Optimized model-based code generation
for embedded distributed software systems, year=2010, month=june,
pages=279-284,.

[12] W. Haberl, M. Tautschnig, and U. Baumgarten, Generating Distributed
Code From COLA Models, ser. Lecture Notes in Electrical Engineering.
Springer, March 2009, vol. 33, ch. 20.

[13] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P. Diguet, “A co-
design approach for embedded system modeling and code generation
with UML and MARTE,” in Procs of DATE 2009., april 2009, pp. 226–
231.

[14] M. Usman, A. Nadeem, and T. hoon Kim, “UJECTOR: A Tool for
Executable Code Generation from UML Models,” in Procs of ASEA
2008, 2008, pp. 165–170.

[15] T. Moreira, M. Wehrmeister, C. Pereira, J.-F. Petin, and E. Levrat, “Auto-
matic code generation for embedded systems: From UML specifications
to VHDL code,” in Procs of INDIN 2010, 2010, pp. 1085–1090.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[17] S. Boyko, R. Dvorak, and A. Igdalov, “The Art of Model Transfor-
mation with Operational QVT,” http://www.eclipse.org/m2m/qvto/doc/
EclipseCon 2009.ppt, March 2009.

[18] Eclipse Projects- Xpand, “Xpand,” http://www.eclipse.org/modeling/
m2t/\-?project=xpand, April 2013.

[19] N. Katanic and M. Perse, “Application of CHESS Methodology A
Telecom Use Case Study,” in SoftCOM - MDE Workshop, 2012.

[20] A. Cicchetti, F. Ciccozzi, S. Mazzini, S. Puri, M. Panunzio, A. Zovi, and
T. Vardanega, “CHESS: a model-driven engineering tool environment for
aiding the development of complex industrial systems,” in ASE, 2012,
pp. 362–365.

[21] Object Management Group (OMG), “UML Superstructure Specifi-
cation V2.3,” http://www.omg.org/spec/UML/2.3/Superstructure/PDF/,
2011, [Online. Last access: 11/04/2012].


