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Abstract—Post-requirements traceability is the ability to relate
requirements (e.g., use cases) forward to corresponding design
documents, source code and test cases by establishing trace links.
This ability is becoming ever more crucial within embedded
systems development, as a critical activity of testing, verification,
validation and certification. However, semi-automatically or fully-
automatically generating accurate trace links remains an open
research challenge, especially for legacy systems. Vector Space
Model (VSM), a notably known Information Retrieval (IR)
technique aims to remedy this situation. However, VSM’s low-
accuracy level in practice is a limitation. The contribution of this
paper is an improved VSM-based post-requirements traceability
recovery approach using a novel context analysis. Specifically,
the analysis method can better utilize context information ex-
tracted from use cases to discover relevant source code files.
Our approach is evaluated by using three different embedded
applications in the domains of industrial automation, automotive
and mobile. The evaluation shows that our new approach can
achieve better accuracy than VSM, in terms of higher values of
three main IR metrics, i.e., recall, precision, and mean average
precision, when it handles embedded software applications.

Keywords—trace link recovery; post-requirements traceability;
vector space model (VSM); context analysis; embedded system;
functional requirements;

I. INTRODUCTION

Requirements Management (RM) is a critical activity for
system development. It should be carried out for all the phases
of systems development life cycle (or the software develop-
ment process in other words), rather than a single phase. RM
assumes requirements elicitation, tracking and preservation of
integrity, and handles a large amount of software development
artifacts (i.e., the artifacts hereafter). The quality of RM is very
important for system development, e.g., customers satisfaction,
requirements coverage, efficient utilization of resources.

The heart of RM is Requirements Traceability (RT), which
is defined as “the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction (i.e.,
from its origins, through its development and specification, to
its subsequent deployment and use, and through periods of
on-going refinement and iteration in any of these phases)” [1].
RT provides critical support for system developers throughout
the entire software development process. Tracing requirements
can help to, but is not limited to, perform change impact anal-
ysis, risk analysis, criticality analysis, regression testing, and

requirements satisfaction assessment. However, in traditional
industrial practices, especially for legacy systems [2], trace
links are manually established and maintained. Such activities
tend to be costly to implement and are therefore perceived as
financially non-viable by many companies [1], [3]. To address
this problem, many efforts [4], [5], [6], [7], [8], [9], [10] have
been devoted to semi-automatic or fully-automatic trace link
creation. However, such creation throughout the entire systems
development process, remains a challenging issue [11].

Among these efforts, the algebraic model Vector Space
Model (VSM) [13] (referred to as the standard VSM hereafter),
has been most investigated to build trace links between textual
artifacts, such as requirements and source code [14], [15], [16].
After requirements and the target artifacts are preprocessed
by e.g., removing stop words, stemming, the obtained term-
document matrix is used by the standard VSM, which produces
descending-ordered ranked lists of candidate trace links. Such
candidate trace links contain the scores which express the sim-
ilarity between requirements and subsequent artifacts, based on
the occurrences of terms. Then, different strategies are applied
to prune undesired links, and finally, the resulting candidate
trace link lists are vetted by human analysts w.r.t. relevancy to
a specific project. Nevertheless, statistical analysis [17] showed
that analysts’ tracing experience and amount of effort (applied
to look for missing links, comfort level with tracing and so
on) do not affect the accuracy of the final trace link lists.
Rather, the initial accuracy of the candidate trace link lists is
the most important factor, impacting the accuracy of the final
trace link lists. Our goal in this paper is to tackle the above
problem by using a novel VSM-based context analysis, which
involves lightweight human intervention in the early phase
of the RT recovery process. In doing this, higher-accuracy
candidate trace link lists are obtained when compared with
the standard VSM, which also dramatically reduces the human
efforts involved in the final phase of the RT recovery process.

Note that Use Case (UC) technique has been widely
adopted as a Requirement Specification Language (RSL) in
the embedded systems development, with the advantage of
many benefits it provides [18]. In order to better illustrate our
approach, we are particularly interested in establishing trace
links between UCs and source code files in this work. In
particular, the technical contributions of this paper are two-
fold:



1) We introduce the VSM-based context analysis, which
consists of three steps. Specifically, the first step is to
analyze the constructs of the RSL, in order to obtain
the requirement intent and a set of context information.
Further, the extracted context information is classified
into two groups, i.e., requirements intent-positive and re-
quirements intent-negative (cf. Section III). In the second
step, the requirement intent and the intent-positive context
information are separately used by the standard VSM as
input, which generates two trace link lists. Lastly, the two
trace link lists are combined together through a weighted
knowledge model, which generates the candidate trace
link list.

2) We show that our new approach improves the traceability
accuracy of the standard VSM, by obtaining higher values
of three main IR metrics, i.e., recall, precision, and
mean average precision (MAP) scores. Typically, our case
studies are three different embedded applications in the
domains of industrial automation, automotive and mobile.

The remainder of the paper is organized as follows. Sec-
tion II introduces the related work and background theory.
Section III firstly gives an overview of our analysis, and then
presents different parts of our proposed method together with
the implementation of the algorithm in detail. Next, Section IV
that describes the evaluation setup, research questions for eval-
uation, evaluation metrics, improvements of analysis results as
well as results validity, and finally, conclusions and future work
are drawn in Section V.

II. BACKGROUND

This section firstly describes the related work in Sec-
tion II-A, and then illustrates the trace link recovery process
based on Information Retrieval (IR) techniques in Section II-B,
which is followed by an introduction about context-based
analysis in Section II-C.

A. Related Work

Many recent studies have explored the feasibility of differ-
ent IR methods for semi-automatically or fully-automatically
recovering trace links between requirements and subsequent
artifacts. Deerwester et al. [4] discuss the effectiveness of
Latent Semantic Indexing (LSI) for recovering trace links
between different kinds of artifacts, and Marcus et al. [19]
further the work, showing a promising result over VSM. Abadi
et al. [15] present a novel IR technique based on Jensen &
Shannon (JS) model. They also compared JS, VSM and LSI
for traceability recovery purpose, and concluded that VSM and
JS are the best-fits. A similar comparison is also conducted by
Oliveto et al. [20], which showed that for building trace links
between requirements and source code, the results of JS, VSM
and LSI are almost equivalent.

Variants of basic IR methods have been proposed to
improve the accuracy of IR-based traceability recovery ap-
proaches. Fautsch et al. [16] present four extensions to the
classical tf-idf VSM model. The basic idea is to retrieve
domain specific information. Kong et al. [8] present a VSM
enhancement using term location. By utilizing the relation-
ship between words in different textual documents, a better
accuracy was achieved. Lucia et al. [9] present the approach

Fig. 1. An IR-based traceability recovery process.

that uses smoothing filter to improve the input in the IR-
based traceability recovery process. Specifically, the words
that contribute less information but repeatedly occur in the
documents, are removed. Cleland-Huang et al. [6] introduce
three accuracy enhancement strategies, which are hierarchical
modeling, logical clustering of artifacts, and semi-automatic
pruning of the probabilistic network. It should be pointed out
that our approach is a variant of IR methods, but it is very
different from the strategies proposed in the prior work. In
their work [6], though context information is obtained from the
artifact hierarchy to improve traceability results, it is not the
type of “context” defined in our work. In our case, such context
information is the title, pre-condition, and post-condition that
are extracted from the requirements (i.e., UCs), which can
contribute greatly to improve the traceability results.

Some other pieces of work also show us another promis-
ing perspective. Asuncion et al. [27] apply Topic Modeling
technique, featured by Latent Dirichlet Allocation (LDA) [5]
to capture trace links prospectively. Lucia et al. [12] discuss
the feasibility of using user feedback analysis to improve
the accuracy of the results of traceability recovery tools.
Mahmoud et al. [10] propose a semantic relatedness approach
that exploits external knowledge sources, e.g., Wikipedia, to
identify a set of relevant terms that are used to expand the
query, in an attempt to improve traceability results.

B. IR-based Traceability Recovery

The IR-based traceability recovery aims at utilizing IR
techniques to compare a set of source artifacts as queries (e.g.,
requirements), against another set of target artifacts e.g., source
code files, and calculate the textual similarities of all possible
pairs of artifacts. The textual similarity between two artifacts is
based on the occurrences of terms (words) within the artifacts
contained in the repository. Pairs with a similarity score lower
than a certain threshold (usually defined based on engineers’
experience) are filtered out, and the reserved pairs form the
candidate trace link list. The ranked list of candidate trace
links are then analyzed by software engineers to decide if such
links are true positive or not. Typically, an IR-based traceability
recovery process follows the steps depicted in Figure 1.

The artifacts have to be preprocessed before they are used
to compute similarity scores. The preprocessing of the artifacts
includes a text normalization by removing most non-textual
tokens (e.g., operators, punctuations) and splitting compound



identifiers into separate words by using the underscore or
Camel Case splitting heuristic. Furthermore, common terms,
referred to as “stop words” (e.g., articles, prepositions and
programming language keywords), which contribute less to
the understanding about artifacts, are also discarded by us-
ing a stop word filter. Words with the length less than a
defined threshold are also pruned out. In addition, stemmer
is commonly used to perform a morphological analysis, which
reduces the inflected words to their root, e.g., returning verb
conjugations and removing plural nouns.

After preprocessing, an artifact (e.g., a UC requirement,
a source code file) can be represented as a plain document
containing a list of terms (in this paper, we use documents and
artifacts interchangeably). The extracted terms are generally
stored in a m ×N matrix (called term-by-document matrix),
where m is the number of all the terms that occur in all the
documents, and N is the number of documents in the corpus.
A generic entry wi,j of the matrix denotes a measure of the
relevance of the ith term in the jth document. Based on the
term-by-document matrix representation, different IR methods
can be used to calculate textual similarities between paired
artifacts.

Particularly, in Vector Space Model (VSM) [14], given
the entire collection of unique terms T = {t1, . . . , tm} in a
corpus with N documents, the document dn is represented as
a vector dn = {w1,dn , . . . , wm,dn} consisting of m unique
terms from the corpus with an assigned weight wi,dn through
a certain weighting scheme. Therefore, the similarity score,
denoted as sim(q, d), between the query document q and the
target document d is calculated by using the cosine of the angle
between their vectors:

sim(q, d) =

∑m
i=1 wi,q · wi,d√∑m

i=1 w
2
i,q ·

∑m
i=1 w

2
i,d

(1)

Next we introduce the term frequency-inverse document
frequency, i.e., tf-idf, which is adopted as the weighting scheme
by all the VSM-based approaches (including our method).

wi,q = tfi(q) · idfi, wi,d = tfi(d) · idfi (2)

where tfi(q) and tfi(d) are measured by the number of times
the term ti occurs in the query document q and the target
document d respectively, and idfi is computed as log( N

dfi
),

where dfi is the number of documents containing the term ti.

The standard VSM described above has been applied to
the requirements traceability recovery process [13]. In our
work, the corpus is the entire set of requirements (i.e., UCs)
and source code files. In applying the standard VSM, we
select a UC (as the query q) and repeatedly calculate the
similarity scores between the UC and all the source code files
in the corpus. In this way, a descending-ordered ranked list of
candidate trace links to the requirement will be generated by
VSM. However, the low-level accuracy of the standard VSM
in practice is a limitation [21]. From our viewpoint, the main
reason is that the standard VSM takes the whole requirement
document as its input, regardless of the relevance of the terms
associated with the intent of the requirement. Therefore, it is

inevitable that the majority of the terms used by VSM are
irrelevant ones, hence misleading VSM to produce a very low-
accuracy trace link list. Clearly, one possible improvement
is to provide VSM with more relevant terms that can better
represent the requirement intents, which are obtained through
the context-based analysis introduced in the following section.

C. Context-based Analysis

Connolly [22] introduces an important fact about com-
munication: Communication always takes place in a context.
Suppose that we are interested in studying an intent of others,
which we denote as I . The context consisting of whatever
constructs surround I , serves to facilitate the communication
between speakers and listeners. Furthermore, the intents of
people can be reflected by the context of the conversation
between them, based upon their understanding and interpre-
tation. Accordingly, if we regard a pair of a requirement and
its subsequent artifacts as “speaker” and “listeners”, between
which there is a successful communication, then context in-
formation surrounding speaker’s intent is helpful to recover
the pair, i.e., the trace link between the requirement and its
subsequent artifacts.

In order to have a better understanding about the idea
of using context-based analysis to improve the accuracy of
the standard VSM, we give the following example of a little
boy buying ice cream: A little boy wanted to eat an ice
cream, so he wrote the words “ice cream” on his mother’s
shopping list. Later on, two actions took place and can be
documented as: 1) his mother went to a shop and bought
an ice cream; 2) he updated the status of his Twitter with
the statement “Ice cream is my favorite dessert!”. From the
perspective of IR-based traceability recovery, we can consider
his writing ice cream on the shopping list as the requirement.
The two documented actions can be regarded as the subsequent
artifacts, i.e., documents. In this case, both documents are kind
of related with the requirement, because all of the require-
ment and documents share the term “ice cream”. Thereby,
it is very hard to conclude which document has the higher
similarity score with the requirement by using the standard
VSM. Nevertheless, if we perform context analysis on the
requirement, we can find that the requirement intent is “eat
an ice cream” and the requirement context is “shopping list”.
Obviously, the first document and the requirement share the
implicit information “shop”. Therefore, the first document is
more relevant to the requirement about “eat an ice cream”,
when the context analysis is applied. By using the above
intuitive idea, we propose a novel VSM-based context analysis,
which can obtain better traceability results, when compared
with the standard VSM.

III. THE PROPOSED VSM-BASED CONTEXT ANALYSIS
METHOD

A functional requirement is a need that a particular product
or process must be able to perform. It can also be regarded as
one or a set of intents, of which the detailed interpretations
are subsequent software development artifacts, e.g., design
documents, source code, testing and maintenance documents.
Accordingly, the traceability recovery process is about finding
different relevant interpretations of such intents. In matters of
interpretation, it is very important to understand the context.



Since context not only plays a significant role in influencing
the way that the intent is interpreted with a certain level of
satisfaction, but also is a construct, helping project experts to
improve the accuracy of traceability recovery process. In this
work, such useful requirements context is extracted and used
in the trace link recovery process.

In the following, we introduce the proposed VSM-based
context analysis for the post-requirements traceability recovery
process in detail. Firstly, an overview of the analysis is given in
Section III-A, which is followed by the description of the con-
text analysis of Use Case (UC) requirements in Section III-B.
Next Section III-C describes the weighted knowledge model
that we used to combine the two generated trace link lists. In
order to better illustrate our approach, in this work, we are
particularly focused on establishing trace links between UCs
and source code files. Some other interesting types of RSL
will be considered as part of our future work.

A. Overview of the VSM-based Context Analysis

The main idea of our proposed VSM-based context analysis
is to utilize the context information to enhance the accuracy
of the candidate trace link list that will be vetted by experts at
the end of the RT recovery process. To be specific, its basic
approach is summarized by the following three steps:

1) The first step is to obtain the context information and the
requirement intent, by analyzing the constructs of the RSL
based upon experts’ experience. The extracted context
information will be further classified into two groups i.e.,
intent-positive and intent-negative, according to whether
or not such context information can help to communicate
and understand the requirement intent. This is the core
part of our context analysis.

2) After the context analysis, we employ the standard VSM
to generate two ranked trace link lists between the require-
ment and artifacts, in terms of using the intent-positive
context query and the intent query (as input), respectively.
In doing this, we will get two candidate trace link lists at
the end of this step.

3) Finally, the two generated ranked lists are combined to-
gether to form a ranked candidate trace link list containing
the recalculated similarity scores. This is done by using a
weighted knowledge model, and the ranked candidate list
will be vetted by experts to produce the final trace link
list.

Figure 2 shows the detailed work flow of our approach.
Note that our approach involves lightweight human interven-
tion in the early phase of the RT recovery process, which
is very different from the traditional way that heavyweight
human intervention is often involved in the last stage of the RT
recovery process. In doing this, we provide the standard VSM
with more accurate information to generate better candidate
trace link lists. As a result, the final trace link lists can be
significantly improved as well as the pertaining human efforts
demanded in the final phase of the RT recovery process can
be dramatically reduced.

B. Context Analysis of Use Cases

Requirement context consists of whatever constructs sur-
round requirement intent, which are relevant to the requirement

Fig. 2. The work flow about our proposed VSM-based context analysis
approach.

interpretation on the subsequent artifacts. Moreover, there are
various constructs which are contained by different RSLs,
introducing great diversity. In order to avoid the case that the
constructs of requirements context become too intractable to
be processed in practice, it is essential to restrict the range.
Therefore, our context analysis defines the range of context
and intent constructs for a given RSL, based around a set
of proposed criteria and definitions using experts’ experience.
Additionally, since the results of our context analysis can be
reused for the projects using the same RSL, we consider the
human efforts involved in our approach can still be regarded
as light-weighted.

The criterion, which we apply to judge if a construct
belongs to context or intent, is given below:

Criterion 1. A construct is considered as the requirement
intent if it is used by the system developers to implement the
functionalities of a system described by the requirement; it
belongs to context otherwise.

In this work, we choose UC technique as an example, to
examine our approach. In general, although different projects
or companies may use different structured UC requirements,
the constructs of the UCs as in the widely accepted industrial
practice [18], can be expressed by Definition 1.

Definition 1. Use Case constructs of our interest include the
title, pre-conditions, flow of events and post-conditions of the
use case.

It is interesting to stress that our current research only
focuses on the functional requirements which describe the
functionalities of a system. The above definition should thereby
be adapted when non-functional requirements are considered.

According to Criterion 1, we give the following definitions
of UC intent and UC context used in our work.

Definition 2. Intent of a Use Case requirement refers to its
flow of events.

Definition 3. Context of a Use Case requirement refers to its
title, pre-condition, and post-condition.

Further, our definitions are given based around the follow-
ing train of thoughts:



1) The title of a UC is traditionally named as an active verb
phrase. Although its information is not rich enough for
system developers to implement the functional require-
ment, it still can help to provide extra information for
traceability recovery process. Therefore, the title construct
is defined as context information.

2) The initiation of a UC occurs whenever the pre-conditions
are met, and the post-conditions, on the other hand,
describe what data need to be stored in the UC. Therefore,
they belong to context.

3) The flow of events is the main part of a UC, which defines
the relevant functional requirements with all the details.
Hence it is considered as the intent of a UC.

However, from the traceability perspective, not all the con-
text information is helpful for the interpretation of requirement
intent, we thereby give the following definition of

Criterion 2. If the construct aims at describing the function-
alities of a system, i.e., the requirement intent, the construct is
defined as intent-positive. If the construct aims at describing
the constraints, extensions, meta information, etc., the con-
struct is defined as intent-negative.

Based on Criterion 2, the pre-conditions and post-
conditions should be classified as intent-negative constructs,
since they do not aim at describing the functions of a system.
The title of UC is usually associated with some information
about a certain functional requirement, it is thereby regarded
as intent-positive construct.

C. The Weighted Knowledge Model

Gethers et al.present the weighted knowledge model
in [23], which is used in our work. Next we introduce its
basic idea in our context: The two trace link lists generated
by using requirements context query and requirements intent
query (i.e., the context query and the intent query hereafter)
are viewed as two knowledge sources, both of which can
contribute greatly to address trace link recovery between the
requirement and a set of target artifacts. Since the two trace
link lists express their judgments from different perspectives
(i.e., as either requirements context or requirements intent),
their pertaining weights should be considered when they are
combined together to obtain a more accurate candidate trace
link list.

Formally, such a combination is obtained through two
steps. At the first step, the two set of similarity scores of
two trace link lists are normalized by using a standard normal
distribution, as expressed by Equation 3:

simli(q, d)n =
simli(q, d)−mean(simli(q,D))

stdev(simli(q,D))
(3)

where q represents the query, D represents a set of related
artifacts, d ∈ D, simli(q, d)n is the normalized similarity
score of simli(q, d) (where li is one of the trace link lists), and
simli(q,D) is a set of similarity scores in li. The functions
mean() and stdev() return the mean and standard deviation of
the similarity scores of two trace link lists respectively. Note
that such normalization is required to guarantee that the two
different sets of similarity scores are commensurable.

At the second step, the normalized scores are combined by
using the following weighted knowledge model, as shown in
Equation 4:

sim(cq, iq, d)c = λ× simli(cq, d)n +(1−λ)× simlj (iq, d)n (4)

where cq and iq represent the context query and intent query,
λ ∈ [0, 1] expresses the confidence in each query. The higher
the value the higher confidence gives by the technique. In our
evaluation, we find the value of λ to be 0.3 (as the weight
of context query), which usually produces good combined
similarity scores.

In a nutshell, our context analysis in practice provides
the standard VSM with both requirements intent query and
requirements context query. Typically, such a combination con-
tains more enhanced semantics, which can accurately represent
the intent of the requirement. As a result, the accuracy of
the standard VSM toward recovering true trace links can be
improved.

D. Algorithm Description

The precise description of the algorithm using pseudo-code
is outlined in Algorithm 1, which takes four parameters and
returns a ranked list of candidate trace links at the end of its
execution.

Parameters:
D: list - the collection of source code files D
uc: string - the UC requirement uc
iq: string - the intent query iq of the use case uc
cq: string - the context query cq of the use case uc

Returns:
LISTvsm−ca: list - the ranked candidate trace link list

between the UC requirement uc and the source code files D,
containing the combined similarity scores.

Algorithm 1 V SM − CA(D,uc, iq, cq)
1: m← 0, D′ ← ∅
2: D ← d1, d2, ..., dn−1, dn

3: cq ← context(uc)
4: iq ← intent(uc)
5: for all di ∈ D such that 1 ≤ i ≤ n do
6: simcq,di

← sim(cq, di)
7: simiq,di

← sim(iq, di)
8: if simcq,di

6= 0 or simiq,di
6= 0 then

9: m← m + 1
10: D′ ← D′

⋃
{di}

11: end if
12: end for
13: for all d′i ∈ D′ such that 1 ≤ i ≤ m do
14: simcq,d′

i
← siml1

(cq, d′i)n

15: simiq,d′
i
← siml2

(iq, d′i)n

16: sim(uc, d′i)← sim(cq, iq, d′i)c
17: if sim(uc, d′i) ≥ threshold then
18: LISTvsm−ca ← LISTvsm−ca

⋃
{sim(uc, d′i)}

19: end if
20: end for
21: return LISTvsm−ca

IV. EMPIRICAL EVALUATION

This section describes the evaluation carried out to assess
the improvement given by our VSM-based context analysis
over the standard VSM, comprising six parts. Section IV-A
introduces the evaluation setup, and Section IV-B formulates



TABLE I. CHARACTERISTICS OF THE THREE DIFFERENT EMBEDDED
SOFTWARE APPLICATIONS USED IN OUR EVALUATION.

System KLOC UCs Source code files True links

iRobot 2706 21 20 45
iTruck 952 24 14 37

iSudoku 9285 18 54 51

our research questions for evaluation. Our evaluation metrics
and the corresponding results are presented in Section IV-C
and Section IV-D respectively. Finally, we summarize the
evaluation by highlighting some interesting observations in
Section IV-E, before we give our view of validity of results in
regard to some possible threats in Section IV-F.

A. Definitions and Context

The goal of the evaluation is to provide the evidence that
our VSM-based context analysis can obtain better results over
the standard VSM, when it is used for trace link recovery in
embedded applications.

The context of our evaluation is represented by three differ-
ent embedded software applications developed at Mälardalen
University in Sweden, which are: 1) one industrial robotic
control system iRobot and, 2) one truck navigation system
iTruck and, 3) one embedded mobile application iSudoku.
Specifically, iRobot is a C program, which models a robotic
control application containing complicated timing behavior,
and it has been designed and evaluated in [24]. iTruck is
also a C program, which is developed for modeling a truck
navigation system by using SaveComp Component Model
(SaveCCM) [25]. iSudoku is a Sudoku game application
developed in Java for the Android platform. In addition, all the
three applications have different number of UCs, source code
files and true trace links, as shown in Table I. One example
of the UCs in iSudoku, with its title, pre-condition, flow of
events and post-condition, is shown by Figure 3. Moreover, all
the relevant files of the three case studies, e.g., UCs, source
code files, are available upon request.

For implementation, we use the Lucene library [26], which
is the well-known VSM with tf-idf weighting scheme, and
has been considered as the default IR model by many pieces
of work [15], [16], [27]. Our testbed is running Mac OS X,
version 10.6.8, and the computer is equipped with the Intel
Core Duo CPU i7 processor, 4GB RAM and a 256KB L2
Cache. The processor has four cores and one frequency level:
2.2 GHz.

1 List Puzzles on Screen Use Case
2 Pre-conditions:
3 The game is initiated.
4 Flow of events:
5 The application loads all the puzzles stored in the
6 local database.
7 The puzzles and their corresponding folders can be
8 listed on the screen one by one.
9 Post-conditions:

10 List variables is initiated.

Fig. 3. An example shows one use case in iSudoku.

B. Research Questions

In this study, we aim at addressing the following research
question:

• Can our VSM-based context analysis approach obtain
better quality trace link lists, compared with the standard
VSM?

To answer this question, we plan to use three well-known
IR metrics for results comparison (to be introduced in the
following section).

C. Metrics

There are many different measures for evaluating the
accuracy of IR methods. In this work, we use three well-known
IR metrics, i.e., recall, precision and mean average precision
(MAP) [21]. Specifically, recall shows the ratio of the number
of relevant documents retrieved by the method over the total
number of relevant documents, and 100% recall means that all
relevant documents were retrieved. Precision is the fraction
of the relevant documents retrieved over the total number of
the retrieved documents, and 100% precision means that all
the retrieved documents are relevant ones, though there could
be some relevant links that were not discovered. Recall and
precision can be expressed by Equation 5 and Equation 6 as
follows:

recall =
|Drel ∩Dret|
|Drel|

(5)

where Drel represents the collection of source code files that
are relevant to a UC, and Dret is the collection of the retrieved
source code files using a certain IR technique.

precision =
|Drel ∩Dret|
|Dret|

(6)

where Drel represents the collection of source code files which
are relevant to a UC, and Dret is the collection of the retrieved
source code files.

Another evaluation metric MAP, as one of the most fre-
quently used IR measures, considers the rank of the retrieved
trace links. The higher the MAP score is, the better quality
of the retrieved ranked list of trace links is, in terms of
requirements relevance. In particular, given a collection of
UCs as queries Q, and a set of related source code files as
documents Da, the MAP score of the ranked list L of retrieved
documents for the given query q, is defined as below:

MAP =
1

|Q|

Q∑
q=1

1

|Da|

Da∑
d=1

SCORErank(d, L) (7)

where SCORErank(d, L) is the ranking score of the docu-
ment d in the list L. The higher the rank of d is, the larger
ranking score the document has.

D. Analysis of Results

In this section, We investigate whether the accuracy of our
VSM-based context analysis approach is superior to that of the
standard VSM approach.



1) Improvement of Recall and Precision Scores given by
our VSM-based Context Analysis: Recall and precision fre-
quently exist in a state of mutual tension. For example, 100%
recall can be achieved simply by returning all possible links.
This may result in a very low level of precision, which is
not so useful in practice [21]. When choosing any traceability
recovery approach, the end-users should consider which one
between recall or precision is preferred. For example, for
safety critical projects, recall will probably be more important,
since the end-users will not want to run the risk of missing
any true link. On the other hand, in most cases, a non-
safety critical project with a short time-to-market may prefer
to favor precision [21], i.e., the end-users will expect that
the traceability recovery approach can obtain more true links
when they just have time to check part of the candidate trace
link list. It should be pointed out that the level of recall at
90% is a common choice at which the precision scores are
compared to show improvements [6], [23]. Figure 4 provides
the precision/recall curves achieved by our approach and the
standard VSM. As shown by the figure, we have one case
(i.e., iRobot) where our approach outperforms for all levels
of recall, and there are two other cases (i.e., iSudoku and
iTruck) where the precision scores of our approach are much
better than that acquired by the standard VSM approach when
the level of recall is lower than 90%, which means that our
approach would be more suitable for the embedded systems
which prefer precision rather than recall.

2) Improvement of MAP Scores given by our VSM-based
Context Analysis: Table II shows the improvement of MAP
scores given by our method over the standard VSM, for all
the three case studies. It is also interesting to stress that we
only show the average of the MAP scores of all the UCs for a
certain case study in the table, for the sake of space. Moreover,
we also present such improvements in terms of percentages
(i.e., MAPvsm−ca−MAPvsm

MAPvsm
, where vsm-ca is our VSM-based

context analysis) in Column Imprv. % in Table II. As shown
in the table, the most significant improvement achieved by our
approach is 28.0%, comparing the standard VSM.

TABLE II. OUR PROPOSED VSM-BASED CONTEXT ANALYSIS CAN
RETRIEVE HIGHER MAP SCORES, COMPARING THE STANDARD VSM.

System AVG of MAP VSM AVG of MAP VSM-CA Imprv. %

iRobot 0.717 0.733 2.23%
iTruck 0.660 0.762 15.4%

iSudoku 0.547 0.700 28.0%

E. Experiments Summary

Summarizing the above observations, our evaluation results
have confirmed the following points:

1) Our proposed approach can help to recover more accurate
trace links than the standard VSM, in the sense of
obtaining higher precision scores corresponding to certain
levels of recall.

2) Our proposed approach can help to recover more accurate
trace links than the standard VSM, in the sense of
obtaining higher MAP scores.

3) The computing time required by the trails of our ap-
proach, on average took only a few minutes to compute.
This is an important step toward handling real life-scale
requirements traceability problems.

Fig. 4. The precision/recall curves of our approach and the standard VSM
approach, in the order of iRobot, iTruck and iSudoku from top to bottom. In
addition, the curves in dashed lines are for the standard VSM.

F. Threats to Validity

In this section, we discuss the threats that can impact
on the validity of our evaluation, from the following four
perspectives [31]. The first category is construct validity,
concerning the degree to which the study metrics accurately
measure the concepts. The metrics used in our evaluation,
i.e., recall, precision and MAP, have been widely adopted for
assessing the traceability accuracy of IR methods. Therefore,
we believe that they can sufficiently quantify the accuracy of
two compared IR methods. The second category is internal
validity, referring to the extent to which a treatment changes
what is measured in the experiment. The internal validity of
our experiment can only be affected by the chosen value
of the parameter λ in the employed knowledge model. We
choose the value of λ based on our empirical evidence. In
the future, we will obtain the optimal value of λ by using
some advanced techniques, such as optimization and machine
learning. The third category is external validity, related to
the extent to which we can generalize the study results. The
reason is that different systems with various requirements and
subsequent artifacts may lead to different results. In order to
reduce the threats to the external validity, we have chosen
three embedded software applications in different domains.
Last but not least, the fourth category conclusion validity
concerns if our evaluation observations can be supported by



some valid statistical techniques as evidences. In this stage,
we just visualize our results to illustrate our improvement. In
the future, this will be done by using certain non-parametric
or parametric statistical tests, such as Wilcoxon signed-rank
test and ANOVA.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new Vector Space Model
(VSM)-based approach for post-requirements traceability re-
covery, which uses a novel context analysis. Specifically, our
approach utilizes context information featured by requirement
context and requirement intent, to build trace links between
use cases and relevant source code files, through a weighted
knowledge model. We have evaluated the approach by using
three different embedded applications in industrial automation,
automotive and mobile. The experiment results have shown
that our approach can obtain better quality candidate trace
link lists, in terms of higher scores of three main IR metrics,
i.e., recall, precision, and MAP, comparing the standard VSM
approach.

For future work, we will improve the evaluation part by
providing some statistical evidence with statistical hypothesis
test, which can be conducted by performing, e.g., Wilcoxon
signed-rank test with Monte Carlo permutation. Moreover, we
will consider to determine the optimal value of the parameters
in the weighting schema for combining two ranked trace link
lists in the analysis. We also plan to apply some user feedback
technique to our context analysis, which would also result in
some interesting discoveries. The investigation of using other
automated information retrieval methods, instead of VSM,
together with our context analysis, as well as the completion
of some extensive evaluation by using more datasets are also
highly appreciated on our good side.
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