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Abstract. Architectural models, such as those described in the East-
adl language, represent convenient abstractions to reason about embed-
ded software systems. To enjoy the fully-fledged advantages of reasoning,
East-adl models require a component-aware analysis framework that
provide, ideally, both verification and model-based test-case generation
capabilities. In this paper, we extend ViTAL, our recently developed tool-
supported framework for model-checking East-adl models in Uppaal
Port, with automated model-based test-case generation for functional
requirements criteria. To validate the actual system implementation and
exercise the feasibility of the abstract test-cases, we also show how to
generate Python test scripts, from the ViTAL generated abstract test-
cases. The scripts define the concrete test-cases that are executable on
the system implementation, within the Farkle testing environment. Tool
interoperability between ViTAL and Farkle is ensured by implementing
a corresponding interface, compliant with the Open Services for Lifecycle
collaboration (OSLC) standard. We apply our methodology to validate
the ABS function implementation of a Brake-by-Wire system prototype.

Keywords: East-adl, model-based testing, test case generation, test
case execution.

1 Introduction

The quality of a system’s software architecture influences directly the perfor-
mance and other extra-functional attributes of the implementation, so such de-
scriptions need to be analyzed against functional requirements. For instance, in
an automotive system, braking correctly is a stringent requirement that needs to
be ensured to avoid fatal consequences. One way to meet this goal is to entwine
the formal verification of architectural models, for instance by model-checking,
with automatic generation of abstract test-cases (ATC) from the same model
(also by model-checking), which can be eventually used to validate the system’s
implementation. In this paper we focus on East-adl [2], an industry-adopted
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architecture-description language for developing automotive embedded systems,
with support for functional specifications.

Although there is a solid research know-how of generating model-based test
cases from behavioral specification models [13, 14, 23], in principle these methods
are not directly applicable to structural models that are centered on components
and their connections. For such models, the abstract test-case generation must
be carried out within a formal framework that preserves the component se-
mantics, most desirably by using component-aware model-checking algorithms.
Also, assuming the component behavior formalized using a semantics-preserving
notation such as timed automata [1], the generated abstract test-case will con-
tain internal state information not corresponding to the actual code. Hence, the
abstract test-cases need to be transformed into scripts, representing concrete
test-cases that can be executed on the system implementation.

All the mentioned issues have kindled our motivation to introduce a method-
ology for model-based testing, described in Section 4, tailored to East-adl
architectural models, with the ultimate goal of applying the technology to ana-
lyze the system implementation, starting from the structural high-level artifact.
We adopt ViTAL (see Section 3) as our main model-based framework, since it
integrates component-aware model-checking with East-adl. The behavior of
East-adl function blocks is formalized in the Uppaal Port timed automata
(TA). We first show how to generate abstract test-cases for functionality, from
the TA model of the East-adl system description. The functional requirement
criterion is formalized as a reachability property in Uppaal Port, and the re-
sult is a trace tailored to function block execution. The main goal of this work is
twofold: (i) to validate the actual code that implements the model functionality,
and (ii) to exercise the feasibility of the generated abstract test-case, by checking
if the corresponding executable test-case ends its run with a pass or fail result.
To meet our ambition, we transform the states and transitions of the ATC into
C/C++ code signals, by generating Python test-scripts in Farkle [6].

Concretely, our methodology consists of the following contributions:

– abstract test-case generation from TA behavioral models of East-adl func-
tion blocks, in Section 5;

– transformation of TA generated traces into concrete test-cases as Python
scripts, in Section 7;

– OSLC adaptor design and implementation for ViTAL-Farkle tool interoper-
ability, in Section 6.

To check the applicability of our framework, we illustrate it on a simplified
version of the Brake-by-Wire System prototype, which we describe in Section 2,
for which we generate abstract test-cases for the basic ABS functionality, import
them via the OSLC adaptor, and transform them into a Pyhton script that we
run on the actual code, all presented in Section 8. Finally, we summarize our
work and give an overview of the related work in Section 9.
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2 Brake-by-Wire Case Study: Function and Structure

In this section, we introduce the Brake-by-Wire (BBW) system, which will be
used through the paper as the running example. BBW is a braking system
equipped with an ABS function, and without any mechanical connection be-
tween the brake pedal and the brake actuators applied to the wheels.

The functionality of the system is divided among sensors, actuators, and
computational blocks. The sensor attached to the brake pedal provides a voltage
value related to the pedal angle, which is transformed into a percentage of a
maximum value of the brake force. Similarly, the sensor attached to each wheel
provides the wheel speed in rpm. The input provided by the sensors is used
to compute the requested braking force for the entire vehicle, and then a local
braking force at each wheel. The ABS controls the wheel braking in order to
prevent locking the wheel, based on the slip rate value, and then the wheel
actuator applies the braking force provided by the ABS.

The ABS computes the slip value based on the equation:

s = (vehicleSpeed− wheelSpeed× r)/vehicleSpeed,

where s is the slip rate, vehicleSpeed is the estimated vehicle speed value,
wheelSpeed is the wheel speed sensor value, and r is the wheel radius.

The friction coefficient of the wheel has a nonlinear relationship with the
slip rate: when s starts increasing, the friction coefficient also increases, and its
value reaches the peak when s is around 0.2. After that, further increase in s
reduces the friction coefficient. For this reason, if s is greater than 0.2 the brake
actuator is released and no brake is applied, or else the requested brake torque
is used. Our goal is to test whether the actual system implementation meets this
functional requirement, starting from the BBW’s high-level architectural model.
In the remainder of the paper, we first overview the background briefly, after
which we detail the methodology, and apply it on the BBW example.

3 Preliminaries

3.1 ViTAL

ViTAL [8], a Verification Tool for East-adl Models using Uppaal Port, inte-
grates architectural languages and verification techniques, to provide simulation,
formal verification, and from now on, also test-case generation to East-adl
system models. This section overviews the tool shortly, whereas the test-case
generation methodology is further detailed in Section 5.

ViTAL is an integrated environment based on Eclipse plug-ins, consisting of:
(i) two standard editors plug-ins, one for the East-adl system model and one for
the TA description of the component behavior, (ii) an automated transformation
from East-adl models to Uppaal Port input model, and (iii) the Uppaal
Port plug-in for model-checking East-adl models enriched with TA semantics.
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The East-adl language describes the abstract functional system model com-
posed of interconnected components, called function prototypes (fps). As de-
picted in fig. 3, each East-adl fp is defined by its interface and a TA behavior.
The M2M transformation performs a semantic mapping between each East-
adl fp and a corresponding TA model (e.g., mapping internal TA variables to
East-adl external ports). The result of the transformation is compliant to the
input language of the Uppaal Port model-checker. Further, the model-checker
can be used to simulate the system model and verify various requirements (e.g.,
functional, timing), specified in Timed Computational Tree Logic (TCTL).

Once the East-adl model is validated, in this paper, Uppaal Port is used
to generate abstract test suites for different coverage criteria.

EAST-ADL. East-adl is an architecture description language dedicated to
the development of automotive embedded systems [2]. The definition of an East-
adl system model is given at different levels of abstraction representing the
stages of the engineering process.

<<designFunctionType>>

FunctionalDesignArchitecture

<<designFunctionPrototype>>

+ Brake Pedal Sensor
<<designFunctionPrototype>>

+ Brake Torque Calculator

<<designFunctionPrototype>>

+ Global Brake Controller

<<designFunctionPrototype>>

+ Wheel Sensor
<<designFunctionPrototype>>

+ ABS

<<designFunctionPrototype>>

+ Wheel Actuator

structure

Position PositionPercent PedalPercent DriverReqTorq

WheelRpm

GlobalTorque

SpeedRpmRotation

RequestedTorque

WheelSpeed

WheelTorque

ABSTorque TorqueCmdBrakeTorque

Fig. 1. The EAST-ADL model of the BBW system.

In East-adl, the behavioral description relies on the definition of a set of
fps, executed assuming the ”read-execute-write” semantics. This enables anal-
ysis, behavioral composition, and makes the function execution independent of
internal behavior. In East-adl the functionality of each fp is defined using
different notations and tools, e.g., the Uppaal Port TA in out tool ViTAL.

The interface of an fp is defined as a set of input and output data ports
and triggering elements. Each component is idle until it is triggered, at which
point it enters the executing state by reading the data from the input ports,
then executes its behavior, and writes the data to the output ports.

Figure 1 presents the East-adl model of the BBW, composed of six fps:
Brake Pedal Sensor, Brake Torque Calculator, Wheel Sensor, Global
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Brake Controller, ABS, and Wheel Actuator. The functionality of the sen-
sors and actuators is straightforward, and acts as the system environment, by
providing inputs and receiving output values. The Brake Torque Calculator
computes the global braking force based on the pedal position received from the
Brake Pedal Sensor. At the wheel, the Global Brake Controller calculates
the local braking force by updating the global braking force based on the speed
of the wheel. This value is passed to the ABS, which calculates the slip rate in
order to prevent the locking of the wheel.

Timed Automata of UPPAAL PORT. Uppaal Port uses a special type of
TA [11], where the syntax is defined by a tuple B = (N, l0, lf , VD, VC , ro, rf , E, I)
where N is a finite set of locations, l0 is the initial location, lf is the final location,
VD and VC are a set of data and clock variables, respectively, r0 and rf are sets
of initial and final reset clocks, E is a set of edges, and I is mapping each location
l to its invariant I(l). To describe an edge from location l to l′, with guard g,

action update e, and reset clocks r, we write l
g,e,r−−−→ l′, for (l, g, e, r, l′) ∈ E.

Fig. 2. The TA description of the ABS function block.

Fig. 2 presents the Uppaal Port TA behavior of the ABS fp. The TA takes
as input the wheel speed wABS, and the local braking force wheelTorqueABS.
First, the TA calculates the vehicle speed v. If the car has no speed, no braking
force is applied, even if the pedal is pressed. If the car is moving, the ABS
calculates the slip rate s, and if s > 20, then again no brake is applied, to
prevent the locking of the wheel. If s < 20, the wheelTorqueABS received from
the Global Brake Controller is sent to the Wheel Actuator.

Semantically, a TA state is a tuple (l, u, v), where l is a location, v is a
data valuation, and u is a clock valuation. The transitions from one state to
another can be internal transitions, read transitions, write transitions, or delay
transitions that do not change the current state.

A TA’s execution trace is a sequence of states and transitions, as shown
below, for the TA shown in Fig. 2:
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(ABS.idle, wABS=0, wheelTorqueABS=0, torqueABS=0, v=0, s=0) −→
(ABS.Entry, wABS=10, wheelTorqueABS=0, torqueABS=0, v=0, s=0)

v:=36∗R∗wABS−−−−−−−−−−→
(ABS.CheckSpeed, wABS=10, wheelTorqueABS=0, torqueABS=0, v=360, s=0)

v>0−−→
(ABS.CalcSlipRate, wABS=10, wheelTorqueABS=0, torqueABS=0, v=360, s=0)

...−→...

(ABS.idle, wABS=10, wheelTorqueABS=0, torqueABS=0, v=360, s=97).

UPPAAL PORT Model-checker. Uppaal Port is an extension of the Up-
paal tool, which supports simulation and model-checking of component-based systems,
without the usual flattening to the model of network TA [10]. This is complemented by
the Partial Order Reduction Technique (PORT) that Uppaal Port uses, to improve
the efficiency of analysis by exploring only a relevant subset of the state-space when
model-checking. It uses local time semantics [3] to increase independence, being suited
for analyzing ”read-execute-write” component models.

3.2 Farkle Environment

Farkle is a test execution environment that enables testing an embedded system in its
target environment. It is originally developed for testing embedded systems built using
OSE Real-Time Operating System (RTOS) [6] (although it is possible to extend and
adapt it to some other OSs such as Linux). OSE is a commercial and industrial RTOS
developed specifically for fault-tolerant and distributed systems. OSE provides the con-
cept of direct and asynchronous message passing for communication, so synchronization
between tasks and its programming model is based on this concept. This allows tasks
to run on different processors or cores, utilizing the same message-based communica-
tion model as on a single processor. This programming model has the advantage of not
using task shared memory. In OSE, the runnable real-time entity equivalent to a task
is called process, and the messages that are passed between processes are referred to
as signals (thus, the terms process and task in this paper are considered equivalent).
Each process can be either in the ready, or running, or waiting (e.g., waiting to receive
a signal) state.

An OSE signal is defined as a data structure. Listing 1.1 shows the signal definition
for the wheel speed in the BBW system:

1 #define WHEEL SPEED SIG 1026
2 typedef struct WheelSpeedSignal{
3 SIGSELECT sigNo ;
4 f loat WheelSpeed ;
5 } WheelSpeedSignal ;

Listing 1.1. OSE signal example

Using the signal passing mechanisms of OSE, Farkle runs on a host Linux/Unix
machine, and communicates with the target that is implemented using OSE. Hence,
Farkle enables testing an embedded system by providing certain inputs to the target
in the form of signals and receiving the result as signals containing output values. The
test scripts that are used to send and receive signals, and also decide the verdict of test
cases are implemented in Python.
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Extended Farkle

ViTAL

System
Designer

Timed Automata Models EAST-ADL System Models
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Port Port
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Test Execution Engine

Pass/Fail Results
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Step 6: converting
ATCs intro test scripts
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Fig. 3. From ViTAL to Farkle: The Methodology

4 From EAST-ADL Test-Case Generation to Code
Validation: Our Methodology

In this section, we present an overview of our complete Model-based Testing (MBT)
framework, which allows test-case generation starting from EAST-ADL models, and
their eventual execution on the system under test (SUT). This framework follows the
MBT methodology [24], and it is implemented by a tool chain consisting of ViTAL and
Farkle, as depicted in Fig. 3. The MBT process proceeds as follows:

Step 1: We create/import the East-adl system model, and add TA behavior to each
EAST-ADL fp.

Step 2: ViTAL performs an automatic transformation of the models defined in step
1 into the input language of the Uppaal Port. The result is the abstract formal
model used for model-checking and test-case generation.
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Step 3: We employ Uppaal Port to automatically generate abstract test cases. Up-
paal Port takes as input the formal model of Step 2, together with the coverage
criteria formalized as a TCTL property (or a set of properties).

Step 4: To ensure tool interoperability, we have implemented two OSLC adapters: an
OSLC provider on top of ViTAL, which allows the export of abstract test cases
(Step 4a), and an OSLC consumer on top of Farkle, which allows the import of
abstract test cases by another tool (Step 4b).

Step 5: The code, representing the SUT, is annotated in order to enable tracking of
state changes at runtime.

Step 6: The ATCs are converted to concrete test cases that are basically test scripts
executable by Farkle.

Step 7: The concrete test cases are executed against the SUT, to obtain a pass or fail
result.

Next, we detail our method for the offline generation of ATCs from East-adl
models, representing step 3 in fig. 3. We generate tests based on the information from
the abstract formal model, and since our tests cannot be executed on the SUT, they
are considered ATCs. Also, we call the method offline generation because the entire
test suite is completely generated prior to the system execution.

5 Timed Automata Generation of Abstract Test Cases
for Functional Requirements Criteria

There are two main problems when dealing with offline model-based test-case genera-
tion: state explosion and non-determinism. Since East-adl models can be represented
at different levels of abstraction, ViTAL can overcome the state explosion problem by
generating test cases from a high-level system abstraction. However, non-determinism
can still be a problem, especially due to the system’s timing behavior. In this paper, we
deal only with functional behavior, setting aside the system’s timing, hence avoiding
time-caused non-determinism.

Embedded systems interact closely with the environment they are deployed in,
through different devices, like sensors and actuators. For this reason, most embedded
systems are modeled as a SUT receiving input signals from the environment, which is
abstracted by a separate model, and producing output signals, correspondingly. How-
ever, this is not the case in ViTAL. ViTAL generates the abstract test cases from
East-adl models that contain fps dedicated to sensors and actuators. Consequently,
the formal model used in our test-case generation integrates the environment also. Nev-
ertheless, such sensors can add potential non-determinism to the model, but we have
restricted the sensors behavior to some possible inputs only.

The basis of our ATC generation method is the ability of Uppaal Port to generate
witness traces for reachability properties. To achieve this, ViTAL takes as input: (i) the
abstract formal model represented by the Uppaal Port compliant East-adl model
enriched with TA semantics, and (ii) a functional coverage criterion, formalized as a
TCTL reachability property, or a collection of such properties. In TCTL, reachability
is encoded as: E <> p, and ViTAL checks if a given state formula p may be eventually
satisfied. For each reachability property that is satisfied by the model, the Uppaal
Port model checker generates a witness trace, representing our ATC with respect to
the property. All ATCs are collected into an abstract test-suite, and are provided to
the Farkle tool through the OSLC interface.
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The TCTL properties are given as a command to Uppaal Port, and guide the
generation of witness traces from an infinite number of possible executions of the sys-
tem. One of the limitations of this methodology is the fact that Uppaal Port cannot
generate traces other than for reachability properties. This limits the testing horizon,
as the expressiveness of TCTL for encoding other types of coverage criteria cannot be
fully exploited.

The generated witness traces can be: some trace, the shortest trace, or the fastest
trace, yet trace optimization is out of scope here. Each trace represents an abstract
test case, and the collection of all necessary traces forms an abstract test suite for
a particular coverage criteria. We instantiate our model-based test-case generation
method in Section 8, by applying it to generate ATCs for the BBW functionality.

6 Tool Interoperability

In this section we describe our OSLC adapters, representing steps 4a and 4b in Fig. 3.
The tool integration task has been performed by means of Eclipse Lyo3, which aids the
specification of Open Services for Lifecycle Collaboration4 (OSLC) compliant tools. Our
tools, ViTAL and Farkle, are integrated by implementing a provider on top of ViTAL
that uploads the generated ATCs, and a consumer on top of Farkle that consumes the
latter. In order to ensure standardization, OSLC establishes the exchangeable resources
for each integration scenario; in our example, the exchanged artifact is the abstract test
case.

1 @OslcResourceShape ( t i t l e = ”Qual i ty Management Resource Shape” ,
d e s c r i b e s = Constants .TYPE TEST CASE)

2 @OslcNamespace ( Constants .MDHQMNAMESPACE)
3 public f ina l c lass TestCase extends AbstractResource {
4 private St r ing de s c r i p t i on , i d e n t i f i e r ;
5 @OslcPropertyDef in i t ion ( OslcConstants .DCTERMSNAMESPACE + ” de s c r i p t i o n

” )
6 @OslcTit le ( ” Desc r ip t i on ” )
7 @OslcValueType (ValueType . XMLLiteral )
8 public St r ing ge tDes c r i p t i on ( ) {return de s c r i p t i o n ;}
9 public void s e tDe s c r i p t i on ( f ina l St r ing d e s c r i p t i o n ) { this . d e s c r i p t i o n

= de s c r i p t i o n ;}
10 }

Listing 1.2. OSLC Implementation of the TestCase resource

Within Lyo, a consumer is composed of two EMF projects: one that implements the
exchanged artifact as an OSLC resource, and another that implements the underlying
logic. Listing 1.2 shows an excerpt of the Java implementation of the exchanged arti-
fact, defined as a specialization of the OSLC AbstractResource(line 3). The TestCase

resource definition comprises a set of local variables (line 6-7) along with the getters
and setters (lines 8-18). The set of local variables is standard, and so are the Java anno-
tations(lines 1-2, lines 8-10) also; these are responsible to ensure the mapping between
the Java object and the OSLC resource properties.

3 http://www.eclipse.org/lyo/
4 http://open-services.net/specifications/
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1 @OslcService ( Constants .QUALITYMANAGEMENTDOMAIN)
2 @Path( ” te s tCase s ” )
3 public c lass TestCaseServ ice {
4 @GET
5 public TestCase [ ] getTestCases (@QueryParam( ” o s l c . where” ) f ina l St r ing

where ) {
6 f ina l List<TestCase> r e s u l t s = new ArrayList<TestCase>() ;
7 f ina l TestCase [ ] t e s tCase s = Ret r i eve r . getTestCases ( ) ;
8 for ( TestCase tes tCase : t e s tCase s ){ r e s u l t s . add ( tes tCase ) ;}
9 return r e s u l t s . toArray (new TestCase [ r e s u l t s . s i z e ( ) ] ) ;

10 }
11 }

Listing 1.3. OSLC ATC provider

Listing 1.3 presents an excerpt of the implementation logic for the ViTAL provider.
Once the function Retriever.getTestCases() has set-up the OSLC resources with the
needed ViTAL information, the resources can be accessed. The method annotation @GET

(line 5) specifies the method to be invoked each time the provider receives a consumer
HTTP GET.

1 f ina l OslcRestCl i ent o s l cRe s tC l i en t = new OslcRestCl i ent ( prov iders ,
queryBase , MEDIA TYPE, timeout ) ;

2 f ina l TestCase [ ] enov iaSys temDef in i t i ons = os l cRe s tC l i en t .
getOs lcResources ( TestCase [ ] . class ) ;

Listing 1.4. OSLC ATC consumer

Listing 1.4 shows the logic for the Farkle consumer: once the authentication to the
given URI (line 1) has been performed, the consumer queries the resulting object (line
2) for retrieving all the test-case resources posted under the respective URI.

7 Creating Executable Test Cases

The final step in our testing chain is the creation of concrete test cases. The abstract
test cases generated by ViTAL are provided as input to the Extended Farkle environ-
ment through the OSLC layer described previously, which enables the OSLC-based
integration of the involved tools. Next, the following steps are taken for generating
concrete test cases:

1. The ATCs from ViTAL are retrieved through the OSLC consumer, and are stored
locally.

2. Different ATC state machines and their internal states are identified, and based on
this information, C/C++ enumerations representing them are generated and stored
in a C/C++ file along with a helper function named set state(StateMachine,

State). The file is then included in the implementation code (Step 5 in Fig. 3).
3. The system’s implementation code is then annotated using the set state() helper

function that maps state machines to code, by marking and adding a call to this
function at places in the code where a state change occurs accordingly (Step 5 in
Fig. 3).

4. Information about the transitions is retrieved from the abstract test case, and a
Python test script executable in Farkle is generated. This means that the values
of variables causing each transition are extracted from the abstract test case, and
defined as OSE signals in the script, which are then sent to the system under test
to invoke and simulate the transitions (Step 6).
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5. The testing result is evaluated as pass if the (order of) changes in the states at
the implementation level matches those at the system model level, and in the
abstract test case; otherwise, the test execution ends in fail, which is an indication
of problems/errors in the model or code, and of inconsistencies between them
(Steps 7 in Fig. 3).

The process of generating concrete, executable test cases is semi-automatic only due
to step 3 of the above list, which requires some manual intervention. However, if the
implementation code is generated from system models while taking into account the
information about the state machines of the TA model (for system verification), the
mapping of abstract states to code states could then possibly be automated, and per-
formed during code generation. This automation is particularly interesting for the scal-
ability of the approach, considering that there can easily be a large number of states in
the system implementation. We will nevertheless investigate this aspect in our future
work.

8 Brake-by-Wire Revisited: Applying the Methodology

We illustrate and exercise the applicability of our approach on the BBW system, in-
troduced in Section 2. The BBW East-adl system model is depicted in Fig. 1, while
the behavior of the ABS component is shown in Fig. 2.

We have modeled the BBW system in ViTAL, as presented in Section 3, and we have
simulated and verified our formal model to ensure that it conforms to its specification.
For more details on the formal analysis of East-adl in ViTAL, we refer the reader
to our recent work [8]. In this section, we will focus on the chain starting with the
generation of abstract test cases for a particular functional requirement, from East-
adl, and ending by executing the obtained concrete test case on the implementation
code, process that terminates with a “pass” or “fail” verdict w.r.t. the considered
requirement.

We show the entire testing process for one functional requirement of the BBW
system, pertaining to the function of the ABS component, which depends on the value
of the slip rate. The goal is to verify that the brake actuator is always released and no
brake is applied, if the slip rate s is greater than 0.2. The requirement is expressed in
TCTL as follows:

A[ ](ABS.s > 0.2 imply WheelActuator.NoBrake)

This property is satisfied by the BBW model, as Uppaal Port returns a “passed”
verdict at the end of model-checking BBW’s TA behavior in ViTAL. Since the Up-
paal Port model-checker integrated in ViTAL generates witness traces for reachabil-
ity properties only, for the testing purpose, we need to specify the requirement as below:

E < > (ABS.s > 0.2 and WheelActuator.NoBrake)

The above reachability property expressed in TCTL is given as input to Uppaal Port,
which automatically generates a trace, as a witness. The trace is an execution sequence
of states and transitions of the TA formal behavioral model of the BBW, representing
an abstract test case for our functional requirement.
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1 State : BrakeTorqueSensor . i d l e , BrakeTorqueCalculator . i d l e ,
2 WheelSensor . i d l e , Globa lBrakeContro l l e r . i d l e , ABS. Entry ,
3 WheelActuator . i d l e , BrakeTorqueSensor . Pos=0,
4 BrakeTorqueCalculator .maxBr=2, BrakeTorqueCalculator . ReqTorque=0,
5 BrakeTorqueCalculator . Pos=0, WheelSensor .Rpm=1,
6 Globa lBrakeContro l l e r .Rpm=1, Globa lBrakeContro l l e r . ReqTorque=0,
7 Globa lBrakeContro l l e r . WheelTorque=0, Globa lBrakeContro l l e r .W=10,
8 ABS.WABS=10, ABS.WheelTorqueABS=0, ABS. TorqueABS=0, ABS. v=0,
9 ABS. s=0, WheelActuator . Torque=0, WheelActuator . brake=0.

10 Transitions : ABS. Entry−>ABS. CheckSpeed {v := 36 ∗ R ∗WABS}
11 State : BrakeTorqueSensor . i d l e , BrakeTorqueCalculator . i d l e
12 WheelSensor . i d l e Globa lBrakeContro l l e r . i d l e , ABS. CheckSpeed ,
13 WheelActuator . i d l e , BrakeTorqueSensor . Pos=0, . . .
14 Transitions : ABS. CheckSpeed−>ABS. CalcSl ipRate {v > 0 }
15 State : BrakeTorqueSensor . i d l e , BrakeTorqueCalculator . i d l e ,
16 WheelSensor . i d l e , Globa lBrakeContro l l e r . i d l e ,
17 ABS. CalcSl ipRate , WheelActuator . i d l e , BrakeTorqueSensor . Pos=0, . . .
18 Transitions : ABS. CalcSl ipRate−>ABS. AsigT2{s := (v −WABS ∗ R) ∗ 100/v }
19 State : BrakeTorqueSensor . i d l e , BrakeTorqueCalculator . i d l e ,
20 WheelSensor . i d l e , Globa lBrakeContro l l e r . i d l e , ABS. AsigT2 ,
21 WheelActuator . i d l e , BrakeTorqueSensor . Pos=0,
22 BrakeTorqueCalculator .maxBr=2, BrakeTorqueCalculator . ReqTorque=0,
23 BrakeTorqueCalculator . Pos=0, WheelSensor .Rpm=1,
24 Globa lBrakeContro l l e r .Rpm=1, Globa lBrakeContro l l e r . ReqTorque=0,
25 Globa lBrakeContro l l e r . WheelTorque=0, Globa lBrakeContro l l e r .W=10,
26 ABS.WABS=10, ABS.WheelTorqueABS=0, ABS. TorqueABS=0,
27 ABS. v=360 , ABS. s=97, WheelActuator . Torque=0, WheelActuator . brake=0.

Listing 1.5. Abstract Test Case

We do not run this abstract test-case against the formal model, instead we transform it
into an executable test case, used to test the actual behavior of the system at runtime;
this complements the system model verification, which is useful to validate the BBW
model. Executable test cases are created by applying the steps of the method described
in Section 7. The enumeration types below are generated automatically, and together
with the fixed implementation of the set state() helper function, they are “included”
and used in the implementation code (as a header file):

1 enum StateMachines {BrakePedalSensor , BrakeTorqueCalculator ,
GlobalBrakeContro l ler , WheelActuator , ABS, WheelSensor } ;

2 enum State s {Entry , CheckSpeed , CalcSl ipRate , AsigT1 , AsigT2 , AsigT3 ,
Exit , Brake , NoBrake , Reac , . . . } ;

Next, we use set state() to mark and annotate state changes in the code, starting
from the states of the TA model of the ABS function block. This results in a mapping
between abstract states and code, as shown in fig. 4.

Moreover, from the abstract test case, shown partially in Listing 1.5, the input
variable values invoking transitions in the TA model are automatically identified, and
a Python test script is generated. When executed by Farkle on the host system, the
script sends the signals representing those input values, to the target. An excerpt of
the generated script is shown in Listing 1.6.
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Fig. 4. Mapping of states to the code (ABS function)

1 import sys
2 import os
3 from s i g n a l s import ∗
4 sys . path . append ( ”/media/E21408B714089129/ runtime−Ec l i p s eApp l i c a t i on /pp/”

)
5 class TestABS :
6 def TestCase WheelSpeed1 ( s e l f ) :
7 GW = ’ tcp : / / 1 0 . 0 . 0 . 4 : 2 1 7 6 8 ’
8 NAME = ’ABS proc ’
9 s e l f . proc = ogre . Process (GW, NAME)

10 p = BBWsignals .WHEEL SPEED SIG( )
11 p . WheelSpeed=10
12 s e l f . proc . send (p)
13 . . .

Listing 1.6. Generated Python script sending signal to the ABS process on the target

On the target, the OSE process to which the signal is sent starts running, including the
execution of set state() statements that have been added to the code. The function
set state() also keeps track and logs state changes of the TA model. If one observes
any discrepancy between the order of the logged states (as the result of running the
code) and the order produced in the abstract test case (originated from the model),
running the Python scripts ends with a fail result as the testing verdict. Otherwise,
checking state changes and sending signals to invoke transitions continues until all
the states and transitions from the abstract test-case are covered, resulting in a pass
verdict. In our concrete case, the ABS functional requirement passes when tested on
the code.
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9 Conclusions and Related Work

9.1 Conclusions

In this paper, we have presented a methodology and tool support for testing sys-
tem implementations, starting from East-adl architectural models. The framework
assumes the East-adl artifact as the input model, as well as the timed automata be-
havioral models of the East-adl function blocks. The first step consists in generating
abstract test-cases for functional requirements specified in TCTL as reachability prop-
erties, by model-checking the TA enriched East-adl component behavior in Uppaal
Port. Next, the resulting abstract test-cases are semi-automatically transformed into
Python scripts representing the concrete test-cases that are finally run on the actual
code. Our work is an attempt of checking the feasibility of test-case generation from
East-adl models, which is an adopted structural language in companies such as Volvo
Technology. The method has shown encouraging results when applied on a simplified
Brake-by-Wire prototype implementation.

As future work, we plan to investigate abstract test-case generation for timing and
architectural properties of East-adl artifacts, down to the fully automatic transfor-
mation into executable scripts, which could be run on the system under test, to validate
the implementation.

9.2 Related Work

Model-based testing by model-checking is a technique introduced almost fifteen years
ago [7] as an efficient way of using a model-checker to interpret traces as test cases.
More details and references on testing with model-checkers can be found in Fraser et
al.’s work [9]. Some approaches to testing with model-checkers are applied on real-time
reactive systems. Hessel et al. have proposed test case generation using the Uppaal
model-checker for real-time systems [12, 18] using timed automata specifications. The
main difference in our work is that we provide an approach tailored to an architectural
description language, and we offer an end-to-end tool chain with support for test case
generation and execution.

Over the last few years, researchers in testing communities have been investigating
how design components and architecture description languages (ADLs) can be used
for testing purposes [15]. This effort concretized in testing techniques for ADLs, giving
rise to many different approaches [16, 4, 21]. In comparison, in our work we define the
semantics of the architecture description language in a formal notation, that is Uppaal
Port timed automata, and provide functional test goals to be considered by Uppaal
Port model checker.

As in our approach, some of the related works targeting test case generation explic-
itly distinguish between abstract and concrete test cases [20, 19, 17]. For instance, Pe-
leska [19] has proposed the RT-Tester tool-suite along with the corresponding method-
ology, and discusses the two types of test cases, abstract and executable. The major
goal in RT-Tester, however, is to execute test cases against the models of the system. In
our work, we have introduced an approach that generates concrete test cases that are
actually executable against the running system, and in its target environment. More-
over, it is worth noting that there are different static analysis methods that can be
applied to ensure that expected properties in a system hold, thus increasing confidence
in its correctness. However, despite the application of such methods, there are still sit-
uations/systems where the results of such analysis may be invalidated at runtime due
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to different factors [22, 5]. In this work, we tackled this issue by complementing formal
verification of the system at model level with the verification of its behavior at runtime.
We achieved this by introducing a methodology that helps with bridging the (semantic)
gap between abstract test cases generated from formal models and concrete ones, and
by a tool-chain implementing the methodology. The use of OSLC as the integration
mechanism in our tool-chain provides the advantage of not restricting the method to
Farkle for the concrete-test-case generation; other tools can replace Farkle as long as
they stick to and implement the OSLC standard, via a corresponding consumer.
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