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Abstract—Ensuring that timing constraints in a real-time
system are satisfied and met is of utmost importance. There
are different static analysis methods that are introduced to
statically evaluate the correctness of such systems in terms of
timing properties, such as schedulability analysis techniques.
Regardless of the fact that some of these techniques might
be too pessimistic or hard to apply in practice, there are
also situations that can still occur at runtime resulting in the
violation of timing properties and thus invalidation of the static
analyses’ results. Therefore, it is important to be able to test
the runtime behavior of a real-time system with respect to its
timing properties. In this paper, we introduce an approach for
testing the timing properties of real-time systems focusing on
their internal clock constraints. For this purpose, test cases are
generated from timed automata models that describe the timing
behavior of real-time tasks. The ultimate goal is to verify that
the actual timing behavior of the system at runtime matches
the timed automata models. This is achieved by tracking and
time-measuring of state transitions at runtime.

Keywords—Real-Time, Timing Properties, Testing, Runtime
Verification, Temporal Correctness, Model-Based Testing.

I. INTRODUCTION

In building real-time systems, it is very important to ensure
that timing properties are in accordance with the specified
timing requirements and constraints. The correctness of these
systems is not only dependent on the correctness of the logical
results of computations, but also on the time at which the
results are produced [1]. The criticality of this issue can vary
from one real-time system to another, such as in a real-time
media player vs. the airbag system in an automobile. Different
methods have been suggested in order to verify the correctness
of timing properties in real-time systems. For example, there
are diffeent schedulability analysis methods [2] that help to
determine whether a set of real-time tasks are schedulable
or not. There are several assumptions that are taken into
account in performing such analyses, for instance, Worst-Case
Execution Times (WCETs) of tasks. Some of the approaches
for determining execution times can result in assigning very
pessimistic values [3]. Moreover, at runtime, situations may
occur that lead to the violation of the assumptions that were
taken into account for performing the analyses, and thus inval-
idation of the analysis results [4], [5]. It should also be noted
that for complex systems, such as those in telecommunication

domain with huge number of concurrent tasks handling big
loads of calls, data connections, billing, routing, and so on, it
can be very hard in practice to get such detailed information
about each task in the whole system in order to perform
schedulability analysis [4], [6].

In this paper, we introduce an approach to test the timing
behavior of real-time systems at runtime. The main intention
is to basically verify that the timing properties of the tasks
constituting the system match the specifications by testing
the running system. This is achieved in our approach by
consulting the timed automata models [7]–[9] of the system
and automatically generating test cases from them1. Timed
automata models representing the timing constraints are used
as the source for the generation of test cases and determining
pass/fail criteria for them. The test cases when executed
against the running system determine whether the observed
timing behaviors match what is specified for the tasks in the
timed automata models or not. The focus in this work is mainly
on the verification of the clock constraints that are specified
in the models.

While most of the methods for verification of timing prop-
erties mainly target development phases before the actual
execution of a real-time system, such as static analysis and
model checking methods [1], our approach provides a way to
dynamically test and verify the actual running system. This is
especially important to alleviate the issues mentioned above,
particularly scenarios which may occur at runtime that can
cause invalidation of the results of static analysis methods,
and to identify such misbehaviors. On the other hand, the
approach can also be very well used to complement static
analysis methods to gain more confidence in the correctness
of designed systems in terms of their timing properties. We
demonstrate the applicability of our approach by using it for
testing of timing properties in a Brake-By-Wire (BBW) system
from automotive industry. As the platform for implementation
of the system, we have used OSE Real-Time Operating System

1In this paper, the term verify is used as its ordinary meaning in English
and not to refer to ’formal verification’ in software engineering, unless
explicitly stated. Moreover, the term state machine is used as a synonym
to refer to a timed automaton whenever the main concern is only the states
and transitions in the model regardless of the timing specifications.
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(RTOS) [10], on top of which, BBW application is developed
in C/C++.

The remainder of the paper is structured as follows. In Sec-
tion II, background information about the used technologies
and the BBW system is provided. Section III describes the
details of the proposed approach and in Section IV, we discuss
how we have implemented the approach and applied it on the
BBW system. In Section V, related works are discussed and
possible scenarios for combination of our approach with those
works are also identified. Finally in Section VI, a summary of
the paper along with highlights and conclusions are provided.

II. BACKGROUND CONTEXT

A. Timed Automata

Timed Automata (TA) are essentially finite state machines
which are annotated and extended with real-valued clocks [7]–
[9]. The clocks, initially set to zero at system start-up, progress
and increase synchronously and at the same rate. The value
of clocks can also be reset if needed. Timed automata are
used to provide an abstract model of real-time systems. Timing
constraints are specified using clocks whose values can be
checked in the form of guards and invariants. Invariants can be
regarded as progress conditions and are used to restrict the way
that time may elapse at a state (location). For example, using
invariants, it can be specified that the system is not allowed
to stay in a state more than some time units and the transition
has to be taken by the specified amount of time. Guards are
specified on a transition (edge) as conditions to restrict its
temporal occurrence.

Figure 1 shows an example timed automata for modeling
a real-time lamp introduced in [8]. In this system, there is
a timing requirement on how the user presses a button. The
action of the user in pressing the button is modeled with the
right-hand automaton. The timing requirement in this example
states that if the user presses the button, the lamp is switched
off or on (on in the low mode). However, if he is fast enough
in pressing the button again, the lamp is switched on and ends
up in the bright mode. The decision whether the user has been
fast in pressing the button or not is determined by using the
clock y.

Fig. 1. TA model of a real-time lamp [8]

B. OSE RTOS & Farkle

OSE is a commercial and industrial real-time operating sys-
tem developed by Enea [10] which has been designed from the
ground specifically for fault-tolerant and distributed systems.
It provides preemptive priority-based scheduling of tasks. OSE
offers the concept of direct and asynchronous message passing
for communication and synchronization between tasks, and
OSE’s natural programming model is based on this concept.
Linx, which is the Inter-Process Communication protocol
(IPC) in OSE, allows tasks to run on different processors or
cores, utilizing the same message-based communication model
as on a single processor. This programing model provides the
advantage of not needing to use shared memory among tasks.
The runnable real-time entity equivalent to a task is called
process in OSE, and the messages that are passed between
processes are referred to as signals (thus, the terms process
and task in this paper can be considered interchangeably).
Processes can be created statically at system start-up, or
dynamically at runtime by other processes. Static processes
last for the whole life time of the system and cannot be
terminated. Types of processes that can be created in OSE are:
interrupt process, timer interrupt process, prioritized process,
background process, and phantom process. A process can be
in one of the following states: ready, running or waiting. One
interesting feature of OSE is that the same programming model
based on signal passing can be used regardless of the type of
process.

Farkle is a test execution framework that is originally de-
veloped for testing systems built using OSE. It enables testing
embedded systems in their target environments. This capability
has become possible by using the signal passing mechanism
of OSE which allows Farkle to run on a host machine and
communicate with the target by passing signals. In other
words, Farkle basically enables testing an embedded system
by providing certain inputs to the target in the form of signals
and receiving the result as signals containing output values.
The test scripts that are used to send and receive signals, and
also decide the verdict of test cases are implemented in Python.
Figure 2 provides an overall idea on how Farkle works.

C. Brake-by-Wire System

The Brake-by-Wire (BBW) is a braking system in which
mechanical parts are replaced by electronic sensors and actua-
tors and thus removing the hydraulic connections between the
brake pedal and each wheel brake. Anti-lock Braking System
(ABS) is usually an inherent functionality provided by BBW
systems [11]. The purpose with the ABS subsystem is to
prevent locking of the wheels by controlling braking based
on calculated slip rate value. Slip rate is calculated according
to the following formula (where r is the radius of the wheel):

s = (vehicleSpeed− wheelSpeed ∗ r)/vechileSpeed
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Fig. 2. Farkle test execution environment.

If s is greater than a certrain limit, then the brake actuator is
released and no brake is applied, otherwise the requested brake
torque is used. The Electronic Control Unit (ECU) for each
wheel will have three application software components: one
is a sensor to measure the wheel speed, one is an actuator for
the brake, and the third one implements the ABS controller for
the wheel. A schematic view of the BBW system components
is shown in Figure 3 considering only one wheel for brevity.

Fig. 3. Components composing a BBW system

There are several timing requirements in BBW systems. For
example, the total brake reaction delay could be specified not
to be more than 200ms (in a sample implementation of the
BBW system), or requirements on the periods of samplings
done by sensors. Generally, BBW is an example of safety-
critical, distributed and real-time systems in which meeting
timing requirements has also direct impacts on the safety of
the system.

A Timed Automata (TA) model, designed in UPPAAL tool
[8], describing the internal behavior of the ABS component of
BBW system is shown in Figure 4. In this model, y is a clock
whose specification on the states indicates the amount of time
units that can be spent in each state (non-deterministically,
between 0 and the specified value) before a transition has
to be made to the next state. These timing specifications

are naturally derived from high level timing requirements of
the BBW system and its components. The values in the TA
model here are just samples, and the exact values for each
implementation of the BBW system might be different.

III. PROPOSED APPROACH

In this section we describe our proposed approach to gener-
ate test cases in order to verify that the timing properties of the
system at runtime match the clock constraints specified in the
timed automata models of the system. This is made possible
basically by annotating the code so that state changes can be
determined and tracked at runtime, and measuring the time
difference between the state changes. The following are the
steps that constitute the approach:

1) Based on the automata models, C/C++
enumerations (enum) that represent each state
machine and their internal states are generated.
These enumeration structures are stored in a
C/C++ file along with a helper function called
set_state_wtime(StateMachine,State).
The file is then included in the implementation code of
the target application (i.e., to be tested).

2) The states in the timed automata model are mapped to
the code using the above helper function. This is done
by adding calls to the set_state_wtime() helper
function at places where a state change occurs in the
code. The helper function basically logs the new state
belonging to the specified state machine along with the
time stamp at which the transition and change to the
new state has occurred.

3) According to the timing specifications in the timed au-
tomata model, a test script is generated which verifies the
measured time difference between (pairs of) consecutive
states against the model. In other words, if the time
difference and also the order of state changes match the
model, then the result of the test is determined as pass,
otherwise a fail verdict is decided.

The generation of executable test scripts described in Step
3 is done in the following way:
• Minimum number of paths covering all clock constraints

in the timed automata model are identified (clock con-
straint coverage). For example, in case of the TA model
of the ABS component shown in Figure 4, the fol-
lowing paths are selected: Entry → CheckSpeed →
AsigT1 → Exit and Entry → CalcSlipRate →
AsigT2→ AsigT3→ Exit.

• For each of the identified paths a test script is gener-
ated. The script basically provides and sends necessary
input(s) causing the state machine to start from the Entry
state, taking the states and transitions constituting the
selected path until reaching the Exit state. Considering
the example in Figure 4, this means providing a value
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Fig. 4. Timed automata model of the ABS component

for wABS variable resulting in a value for V causing the
desired transition and path to be taken. Based on the log
information generated by the helper function, the script
checks whether the order of the states and the time spent
in each state with a clock constraint match the extracted
path from the timed automata or not.

IV. APPLICATION & IMPLEMENTATION OF THE APPROACH

We have implemented the BBW system on OSE 5.5.1. An
OSE process is created and developed for each component
shown in Figure 3, and the communication between them is
implemented by defining and passing appropriate OSE signals.
For example, the signal definition for passing wheel speed
information between processes is shown in Listing 1.

# d e f i n e WHEEL SPEED SIG 1026
t y p e d e f s t r u c t WheelSpeedSigna l{

SIGSELECT sigNo ;
f l o a t WheelSpeed ;

} WheelSpeedSigna l ;

Listing 1. Signal definition for wheel speed

To test and verify the clock constraints in the running
system, the approach described in the previous section is
followed. First information about different states is extracted
from the timed automata models and enumeration structures
(C/C++ enums) representing them are automatically generated:

enum S t a t e M a c h i n e s {B r a k e P e d a l S e n s o r , B r a k e T o r q u e C a l c u l a t o r
, G l o b a l B r a k e C o n t r o l l e r , Whee lActua tor , ABS,
WheelSensor } ;

enum S t a t e s {Entry , CheckSpeed , C a l c S l i p R a t e , AsigT1 ,
AsigT2 , AsigT3 , Ex i t , Brake , NoBrake , Reac , . . . } ;

The result of this step is a C/C++ file containing the
generated data structures along with the aforementioned helper
function (that has a fixed implementation), which is then
included in the implementation code of the BBW-ABS system.
The next step is to map the states in the timed automata models

to the code by adding calls to the helper function. The result
is depicted in Figure 5 in case of the ABS process.

This is the only manual step in the whole approach. This
step may also be automated if in a model-driven development
methodology, for example, the code is generated taking into
account the timed automata models of the system and thus
aware of different states and transitions.

The final step is the generation of executable test scripts.
For each identified path for covering the clocks constraints in
the model, a test script is generated which, by investigating the
generated log information about state changes, verifies that:

1) the order of visited states is in accordance with the timed
automata model,

2) the amount of time spent in each state matches the
timing specifications in the timed automata model. This
is done by consulting the time stamps associated with
and logged for each state change.

These details (order of states and timing specifications) are
inherent and present in the timed automata models and are
extracted from them in generating test scripts.

The test scripts are generated in the form of Python
scripts which are then executed by the Farkle test execution
framework (described in Section II-B). Farkle which runs
on the host machine enables test scripts to communicate
with the target system. The scripts send signals to the BBW
processes running on the target. These signals (e.g., wheel
speed signal in Listing 1) contain input values which are
received, extracted and acted upon by the recipient process.
In terms of state machines in the models, passing these
input values invoke transitions in the recipient process’s in-
ternal states. Whenever during the execution of a process
the set_state_wtime(StateMachine,State) helper
function (added during the mapping step) is called, a log
record is created for tracking the states and the time point
that a state change has occurred. This is used by test scripts
to determine test verdicts. Finally, the pass or fail results
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Fig. 5. Mapping of states to the code (ABS function)

returned by executing the test scripts show whether the actual
behavior of the system at runtime has been in accordance with
and respecting the constraints specified in the timed automata
models or not.

V. RELATED WORK

In [12], we have previously introduced an approach for
monitoring of timing properties of real-time tasks at run-
time by enriching schedulers with the necessary monitoring
mechanisms. The approach does not only enable provision
of information about timing properties such as actual exe-
cution time (vs. estimated WCET), response time, deadline
misses, and observed period and Minimum Inter-Arrival Time
(MIAT) of tasks, but also helps to preserve and enforce such
properties at runtime. In other words, if, for example, a task
is taking too much time than its allowed time budget, this
time budget is enforced by preempting the task, to let other
tasks in the system perform as expected and pre-determined.
Although in [12], we have not explicitly discussed and dealt
with testing of such timing properties, the approach and the
monitoring mechanisms introduced there can be regarded as
the core functionality needed for dynamic testing of properties
such as execution time of tasks, determining occurrence of
deadline misses in the system, violation of period and MIAT
values, and so on. In this paper, however, we more directly
addressed testing of real-time systems. Moreover, we focused
mainly on timing properties specifiable in the form of timed
automata describing the internal behavior of real-time tasks,
as well as the system in general (e.g., end-to-end deadlines).
Extending the work done in [12] for testing purposes, and

combining it with the approach suggested here to provide a
comprehensive testing framework for timing properties is left
as future directions of this work to investigate. Beside the
monitoring method we have introduced in [12], we have also
provided a survey of different available methods and tools for
monitoring of timing constraints in [13].

UPPAAL is a tool suite for modeling and verification of real-
time systems modeled as networks of timed automata [8], [14].
Three main parts that constitute UPPAAL are a description
language, a simulator and a model-checker. UPPAAL is an
example of prominent tools and methods for verification of
real-time systems at the modeling level and does not concern
implementation code and actual execution of the system. UP-
PAAL TRON [15], [16] is a testing tool based on the UPPAAL

engine that is designed for black-box conformance testing of
real-time systems. The testing approach provided by TRON is
similar to ours in the sense that both communicate with and
execute test cases against the running system, and also both
use timed automata models. UPPAAL TRON derives, executes,
and evaluates test cases against the implementation of the
system in real-time. However, the main difference between
the testing method of UPPAAL TRON and our approach is that
UPPAAL TRON addresses online generation and execution of
test cases based on the results of previous executed test cases,
and focuses mainly on observable input and output actions
considering the Implementation Under Test (IUT) as black-
box and assuming that its internal states are not observable
[16]. While in our approach, test cases are only generated
offline, and also the IUT is considered as white-box whose
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internal state changes are fully tracked and compared against
the TA models. The mapping of states to code in our approach
is thus needed and introduced to enable this feature. Also what
is tested in our approach is not the output from the IUT and
the time at which it is produced, but the order of states and
the time spent in each one which has a time constraint. From
this perspective, there seems to be potentials for combining
our testing approach with UPPAAL TRON. Shin, Drusinsky
and Cook present in [17] an approach for white-box testing
of timing properties. They introduce assertion state charts as
a way to specify and keep track of timing constraints. From
these state charts, some test cases are derived manually (e.g.,
testing single use case scenarios) and some are automatically
generated (e.g., testing the state chart under test itself). Their
approach is however closer to UPPAAL TRON with respect to
what is actually testable and tested in the running system.

In [18], we have discussed the general idea of combining
static analysis and testing. Its potentials and different combi-
nation scenarios along with an example are also provided in
that work.

VI. CONCLUSION

In this paper, we introduced an approach for dynamic testing
of timing properties in real-time systems. By tracking state
changes at runtime, the approach allows for more detailed
testing of timing properties of real-time systems and their tasks
whose internal behaviors are represented in the form of timed
automata. Testing and runtime verification of timing properties
becomes especially important in cases where static analysis
methods are hard to apply in practice or can be invalidated at
runtime. In general, however, both approaches (static analysis
methods and testing) can be considered complementary and
used together to gain more confidence in temporal correctness
of real-time systems.

Timed automata models are used in our approach as a
representation and source for timing requirements and con-
straints from which test cases are automatically generated. We
demonstrated the applicability of our approach on the ABS
subsystem of Brake-By-Wire system, verifying the timing con-
straints specified on different states constituting its behavioral
model. Also, as for the implementation of our approach, we
used OSE as the core platform and real-time operating system,
C/C++ for implementing the BBW application, and Python as
the language for generating executable test scripts. Using OSE
along with its test execution environment, Farkle, enables to
test an embedded system in its target environment. This is a
valuable feature considering that resource constraints originat-
ing from the execution environment (e.g., battery/power, layout
and size, heat generation, available memory, CPU, etc.) affect
and dictate, to a great degree, how an embedded system should
be designed and perform. It should, however, be noted that the
approach is not necessarily dependent on these technological
choices and may be well implemented differently.

As mentioned in the paper, the mapping step of the ap-
proach, in which state changes are annotated and marked in
the code using the helper function, is the only step which
needs manual intervention. As a future work, we are working
on solutions for automating this step, and thus automating the
whole testing approach. Also, in this work, since we were
only interested in the time difference between state changes,
the execution time of the added calls to the helper function
(to log and timestamp state changes) had no effect on the
test result and was simply ignored. However, if, for example,
end-to-end response times are to be tested, it is important to
take into account the added timing-cost of the helper function.
Considering that the helper function has a fixed execution
time, though, its impacts on the execution time of a task to
which it is added may be easily predicted and reduced from
the task’s total execution time. Also, it might be possible to
claim that in some systems, if tests are passed while having
helper function calls in the code, they might also work fine in
terms of timing properties when the helper function calls are
removed, e.g., in the release and final version of a product.
Careful investigation of such claims and scenarios, and side
effects of adding helper functions to enable testing, as well
as different ways to mitigate them are left as other future
directions of this work.
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