
Partitioning Decision Process for Embedded Hardware and Software Deployment

Gaetana Sapienza, Tiberiu Seceleanu
ABB Corporate Research

and Mälardalen University,
School of Innovation, Design and Engineering

Västerås, Sweden
{gaetana.sapienza, tiberiu.seceleanu}@se.abb.com

Ivica Crnknovic
Mälardalen University.

School of Innovation, Design and Engineering
Västerås, Sweden

ivica.crnkovic@mdh.se

Abstract— Many types of embedded systems applications are
implemented as a combination of software and hardware.
For such systems the mapping of the application units into
hardware and software, i.e. the partitioning process, is a key
phase of the design. Although there exist techniques for
partitioning, the entire process, in particular in relation to
different application requirements and project constraints,
is not properly supported. This leads to several unplanned
iterations, redesigns and interruptions due to uncontrolled
dependencies between hardware and software parts. In
order to overcome these problems, we provide a design
process that enables the partitioning based on a multiple
criteria decision analysis in a late design phase. We illustrate
the proposed approach and provide a proof-of concept on an
industrial case study to validate the approach applicability.

Keywords—Development Process, Model-based Design,
Component-based System, Partitioning Decision Process,
Multiple Criteria Decision Analysis (MCDA).

I. INTRODUCTION
In many embedded systems applications are

implemented in hardware and in software. In this type of
applications, a proper mapping on hardware and software
units is very important, due to reasons such as
performance, reliability, and costs. A suitable mapping
poses strong requirements on design methods, in terms of
effectiveness and efficiency.

 Today, it is a rather common practice that at early
stages the design is split into separated flows: hardware
and software. As a consequence, the partitioning decision
process - i.e. the process dealing with the decisions upon
which parts of the application have to be designed in
hardware and which in software - is not supported by any
well-structured methodology. This leads to a number of
issues (e.g. design flow interruptions, redesigns, undesired
iterations, etc.) which negatively impacts the overall
development process, the quality and lifecycle of the final
system. Detailed problem statements related to the
partitioning can be found in [1], [23].

 Starting from the 1990s, an intensive research work
was performed, focusing on partitioning techniques which
tackled solutions satisfying mainly low-level performance
and resource utilization requirements [2], and several
partitioning approaches were proposed [3][10]. During the
last years, the importance of a well-defined and effective

partitioning decision process is obfuscated by tools and
integrated co-design environments (e.g. MathWorks
Simulink® [19], Space Codesign® Systems
SpaceStudio™ [20]) which well-support approaches such
as “trial and error”.

The increasing complexity of the applications is also
leading to an increased architecture complexity and to a
large number of components and communications between
them. This has impact on the partition which process
becomes more intricate, and more difficult to manually
obtain good results. In addition to this, many project
constraints, such as cost reduction, short lead time, have
impact on the partition process since different efforts are
for different implementation. Finally the non-functional
requirements such as safety, reliability, and run-time
resource constraints have impact on the partition decision.
This all makes the partition process complex, dependent
on many variables and this lead to strong needs for an
efficient and automated partition process that provides an
acceptable solution in the given conditions.

In this paper we are proposing a new partitioning
method that comprises a complete development process
from the requirements management, architectural design,
component modeling, to the decision for their
implementation either as software or hardware compo-
nents. Our contribution in this paper can be summarized as
follows. First we present a new systematic partitioning
methodology (i) enabling technology-independent design
in an early stage of the design and reusing existing
solutions, i.e. functional units implemented either as
software or hardware; (ii) performing the partitioning in a
late stage of the design based on a multiple and even
conflicting set of criteria derived by the overall application
requirements, system constraints (such as memory
capacity, or process power), and the project constraints
(such as efforts, costs, or time). Secondly, we establish a
tool chain for supporting the methodology. Lastly, to
demonstrate the viability of the approach, we provide a
proof-of-concept on an industrial case study.

The rest of the paper is organized as follows. Section 2
defines the main problem and states the main objective.
Section 3 presents the new proposed methodology. Section
4 illustrates the industrial case study. Section 5 presents
the related work, and finally Section 6 concludes the paper
and discusses future work.

2013 IEEE 37th Annual Computer Software and Applications Conference Workshops

978-0-7695-4987-3/13 $26.00 © 2013 IEEE

DOI 10.1109/COMPSACW.2013.131

674

II. RESEARCH PROBLEM AND OBJECTIVE
For embedded systems built on heterogeneous

platforms (e.g. a platform consisting of diverse
computational units, for instance, an Field Programmable
Gate Array (FPGA), microprocessor and graphics
processing unit GPU), a specific activity of the design
phase is to decide about the application deployment.
Assuming that an application is implemented by a set of
interacting components, the deployment decision is
transformed to a setoff decisions for each component,
whether a component will be implemented as software
(e.g. C/C++ code) or as hardware (e.g. VHDL, etc.).

It is common practice that deployment decisions are
taken at an early stage of the design phase, and that it
branches into two separated flows: hardware and software
design flows. Then, they evolve separately until the final
integration during the implementation phase. Figure 1
shows a simplified diagram of a traditional development
process. It is not rare that the phases get interleaved and
that iterations and/or optimizations are needed. In this
scenario, the design phase is affected by issues such as
hardware or software flow interruptions (due their mutual
dependencies), redesigns and unplanned iterations which
negatively impact the overall development process in
terms of efficiency, quality and costs, and the system
lifecycle. Although hardware and software for embedded
applications are tightly connected: the (i) hardware design
does not take into account the computational power
required by software and the capability that the software
might offer for enabling hardware optimization and (ii)
software design does not impact the hardware design
specifications, and does not fully exploit the available
hardware resources. Beside this, the separation into
software and hardware often occurs without the support of
an accurate and well-structured partitioning decision
process. Decisions are not the results of an accurate trade-
off analysis taking into account the large and even
conflicting number of requirements and project constraints
that nowadays - and even more in the future - are required
to develop complex and sustainable applications.

To overcome these problems, our main research
objective is to provide a methodology for enabling
technology-independent design and pushing partitioning
decisions to a late stage. Further, the partitioning decisions
should be the results of many requirements and
constraints, which in our method is achieved through a
Multiple Criteria Decision Analysis (MCDA).

To precisely specify the results we have defined the
following research questions.

• How to properly enable technology-independent
design in the earlier stage of the design phase and
perform the partitioning decision process in a later
stage?

• How to enable a systematic and effective process that
supports the design engineers before partitioning?

• How to provide an effective and accurate partitioning
decision process providing optimal and sustainable
results which taken into account requirements and
project constraints?

III. THE PARTITIONING DECISION PROCESS
In order to address to the aforementioned questions, we

propose and design a systematic decision process for
partitioning the application into hardware and software. It
allows common model-based design first and enables the
separation into hardware-specific design and software-
specific design in late stage.

Foundations. Our approach is inspired by Model-
Driven Architecture with Platform-Independent Model
(PIM) and Platform-Specific Model (PSM) stages [4] and
supported by Model-based [21] and Component-based
approaches [22]. The latter is a well-known approach in
software development but it not used for development of
both hardware and software, so specifically we extend the
approach to hardware components as well. Consequently,
we model the application as set of components. In the PIM
stage, the representation of the components is technology-
independent. After the partitioning, which corresponds to
the PSM stage, they are hardware-specific and software-

Re-design due to
non-feasibility
of Req_A

SW-DesignHW-Design

Req_A
Req_B

Integration

interruption
HW- Implementation SW-Implementation

Implementation

Verification

Design

Validation

Requirement

Re-design due to
non-fulfillment
of Req_B

Figure 1- Traditional Development Process (Simplified Overview)

HW-specificdesign

Implementation

Verification

Design
SW-specificdesign

SW-ImplementationHW-Implementation

Validation

Requirement

Separation as late as possible

Integration

PIM

PSM

Figure 2 - New Proposed Approach

675

specific designed and implemented.
In order to formally provide a definition of application,

hardware and software components, and their
interconnections, we adapt and extend to hardware, the
component definition given in [5]. Thus, the embedded
systems can be seen as a component-based system (CBS)
represented by a tern of elements:

CBS = �C,B,P�
where (C) is the set of components representing the
application, specifically they can be hardware or software;
(B) the set of bindings between the components; (P) the
platform on which the components are deployed. This
latter is already given as result of project constraints.

The CBS is derived by application requirements and
project constraints. Figure 3 provides a diagram of the
CBS.

Figure 3 - Component-based Systems Diagram. Component Library

By extending the definition provided in [5] to hardware
components as well, a component (C) is defined by:

C = {I,P}

• an interface (I) which characterizes the component
from a functional perspective. The interface consists
of two parts: required and provided

• a set of properties (P), which specify the a non-
functional perspective. These properties also called
extra-functional properties (EFP).

An example of component is given by a PI-controller. Its
interface is represented by the required signals (set-point
and feedback) and the provided signal (regulated output).
Execution time, accuracy, energy consumption, reliability
are some instances of EFP for this component.

We expect that a component can have different
implementations (hardware or software), which we refer as
variants. For each component, the interface remains the

same, but the set of properties (P) or the properties values
are different for each variant. For example, the value of the
worst-case execution time is different between a hardware
variant and a software one.

 High-level Reuse. In addition to this, the approach
enables high-level component reuse. In order to achieve
this, a component library is built. It includes existing
components and their variants.

Each entry (i.e. a component) in the library consists of
information about the interface and the EFP associated to
each variant. The properties include characteristics of the
component themselves, and specifications of the execution
context, such as the type of platform in which the variant
runs on. In Figure 4, an example of entry is highlighted. It
is a Power Regulator component (C2). Its interface
consists of two required signals and two provided signals.
It has hardware and software variants, and each variant has
a number of EFP values associated, as shown in Figure 4.

 Process Activities and Partitioning Decision Table
Building. Here, we briefly describe the main activities of
the designed methodology for enabling a systematic
partitioning process. Along with the activities, a key
artifact, called partitioning decision table is built.
Components and their properties are the basic information
included in this table. Based on it, partitioning decisions
are evaluated and taken. As a consequence, it is of crucial
importance to ensure that the table is properly built and
that it contains all the relevant information needed to
perform a successful partitioning. An example of the table
is provided in Figure 4. The main activities are listed
below.
a) Modeling of the application as a set of components.

The application is modeled as a number of
interconnected components. The modeling is carried
out based on the application requirements and the
information available in the library. This latter
provides, to the designers, a mean to take into account
previous expertise, to give feedback to the
requirements engineers in case of requirements
incompleteness and to speed-up the modeling activities
by component reuse. At the end of this activity, the
application architecture (i.e. components and bindings)
is defined. Each component has an entry in the
partitioning decision table as shown Figure 4. Each
component is identified, with respect to the library, as
existing one (belonging to “Set A”) and non-existing
one (belonging to “Set B”). Set A and Set B are shown
in Figure 4. For existing components EFP information
are retrieved from the library. For new ones, two
possible variants are associated: hardware and software
and the related EFP values are estimated.

b) Identification of overall application and project
constraints to derive decision criteria. Based on
overall application or project constraints a number of
system decision criteria are identified. These criteria
address the overall or part of the architecture. For
instance, we can have criteria derived by a deployment
constraint: two components have to be deployed as
software.

676

NAME

N
A

M
E

R
EQ

U
IR

ED

PR
O

VI
D

ED

R
el

ia
bi

lit
y

Si
ze

Im
pl

em
en

ta
tio

n

Im
pl

em
en

ta
tio

n
Pl

at
fo

rm

Ex
ec

ut
io

n
Ti

m
e

A
cc

ur
ac

y

…
…

Ti
m

e
to

 R
ew

or
k

Ti
m

e
to

 D
es

ig
n

Ti
m

e
to

 T
es

t
Im

pl
em

en
ta

tio
n

Pr
io

rit
y

(0
..3

)
…

…
..

M
ax

 R
eq

ui
re

d
Ex

ec
ut

io
n

Ti
m

e
M

ax
 R

eq
ui

re
d

A
cc

ur
ac

y
Fi

el
d

U
pg

ra
de

ab
ili

ty

R
eq

ui
re

d
R

el
ia

bi
lit

y
…

..

C1.1 80% HW Altera 21 μs 2% 20h 0h 30h 2
C1.2 50% 100 (LOCSW STM 36 μs 5% 35h 0h 45h 2
C1.3 HW XilinX 2
C 2.1 92% SW Freescale 3% 45h 0h 3
C 2.2 98% …. HW Altera 1% 56h 0h 3
C 3.1 …. …. SW …. 10h 0h 24h 0

C 3.2 … SW … … 2.1% 15h 0h 15h 0

…… … … .. … … .. …. …

C 89.1 … HW Altera 21 μs … 0h 60h 0
C 89.2 …. SW STM 31 μs 0h 45h 0
C 56.1 HW Altera … 3% .. 0h 20h 80h 0
C 89.2 …. SW STM … 0h 36h 80h 0
…. … … …
…. …. … … …. …

1 1

2 2

4 2

….

90%

….

80%

EX
IS

TI
N

G

C
O

M
PO

N
EN

TS

(S

et
 A

)

N
EW

C

O
M

PO
N

EN
TS

(S

et
 B

)

3%

5%

….

20 μs

60% …

13μs 2%

 Section A Section B

 PROJECT-RELATED
PROPERTIES

C10 Voltage
Regulator

C11

C16 ……

90%30μs

3%

C
O

M
PO

N
EN

T
ID

EN
TI

FI
ER

C
O

M
PO

N
EN

T
 V

A
R

IA
N

T
ID

EN
TI

FI
ER

EXTRA-FUNCTIONAL PROPERTY
(EFP)INTERFACE APPLICATION-RELATED

PROPERTIES

.. ….

Section C

Current Filter

3 2

1 1

PI-ControllerC 1

C2 Power
Regulator

Current
CompensatorC3

Legend

Component
Library

Library
Entry

Figure 4 - Partitioning decision table building. Existing Components (Set A) retrieved from the library. New Components (Set B)

c) Identification of project- and application-related
properties. The identification of component properties
derived from (i) project constraints and (ii) application
constraints is carried out. The identified properties are
respectively added into the partitioning decision table.
Examples of these properties are provided in Figure 4.
Section B contains the properties related to project
constraints. Section C includes the one related to
application constraints. Subsequently, a value is
assigned to each variant.

d) Filtering and Property prioritization. All variants
which do not satisfy application and project constraints
are filtered out. The next step is to assign a priority to
the most relevant properties. It is carried out by
assigning weights.

e) Component variants selection. Performing the
partitioning of component variants based on (i) the
criteria defined at point b, (ii) the properties values
assigned at point c and (iii) the property weights
decided at point e. The expected outcome is either a
single partitioning solution or several ones. It is
achieved by applying MCDA methods for selecting the
component variants.

f) Solution ranking. In case of multiple solutions, further
decision criteria need to be defined by the design
engineers. Based on these criteria, suitable MCDA
methods for ranking the solutions will be applied.

In case the partitioning process does not converge to any
feasible solution, the process is reviewed and new
iterations are performed.

IV. THE INDUSTRIAL CASE STUDY
In order to validate the research work, we follow the

guidelines proposed by Shaw in [7]. We base our
validation strategy on a question related to the feasibility
of the proposed overall process: Is this defined process
feasible, viable?

For this purpose, we applied the methodology on a real
industrial application, developed for the Artemisia iFEST
(industrial Framework for Embedded Systems Tools)
project [7]. Here, a wind turbine control application is
designed and deployed as a prototype. A wind turbine
converts the rotational mechanical energy of the rotor
blades into electrical energy, which will be distributed
further via a power network. The core element of our
application is the controller, which has to dynamically
regulate the rotor blades’ pitch at different wind profiles
while maximizing the generation of electrical energy. In
the project, the application partitioning is carried out
without the support of a systematic partitioning
methodology. Partitioning decisions are performed in a
relative early stage of the design phase. They are mostly
based on the software and hardware designer expertise and
they are also not pondered with respect to any project
constraint.
Our main idea is to show the viability of our partitioning
decision process by using the same application. Initial
steps on this direction were presented in [6]. Here, we
complement the existing iFEST methodology and tool
chain with MCDA techniques and tools. The list of the
main used tools is given as follows.
• HP – ALM (Hewlett-Packard Application Lifecycle

management) [18]: for specifying and analyzing the
requirements.

677

Signal 1Group 1

Wind Profile Input

1
Resistive Load

Voltage

Current

Power
Plant Measurements

Wind

Load

Pitch Command

Voltage

Current

Power

Turbine Speed Sensor

Wind Speed Sensor

Plant

Filtered TS

Filtered WS

Regulated Pitch Output

Pitch Regulator

Pitch Brake

Parking Brake

Regulated Pitch

Pitch Command

Park and Brake Controller

Measured TS

Measured WS

Filtered TS

Filtered WS

Input Signal Filter

Pitch Command

Wind Turbine State

Measured WS

Filtered TS

Filtered WS
Diagnostic System

Filtered TS

Filtered WS

Pitch Brake

Parking Brake

Wind Turbine State

 Main Controller

Legend

Plant
Component

Application
Component

Figure 5 - Wind Turbine Application and Plant Model – Component Model (Simulink).

• MathWorks Simulink [19]: mostly for the design and
implementation (automatic generation of C-code and
VHDL) but also for the verification and validation of
the application.

• System for ANalysis of Alternatives (SANNA) [17]: a
spreadsheet-based tool for solving MCDA problems.

We start by specifying the requirements from a functional
and extra-functional perspective. They are subsequently
provided as input for (i) the application modeling and for
the component selection; (ii) the extra-functional
properties identification of the components; (iii) the
identification of project and application constraint
properties.

We continue by modeling the application as a number
of interconnected components. The final architecture is
shown in Figure 5, through a Simulink model. Each box
represents a component. The core functionalities are
modeled by: the main controller (Main Controller) which
directs the overall control; the pitch regulator (Pitch
Regulator) which calculates the pitch angle; and (iii) the
park and brake controller (Park and Brake Controller)
which is responsible for the park or brake of the turbine. In
addition to this, it is required to transduce and filter the
input signals to the main controller (Input Signal Filter),
and to have a diagnostic system of the turbine (Diagnostic
System).
 Besides taking into account the application requirements,
the modeling activity is supported by taking into account
the project constraints and the component library
information. Example of project constraint is the platform
on which to deploy the application, i.e. a combined
technology solution of FPGA and CPU (belonging to the

Xilinx Zynq-7000 product family). This implies that each
component has to be deployed either on the FPGA
(hardware) or on the CPU (software).
At the end of this activity, the component interface is
identified in terms of the required and provided parts for
each component, as it can be seen in each component
model in Figure 5 and Figure 6. For instance, the Main
Controller component consists of the Filtered TS and
Filtered WS as a required part and of Pitch Brake, Parking
Brake and Wind Turbine State as provided one. In addition
to this, all components are classified as existing (Set A) or
new (Set B) ones with respect to the library, as shown in
Figure 6. For instance, for the Main Controller component
there are two existing software variants in the library,
while for the Diagnostic System component two new
virtual variants (hardware and software) are associated and
inserted as entry in the partitioning decision table. As next
step, the EFP of interest for the decision partitioning
process, based on engineer expertise are identified and
estimated. Few examples are: the execution time, the
component size, the reliability, etc. In Figure 6, a
simplified version of the partitioning decision table is
shown. An example of project–related and application-
related properties is shown as well.
Subsequently, we perform filtering operations to remove
the variants which do not satisfy the application or project
constraints. In Figure 6, just the relevant variants are
shown. After that, we assign weight values to the
properties, in order to prioritize these latter. Initially it is
assumed that all properties are equally important.
Consequently, the same weight value is assigned to the
two most important properties that we consider here: the
execution time and development effort (Figure 6). The
weight values are normalized.

678

Applying
MCDA for

component
selection

Applying
MCDA for

ranking C4,C5

Final
MCDA-
based

Partitioning
Solution

NAME PR
O

JE
CT

-
RE

LA
TE

D

Pr
op

er
ty

A
PP

LI
CA

TI
O

N
 -

RE
LA

TE
D

Pr

op
er

ty

RE
Q

U
IR

ED

PR
O

V
ID

ED

V
ar

ia
nt

Im

pl
em

en
ta

ti
on

Ex
ec

 T
im

e
(s

ec
) -

W

ei
gh

t
0,

5

D
ev

el
op

m
en

t E
ff

or
t

(m
an

/w
ee

k)
 -

W
ei

gh
t

0,
5

M
ax

 E
xe

c
Ti

m
e

V
A

RI
A

N
T

RA
N

KI
N

G

(N
or

m
al

iz
ed

 V
al

ue
)

W
SA

-b
as

ed

SE
LE

CT
IO

N
 O

F
CO

M
PO

N
EN

TS

M
A

X
D

EV
EL

O
PM

EN
T

EF
FO

RT
 -

W
ei

gh
t

0,
8

V
A

RI
A

N
T

RA
N

KI
N

G

(N
or

m
al

iz
ed

 V
al

ue
)

W
SA

-b
as

ed

SE
LE

CT
IO

N
 O

F
CO

M
PO

N
EN

TS
 F

O
R

C4
 A

N
D

 C
5

C1.1 SW 25μs 2mw 0,5

C1.2 HW 12μs 2mw 1 x x
C1.3 HW 14.4μs 3mw 0,4

C2.1 SW 11ms 3mw 0,5 x x
C2.2 SW 16.2 ms 3mw 0

C3.1 SW 23μs 3mw 0,75

C3.2 SW 34μs 3mw 0,5

C3.3 SW 17,9μs 3mw 0.87 x x
C3.4 HW_v 12.5μs 5mw 0,5

C4.1 HW_v 11μs 7mw 0,5 ? 0,17

C4.2 SW_v 16μs 4mw 0,5 ? 0,84 x x

C5.1 HW_v 3.5ms 13mw 0,5 ? 0,16

C5.2 SW_v 8ms 7mw 0,5 ? 0,83 x x

 SOLUTIONS RANKING

FI
N

A
L

M
CD

A
-b

as
ed

 P
A

RT
IT

IO
N

IN
G

SO

LU
TI

O
N

C5

EX
IS

TI
N

G
 C

O
M

PO
N

EN
TS

 (S

et
 A

)
N

EW

CO
M

PO
N

EN
TS

(S

et
 B

)

C1

C2

C3

C4

 Input Signal
Filter

 Main
Controller

 Pitch
Regulator

 Park and
Brake

Controller

 Diagnostic
System

EFP

CO
M

PO
N

EN
T_

ID

V
A

RI
A

N
T_

ID

3 1

5 0

2 2

3 2

1 2

17.5μs

 INTERFACE

5mw

4mw12ms

15μs

15ms

25μs

PARTITIONING
 SOLUTIONS

Figure 6 - Simplified Partitioning Decision Table (left). MCDA-based Partitioning Process. Final Partitioning Solution

Based on the information available in the table (i.e.
component variants and properties values) and the
properties priority, we have used the MCDA-based
spreadsheet to select the components. Specifically, for
performing the selection we use the Weighting Sum
Approach or Model (WSA or WSM) method [17]. This
method computes a global performance index related to
each alternative (i.e. component variants) through the
normalized weighted sum of each criterion. For C1, C2,
and C3 a variant is selected, as shown by Figure 6, in the
WSA-based SELECTION OF COMPONENTS column.
The selection is performed based on the value of the
VARIANT RANKING (Normalized Value) parameter
(Figure 6), which is the performance index associated to
each alternative computed through the WSA-method. This
parameter has the same value for both C4 and C5 variants.
Hence, several feasible partitioning solutions are available.
In order to decide which solution to adopt, an additional
decision criterion is defined which is derived by project
constraints: the maximum acceptable development effort
(MAX DEVELOPMENT EFFORT) for C4 and C5. Based
on this, we assign new weight values to the properties and
WSA-based calculations are iterated for C4 and C5. As a
consequence, new ranking values for C4 and C5 are
obtained, as shown in Figure 6.

The final partitioning solution is reached as follows:
C2, C3, C4 and C5 are deployed as software (on the CPU)
while C1 as hardware (on the FPGA), as shown in Figure
6, through the FINAL MCDA-based PARTITIONING
SOLUTION column. With respect to the library, C1, C2
and C3 are reused, even though a virtual variant is taken
into account for C3.

For each activity (see Section III), we performed
analysis and verification.

In order to validate the design, we simulate the
application using a model of a plant. This is calibrated
against the turbine prototype.

V. RELATED WORK
Partitioning of application into hardware and software

is considered to be a NP (non-deterministic polynomial)-
Hard problem [9]. It is an extensively studied topic;
classical approaches based on heuristic, iterative and
clustering algorithms are presented and discussed in [10],
[24],[25]. A sophisticated integer linear programming
model for joint partitioning and scheduling is presented in
[11]. Additional approaches like Genetic Algorithm and
Artificial Neural Network are proposed in [12] and [13].
However, such approaches are mainly focused to address
one specific criteria, e.g., component execution time,
component power or memory consumption. The approach
proposed in [14] describes a scheme for achieving
partitioning results targeting low power consumption and
short execution time.

On the other hand, partitioning decisions, today, must
account for application and project requirements as well as
constraints, which move the focus of partitioning problem
into a multi criteria perspective. Examples of work in this
direction are provided by [15] where a MCDA approach is
used for ranking different partitioning solutions based on
trade-off analysis. A partitioning process able of
supporting application constraints imposed by the reuse of
existing modules in the automotive industry is presented in
[16]. However, approaches that generate partitioning

679

solutions based on MCDA which takes into account both
project and application properties are inexistent.

VI. CONCLUSIONS
The main outcome of this research work is the design

of an overall process suitable for enabling (i) platform-
independent design and reuse, and (ii) a systematic
decision process to partition applications in a late stage of
the design phase. More in details the contribution includes:

• The definition of a component model that suites well

both software and hardware components;
• The formalization of a systematic partitioning

decision process, which in comparison with traditional
approaches enables decisions accounting project and
application constraints as well.

• The establishment of a tool chain for supporting the
partitioning decision process, based on a MCDA
approach.

In addition, we have shown the feasibility of the process
via the development of an industrial application prototype.

Future Work. From the overall methodology definition,
we see the need for the formalization of a meta-model for
enabling an accurate modeling of hardware and software
components. In addition to this, it is also relevant to
perform a systematic review of MCDA-techniques and
tools in order to identify more suitable and versatile ones.

ACKNOWLEDGMENT
This research is supported by the Knowledge

Foundation through ITS-EASY, an Industrial Research
School in Embedded Software and Systems, and by
Swedish Foundation for Strategic Research through the
RALF3 project, both affiliated with Mälardalen
University, Sweden, and the ARTEMIS iFEST project.

REFERENCES
[1] G.De Micheli, R.Gupta, “Hardware/Software Co-Design,” of the

IEEE, vol. 85, No.3, pp.349-365, 1997.
[2] W.Wolf, “A Decade of Hardware/Software Codesign,” IEEE

Computer, vol. 36, no. 4, pp. 35 – 43, Apr. 2003.
[3] “Hardware/Software Codesign: The Past, the Present, and

Predicting the Future”, Proceedings of the IEEE, vol. 100, issue:
Special Centennial Issue, pp. 1411-1430, May 2012.

[4] A. G. Kleppe, J. Warmer, W. Bast, “MDA Explained: The Model
Driven Architecture: Practice and Promise”, Addison-Wesley
Professional, 1 edition, May 1 2003.

[5] I. Crnkovic, S. Sentilles, A. Vulgarakis, M.R.V. Chaudron. “A
Classification Framework for Software Component Models”,
Software Engineering, IEEE Transactions on, vol.37, no.5, pp.593-
615, Sept.-Oct. 2011.

[6] G.Sapienza, T.Seceleanu, I.Crnkovic. “Toward a methodology for
hardware and software design separation in embedded systems”,
the Seventh International Conference on Software Engineering
Advances, Nov. 2012.

[7] M. Shaw, “Writing Good Software Engineering Research Papers”.
In Proceedings of the 25th International Conference on Software
Engineering, IEEE Computer Society, pp. 726-736, 2003.

[8] iFEST - industrial Framework for Embedded Systems Tools.
ARTEMIS JU project #100203. Retrieved October 31, 2012, from
http://www.artemisifest.

[9] P. Arato, S. Juhasz, Z.A. Mann, A. Orban, D. Papp, “Hardware-
software partitioning in embedded system design”, Intelligent
Signal Processing, IEEE International, pp. 197 – 202, 2003.

[10] M. L. Vallejo, J. C. López, C. Real, “On the hardware-software
partitioning problem: System modeling and partitioning
techniques”, Journal ACM Transactions on Design Automation of
Electronic Systems, Volume 8 Issue 3, pp. 269 – 297, July 2003.

[11] R. Niemann, P. Mawedel, “An algorithm for hardware/software
partitioning using mixed integer linear programming”, Design
Automation for Embedded Systems, special issue: Partitioning
Methods for Embedded Systems , vol. 2, pp. 165-193, March 1997.

[12] K. B. Chehida, M. Auguin, “HW/SW partitioning approach for
reconfigurable system design”, Proceedings Int. Conf. Compilers
Arch. Synth. Embedded Syst., pp. 247–251, 2002.

[13] M.A. Dias, W.S. Lacerda, “Hardware/Software co-design using
artificial neural network and evolutionary computing”, 5th
Southern Conference on Programmable Logic, April 2009.

[14] Y.Fan, T.Lee, “Grey Relational Hardware-Software Partitioning
for Embedded Multiprocessor FPGA Systems”, AISS: Advances in
Information Sciences and Service Sciences, vol. 3, No. 3, pp. 32 –
39, 2011.

[15] P. Garg, A. Gupta, J.W. Rozenblit, “Performance analysis of
embedded systems in the virtual component co-design
environment”, Proceedings of the 11th IEEE International
Conference and Workshop on the Engineering of Computer-Based
Systems, pp. 61-68, May 2004.

[16] Baumgartner, W. Gauert, “Linking codesign and reuse in
embedded systems design”, Proceedings of the Eighth
International Workshop on Hardware/Software Codesign, pp. 93-
97, May 2000.

[17] Josef Jablonský. System for ANalysis of Alternatives, March 01,
2010. http://nb.vse.cz/~jablon/sanna.htm. Latest access, April 10,
2013.

[18] Application Lifecycle Management (ALM) | HP® Official Site.
http://www8.hp.com/us/en/software-
solutions/software.html?compURI=1215990.Latest access, April
10, 2013.

[19] SIMULINK, Simulation and Model-Based Design Official Site.
http://www.mathworks.se/products/simulink/index.html. Latest
access, April 10, 2013.

[20] Space Codesign® Systems SpaceStudio™ Official Site.
http://www.spacecodesign.com/. Latest access, March 23, 2013.

[21] F. Paterno , Model-Based Design and Evaluation of Interactive
Application. Springer Verlag, 1999.

[22] I. Crnkovic. Component-based software engineering for embedded
systems. In Proceedings 27th International Conference on Software
Engineering (ICSE2005), pages 712–713, Missouri, USA, 15-21
May 2005.

[23] S. Edward, L. Lavagno, E. Lee, and A. Sangiovanni, “Design of
embedded systems: Formal models, validation and synthesis” Proc.
IEEE, this issue, pp. 366–390.

[24] W. Ahmed and D. Myers. Concept-based partitioning for large
multidomain multifunctional embedded systems. ACM
Transactions on Design Automation of Electronic Systems, pp.
221- 229, 2010.

[25] J. Wu, Q. Sun, T. Srikanthan "Algorithmic aspects for multiple-
choice hardware/software partitioning". Computers & Operations
Research, Volume 39, Issue 12, pp. 3281–3292, Dec 2012.

680

