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Abstract—In many embedded systems types the separa-
tion process for deploying the applications as software and
hardware executable units, called partitioning is crucial. This
is due to the fact that partitioning decisions impact the
overall life cycle of the systems. In industry it is common
practice to take partitioning decisions in an early stage of the
design, based on hardware and software designers expertise.
We propose a new methodology as a combination of model-
based and component-based approaches which enables a late
partitioning decisions based on high level system requirements
and project constrains. The final partitioning is decided based
on a multi-property analysis approach. Here, we focus on the
formalization of the overall process and in particular on the
definition of a comprehensive system metamodel. This is meant
to support modelling approaches suitable for enabling both
the partitioning and reuse. An industrial case study is used to
illustrate the approach.

Keywords-Application Development Process; Component-
Based System (CBS); Component Properties; Partitioning;
Multiple Criteria Decision Analysis (MCDA).

I. INTRODUCTION

Many modern embedded systems are implemented as soft-
ware (SW) and hardware (HW) components, i.e. deployed
as SW on CPU platforms and as HW programmed in Field-
Programmable Gate Array (FPGA). The heterogeneous
platform dramatically increases the system performance.
However, the increasing complexity of industrial embedded
applications constantly challenge designers when making
decisions upon the separation into HW and SW for their de-
ployment. These design decisions are of crucial importance
since they impact (i) the application performance and its
quality, (ii) the entire development process, and (iii) system
lifecycle management. They require to be taken upon several
criteria which are derived from a number of requirements
and project constraints, which differ, vary and have even
conflicting priorities. Like in other architectural decisions,
the partitioning (i.e. the SW/HW separation process) requires
a trade-off analysis. Over the decades, several techniques and
approaches have been proposed for SW/HW partitioning,
but they were mostly driven by the technological advances
in electronics performance [13],[8],[14] and often tackled
the optimisation problem with focus on performance and
costs [7], [8]. In industry, mainly due to time pressure

imposed by the time-to-market and cost optimization, it
is a common practice to take partitioning decisions in an
early stage of the design phase and without the support
of systematic approach. They are most likely based just
upon HW and SW team expertise, which often is not
synergetically combined [13]. The decisions are lacking a
support obtained by a comprehensive exploration of different
options with respect to requirements and project constraints.
Overdesigns, underdesigns, redesigns, flow interruptions in
design and implementation, unplanned iterations are some
of the typical drawbacks generated by this practice [10].
This paper addresses these needs by introducing a new

approach Multiple Criteria-based Partitioning Methodology,
we called MULTIPAR.
This approach aims for (i) providing partitioning decision

in a late stage of system design, and (ii) base the parti-
tioning decision on many and diverse criteria. The main
contributions in this paper are a) formal definition of a
comprehensive metamodel able of describing both SW and
HW units and b) description of the MULTIPAR process
flow which is based on the following strategy: (i) enabling
application technology-independent design in the early stage
of the design phase and pushing the partitioning decisions
for enabling platform-specific design to a late stage, (ii)
enabling the application deployment into SW and HW based
on multiple criteria decisions which account for the high
level systems requirements and project constraints, and (iii)
making also decisions based on a reusable set of alternatives,
in order to enable design and implementation reusability.
We illustrate a model conforms to the metamodel and

the basic concepts of MULTIPAR on an industrial case: a
simple wind turbine control system. The rest of the paper is
organized as follows: Section 2 presents the metamodel. Sec-
tion 3 defines the MULTIPAR process, Section 4 illustrates a
case study, Section 5 presents the related work and Section
6 concludes the paper and provides the future directions of
this research work.

II. THE METAMODEL FOR PARTITIONING
Component models and metamodels. There exists sev-

eral component models that are specified by means of
metamodels, for example Pecos [9], and ProCom [12] which
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in a similar way define interfaces and Extra-Functional
Properties (EFPs). Our approach extends these specifications
by allowing variable management of EFPs with respect to
different component variants. By allowing a variable set of
EFPs for component variants we have made it possible to
reason about very different implementations, like software
and hardware, and we have made it possible to easier com-
pare the exhibited properties with those that are required.
In order to formally and unambiguously capture the

essential domain concepts for components that have to be
partitioned into SW or HW and the relevant relationships
among them we have developed a metamodel. Figure 1
shows a simplified overview of the diagram describing the
proposed Component-based System (CBS) metamodel. It is
also used along the following subsections to explain the key
concepts of the metamodel. Each CBS is supposed to be
identified, described and documented as shown in Figure 1
by the Entity Identification entity.
Component-Based System. The central core is represented
by the ComponentBasedSystem entity which compliantly to
the definition provided in [11]. It is composed by a platform,
a set of both components and connectors.
Platform. The Platform entity is meant to abstract the model
of an underlaying and already defined platform, on which an
application is deployed in form of SW and HW components.
It consists of PlatformComponent and PlatformConnector
entities.
A PlatformComponent entity models either a digital or

analog HW component or a low-level SW component.
The PlatformComponentType entity is used to indicate if
the PlatformComponent is an HW or SW. The application
components are deployed on platform components. This is
defined by the semantic relationship between the Platform-
Component and the Component entities named ”to be de-
ployed on”. Examples of hardware platform components are:
CPUs (single and multi-core), FPGAs, RC-analog filters, etc.
Examples of SW platform components may be considered:
RTOSs, Drivers, Ethernet Stacks, etc.
A PlatformConnector entity serves to model the connec-

tions between platform components. It can be HW or SW, as
modelled by the PlatformConnectorType entity. Examples of
platform connectors are: CAN bus or Ethernet. In order to be
bound by a connector, platform components have to be able
of playing two different roles: named Target and Source.
If a platform component plays both roles, it can be bound
by the same connector. This is, for instance, an operational
amplifier or flip-flop when connected in feedback.
Component. A Component entity is meant to abstract the
model of an application component. In order to support
MULTIPAR, a component consists of an Interface and one
or more Variant entities.
The Interface entity models the functional properties of

the component, i.e. the component interface is divided into
the required and provided interfaces. The component inter-

face is defined through a number of ports. In Figure 1, a port
is represented by the Port entity. It is modelled by assuming
that it can play two roles, named InPort and OutPort, which
serves to respectively model the required and the provided
interfaces. It is also assumed that each component at least
has an input port. A port is also characterized by the mode in
which information is exchanged, for instance synchronously
or asynchronously.
The Variant entity models a deployed component on a

platform. Each component may have more variants associ-
ated with it. Each variant is characterized by an implemen-
tation technology (i.e. SW or HW), a format (i.e. C-code,
VHDL-code, binary, etc.), and a platform of deployment
(i.e. the operating system, the processor technology, etc.).
A variant is specifically defined by the relationship with the
data type associated to each port. Although the interface is
the same, regardless of the component variants, each variant
is characterized by a specific platform-dependent implemen-
tation, resulting into a specific port implementation. This is
shown in Figure 1 by the PortTypeBinding and PortDataType
relationships. Examples of Port DataType are: Single Analog
(e.g. ADC) Single Digital (e.g. I2C, RS232, etc.), Multiple
Digital (e.g. 8/16/32-bit BUS, etc.), etc. Further, each variant
has associated with it a number of EFP entities, meant to
model the component’s EFPs. An EFP entity is characterized
by: (i) a category e.g. component execution time, component
size, component reliability, etc.; (ii) a subcategory, which
might be needed to distinguish EFPs specific for HW or SW
components (e.g. for the component size category, examples
are: the memory footprint for a SW component and the
number of gates for a HW component); (iii) the context
under which the property value is set; (iv) a collection of
values for the given property.
Connector. A Connector models the binding between the
components. The bindings are realized through the inter-
faces. Thus, the connector always binds two ports. These
must be an input and an output port respectively, even if
belonging to the same component (e.g. for implementing
feedback signals). If the same component is connected
through an input port and output port, it must be able to
play both roles, i.e. the Source and the Target - Figure 1. An
output port can be associated to more than one connectors.

III. THE MULTIPAR PROCESS
The MULTIPAR process includes a set of activities which

lead to the HW/SW partitioning of the application compo-
nents. The process adopts a Component-based Development
(CBD) process with emphasis on components’ reuse. The
MULTIPAR process is performed in several iterations of two
phases: the first one building the system architecture with
focus on the functional requirements and the second one
considering extra-functional requirements.
During the process several artifacts are used as input and

some new artifacts are being created. A list of application
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Figure 1. Main view of the CBS Metamodel for enabling software and hardware partitioning

requirements and a list of project constraints are used as
input to the analysis, design and architecting activities. In
addition, information about existing components is used,
from a component library. The components in the library
are compliant to the metamodel defined in Figure 1.
The MULTIPAR process flow described by Figure 2,

embodies the following activities:
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Figure 2. MultiPar Process Flow Diagram

Application Modelling and Component Selection. The
modelling activity is based on the information provided
from the application requirements and project constraints.
By using this information as inputs, the application is
modelled as a set of platform-independent components and
connectors binding the components, compliantly with the

metamodel defined in Figure 1. If found in the component
library, the defined components will be inserted into a matrix
called Decision Matrix (DM). In this process all available
implemented component variants Ci will be included. They
will have different implementations and different properties,
but the same interface. The architectural design and compo-
nents’ identification is a complex process and may require
several iterations. For each identified component which do
not exist, a new component entry will be inserted into the
DM. This component entry will include the interface spec-
ification and two virtual (i.e. yet non-existing) component
variants (a SW one and HW one).

Component Required Properties Identification and Pri-
oritization. After the architecture design and component
identification, the component properties that fulfill the extra-
functional requirements must be identified. From the extra-
functional requirements and project constraints and by the
architectural analysis two sets of properties of interest for
the partitioning decisions - application properties PiA and
project-related properties PiP will be identified and their
related values will be defined. These are the required prop-
erties of the identified components. The required properties
should be prioritized based on a trade-off analysis. The
priorities will be used as weight factors for the MCDA.
The outcomes of this activity will be saved in the DM. The
component variants Ci have some properties, i.e. they exhibit
some properties. We define them as exhibited properties PiE .
The sets PiA and PiP may include some properties that are
not defined in the component variants Ci. The missing values
will be setup in a late stage.

Component Variants Filtering. Many of the component
variants do not satisfy the specifications of the required
properties. For example, there can be a required property that
a particular component should be deployed on a particular
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component platform or an EFP, for example memory usage,
is far above the memory allowed to be used, as specified
by the corresponding required property. Such variants are
not relevant for the application and can be discarded as
a candidate, i.e. they can be removed from the DM. The
filtering activity is performed whenever the values of the
exhibited properties are changed.
Defining Exhibited Properties Values. For the components
variants which the PiE do not have the specified values,
the values have to be assigned. They might be measured,
simulated or estimated. They will populate the DM (and
possibly the component library for future reuse).
Multiple Criteria-based Component Partitioning. When
the exhibited properties and the required properties are
defined as well as the cost function expressed by the required
properties priorities it is possible to search for a (local)
optimal partitioning solution. Different MCDA techniques
can be used in the solution provision. This activity might
converge to a single or several solutions or no solution can
be found. In a case it converges to a single solution the
process flow is concluded. If several solutions are available,
they will be ranked. If it will not converge new iterations
need to be carried out.
Solutions Ranking. This activity is the last one and is sup-
posed to be performed in case several partitioning solutions
are available. Based on project constraints and application
requirements, further decision criteria will be defined for
enabling MCDA-based ranking.
Figure 2 does not include the analysis and verification

activities; they are iteratively performed along to each of the
above described activities.

IV. WIND TURBINE: INDUSTRIAL CASE STUDY

To show the conformability of a model from the proposed
metamodel and the feasibility of MULTIPAR in an real
industrial application we have developed a simple wind
turbine application (WTA). The main objective of the WTA
is to control the transformation of the rotational mechanical
energy of the rotor blades, caused by the wind, into electrical
energy, which will be redistributed via a power network.
The core element of the application is the controller, which
dynamically regulates the rotor blades at different wind
profiles while maximizing the generation of electrical energy
and avoiding any damage to the plant. The application is
deployed on an industrial wind turbine prototype.
In this case study we illustrate two simple different

deployment scenarios of the same WTA. Both scenarios
are driven by different sets of required properties. They
are named respectively: Performance-driven scenario and
Effort-driven scenario. The first scenario is originated by
the need of satisfying application requirements on compo-
nents execution time. The second scenario needs to satisfy
properties derived by project constraints such as the the

effort for the technology-dependent design of components,
adaptation of existing components, the testing, etc.
The WTA is characterized by a set of platform project

constraints, one of them specifying a combined technology
implementation: CPU and FPGA. A solution to this comes
in the form of the Xilinx ZynQ chip.
The Wind Turbine MultiPar Process Flow. We briefly
describe in the following the process flow behind the real-
ization of the use case.
1. WTA Modelling and Component Selection. Based on the
WTA requirements and project constraints lists, as well as on
the information available from the existing components, the
application architecture was defined. It is modelled as a num-
ber of interconnected components. The model is conformed
to the proposed metamodel, and it is implemented by using
The MathWorks Simulink. The simplified model is shown
by Figure 3. The application is decomposed as follows: the
SensorInterface (C1), interfacing the feedback signal coming
from the sensors to the controller, i.e. the turbine speed (TS)
and wind speed (WS) signals; the Filter, filtering the feed-
back signals (C2), the Main Controller (C3) orchestrating
the overall control of the application; the Pitch Estimator
(C4) estimating the desired pitch angle at the rotor blades;
Pitch Regulator (C5) regulating of the pitch angle based on
the desired pitch and the calculated pitch; Park and Brake
Controller (C6) setting the pitch command for steering the
rotor blade; and Supervision System (C7) supervisioning the
execution of the overall application. Each component defined
by its interface: input and output port, and ports are bound
via connectors. For instance, the C3 interface is defined
by the Filtered TS inport and the Pitch Reference outport.
Example of connector, is given by the Pitch Brake Con,
connecting C3 and C6. Each component has also an entry
in the DM, as shown in Figure 4.
In order to validate the design of the application, the

model has been simulated, using the plant model (repre-
sented in Figure 3 by the grey boxes) which is calibrated
against a real wind turbine prototype.
The component library includes a set of variants (i.e.

reusable components) for the components C1, C2, C3 and
C4 and they are directly populating the DM (see Figure 4),
whereas for new components, in this case C5, C6 and C7
two virtual variants: HW v and SW v are associated and
the related EFPs values are estimated. In addition, for C4
an HW v (virtual variant) is associated, this is due to a
requirement on performance.
2. Wind Turbine Component Required Properties Identifi-
cation and Prioritization. Based on the WTA requirements
and project constraints, the PiA and PiP sets were defined.
Examples of identified required properties belonging to
the PiA sets are: (i) Max Execution Time, (ii) Required
Accuracy. Whereas, examples of identified required prop-
erties belonging to the PiP set are: Design, Implementation,
Testing, Maintenance Effort, etc. Based on design/project

192



Figure 3. Wind Turbine Application (WTA) Model

Figure 4. Wind Turbine Decision Matrix (DM) - simplified overview

teams expertise, the related value are assigned. With respect
to the prioritization of the required properties, different
weight values are assigned to the required properties for
each scenario.
3. Filtering Component Variants. In the next activities the
irrelevant variants are not taken into account as follows:
C1.1, C2.1, C3.2, C4.2 for the Performance-driven sce-
nario, since they do not satisfy the required properties with
respect to the max execution time, whereas C1.3, C4.4 for
the Effort-driven scenario, since they do not satisfy the
project constraints with respect to the development effort.
4. Defining values of exhibited properties. The exhibited
properties which do not have associated a values are es-
timated/calculated. The estimation of the is supported by
the application’ simulations on the modelled plant and the
estimations provided by The MathWorks Embedded Coder
Toolbox used for automatic C code generation (e.g. lines of
code, execution time for SW variants), HDL Coder Tool-
boxes for automatic VHDL code generation and by the Xil-
inx ISE Simulator for execution time. The estimated values
are used for both scenarios. For existing components, some
design effort is needed anyway to get them adapted. 5. Mul-
tiple Criteria-based Component Partitioning. Based on the

information available on (i) the DM; (ii) the criteria derived
by overall application requirements and project constraints;
(iii) design/project team expertise; and by carrying out a
visual analysis of the DM the partitioning decisions are taken
as follows: for the Performance-driven scenario. the Filter,
Sensor Interface and Park and Brake Controller components
are deployed as hardware, while the remaining components
as SW. The need of satisfying the execution time is the
main driver of these partitioning decisions. For the Effort-
driven scenario, the Filter, Sensor Interface components are
deployed as HW, while the remaining components as SW.
The main driver in this case, is the optimization of overall
design cost of the components. Figure 5 shows the selected
variants for both scenarios. The key difference is given
by the Park and Brake Controller component deployment.
It is deployed as an HW component in the Performance-
driven scenario and as a SW components in the Effort-driven
scenario.

V. RELATED WORK

Over the last decades several application architectural par-
titioning approaches and procedures mostly oriented towards
solutions satisfying performance were proposed, e.g. [4],[2].
Comparisons of the most well-known approaches are cited in
[1]. Over the time the increase in complexity required new
partitioning approaches, which were focused only on few
low-level extra-functional requirements: combination of de-
sign costs, energy consumptions, performance as discussed
in [3], but still no scalable for handling a large number of re-
quirements. In difference to these approaches, we provide a
wider-spectrum method able of considering a larger number
of requirements and constraints derived by the application
and, here new, by the project. In [5], a general approach
for performing quantitative analysis of architectural designs
based on a well-defined criteria is proposed. The approach
enables to quantitatively rate design architectural alternatives
based on performance metrics. In particular, the so called
Y-chart approach is presented and further discussed in [6],
which identifies the three core main elements influencing the
choices in finding feasible solutions. It is mainly focused
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Figure 5. Partitioning Deployment Scenarios: Effort-driven (left), Performance-driven (right). Wind Turbine Application Architecture (center).

on performance analysis for a given set of applications, i.e.
video-signal processing applications, and further work is left
to different domains.

VI. CONCLUSION
In this paper we have presented a method MULTIPAR for

a systematic and sustainable decision process for partitioning
embedded component-based systems into HW and SW.
We have presented a metamodel suitable for enabling the
partitioning, the method foundation and its process flow.
The novel parts in the method are (i) specification of em-

bedded systems with components as HW and SW implemen-
tations, which required some adaptions of the component-
based principles, (ii) the model-based process, starting at
platform independent level and a offering solution for tech-
nology selection enabling high level component reuse, (iii)
inclusion of application requirements and project constraints
in the partitioning decision process.
For the future work we plan to refine the process, related

to the above mentioned challenges, and then to improve the
particular activities, in particular choosing the most appro-
priate MCDA method. Finally our intention is to provide
an integrated tool support and evaluate that in a larger
industrial context (e.g. in a development of wind turbine
control systems in a product line), assuming reuse of the
existing components during a larger period.
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