
Search-based resource scheduling for bug fixing tasks

Junchao Xiao
Laboratory for Internet Software Technologies,

Chinese Academy of Sciences, Beijing 100190, China.
xiaojunchao@itechs.iscas.ac.cn

Wasif Afzal
Blekinge Institute of Technology,

PO Box 520, SE-372 25 Ronneby, Sweden.
wasif.afzal@bth.se

Abstract—The software testing phase usually results in a
large number of bugs to be fixed. The fixing of these bugs
require executing certain activities (potentially concurrent) that
demand resources having different competencies and work-
loads. Appropriate resource allocation to these bug-fixing activ-
ities can help a project manager to schedule capable resources
to these activities, taking into account their availability and skill
requirements for fixing different bugs. This paper presents a
multi-objective search-based resource scheduling method for
bug-fixing tasks. The inputs to our proposed method include i)
a bug model, ii) a human resource model, iii) a capability
matching method between bug-fixing activities and human
resources and iv) objectives of bug-fixing. A genetic algorithm
(GA) is used as a search algorithm and the output is a
bug-fixing schedule, satisfying different constraints and value
objectives. We have evaluated our proposed scheduling method
on an industrial data set and have discussed three different
scenarios. The results indicate that GA is able to effectively
schedule resources by balancing different objectives. We have
also compared the effectiveness of using GA with a simple hill-
climbing algorithm. The comparison shows that GA is able to
achieve statistically better fitness values than hill-climbing.

I. INTRODUCTION

Software bugs correspond to mistakes by the programmers
due to an incorrect step, process, or data definition. One
estimate is that a professional programmer is responsible for
5 bugs per 1000 lines of code (LoC) written on average [1].
This might not be the case with every software application
but there are always a certain number of bugs in almost
every software application that causes incorrect results.

Software testing is one major bug finding activity that
improves software quality to a certain extent before the
software application is released to the end-users. As bugs
are reported, they must be triaged in a cost-effective manner,
considering the resources and the requirements of bugs.
Triage of bugs in a cost-effective manner is an important
decision-making task whereby competing objectives of tech-
nical, resource and budget constraints need to be balanced
to provide maximum business value for the organization.

Anvik et al. [2] report that 3426 reports were submitted
to the bug database of Eclipse open source project between
Jan. 1, 2005 to Apr. 30, 2005, averaging 29 reports per
day. Assuming that it takes 5 minutes to triage a report,
this activity costs 2 person hours per day. This indicates
that we have a need to support efficient and effective

bug-assignment policies that can schedule different bug-
fixing tasks by taking into account the available resource
constraints and bug requirements. Laplante and Ahmad [3]
further emphasize the value of having an efficient and
effective bug assignment policy: “Bug assignment policies
can affect customer satisfaction, employee behavior and
morale, resource use, and, ultimately, a software product’s
success”. But triaging of bugs for repairing is fraught with
challenges since the number of problem variables is diverse,
e.g. the severity and priority of a bug has to be balanced
with resource skills and availability for finding a reasonable
bug-fix schedule.

Optimal resource scheduling for bug fixing is an exam-
ple of resource constrained scheduling problem [4]. The
scheduling problem in general is NP-hard, i.e., finding
optimal solutions in polynomial time is hard [4], [5]. This
is because the search-space becomes vast as problem size
increases or more constraints are added. These properties
naturally make scheduling problems a suitable problem do-
main for evolutionary computation approaches like genetic
algorithms.

In this paper we attempt to (at least approximately)
formalize the problem of appropriately scheduling devel-
opers and testers to bug-fixing activities, keeping in view
the capabilities of resources and requirements of bugs. We
therefore seek an answer to the following research question:

RQ: How to schedule developers and testers to bug-fixing
activities taking into account both human properties
(skill set, skill level and availability) and bug character-
istics (severity and priority) that satisfies different value
objectives by using a search-based method such as GA?

The contributions of this paper are: i) It presents models
for bugs and human resources that form the basis for
scheduling resources for bug-fixing. ii) It presents a method
of capability matching between the bug-fixing activities and
human resources as well as how to evaluate an organization’s
value of a bug-fixing process. iii) It provides a bug-fixing
scheduling method by using a GA and discusses several
scenarios of practical use.

The paper is organized as follows. Section II describes
some related work. Section III presents the basis of schedul-
ing resources for bug-fixing. It specifies models of bugs
and human resources. Section IV discusses the design of

2nd International Symposium on Search Based Software Engineering

978-0-7695-4195-2/10 $26.00 © 2010 IEEE

DOI 10.1109/SSBSE.2010.24

133

the scheduling method using a GA. Section V presents the
industrial data used while results of applying the proposed
method are given in Section VI. The GA approach is
compared with hill-climbing search in Section VII. Sec-
tion VIII presents a discussion while the Section X presents
conclusions and suggests future work.

II. RELATED WORK

Search techniques have been successfully used to solve
different scheduling related software project management
problems [6], such as software project planning [7], [8],
[9], [10], software project effort prediction [11] and software
fault prediction [12]. Hart et al. [13] have written a review on
evolutionary scheduling. However, the application of search
techniques for implementing an efficient bug repair policy
is very much unexplored.

A study by Mockus et al. [14] predicted defect effort
schedule based on observed new feature changes. They fitted
a probability model to the observed data from 11 releases
of a large real-time high availability software system and
found the predicted effort to be close to reality. Cubranic and
Murphy [15] applied naive Bayes classifier to automatically
assign the bug reports to developers and achieved a 30%
classification accuracy for reports entered into Eclipse’s
bug tracking system between Jan. 1, 2002 and Sep. 1,
2002. Zeng and Rine [16] used a self-organizing neural
network approach to estimate defects fix effort. A feature
map having different clusters was created after training
the weights of the self-organizing neural networks. They
computed the probability distributions of effort from the
clusters and then compared them with those from the test set.
For projects having similar development environments the
approach gave acceptable performance with average mean
relative error (MRE) values between 7% to 23%. Canfora
and Cerulo [17] used a probabilistic text similarity approach
to assign change requests to developers. Song et al. [18]
presented association rule mining based methods to predict
defect correction effort. Using data from more than 200
projects, their approach was found to be better than partial
regression trees (PART), C4.5 and naive Bayes. Anvik et
al. [2] applied support vector machine algorithm as a text
categorization technique to suggest assignment of a new bug
report to a small number of developers. Precision levels of
57% and 64% were obtained for the Eclipse and Firefox
development projects. Recently, Weiss et al. [19] used a text
similarity technique to predict bug-fixing effort based on
title and description of bug. Their approach beat the naive
approach using the defect data from the JBoss project.

This paper differs from related work in some important
ways. Since software development is human-dependent, this
work incorporates human factors such as competencies and
available time-slots to schedule resources for bug-fixing.
This is done by using models for the bugs and human-
resources; moreover the use of a search-based technique

Recognition /
Investigation

Action

Evaluate Open

Assign / Fix Test

Fix failed /
Reopened

Closed

Disposition

Figure 1. The bug-fixing process.

such as GA is presented that can bring a near-optimal value
in scheduling by balancing multiple competing objectives.

III. THE BUG FIXING PROCESS

A typical bug-tracking system such as Bugzilla [20] keeps
track of a reported bug through assigned status. So the bug
is marked “new” when reported, “assigned” when assigned
to a developer for fixing, “verified” when testing of the bug
fix is done and “resolved” when the bug is closed. This is in
line with the anomaly (bug) classification process proposed
by the IEEE standard classification for software anomalies
(IEEE Std 1044-1993) [21], whereby the bug life cycle is
divided in to four steps: i) Recognition, ii) Investigation,
iii) Action and iv) Disposition. If we assume that a bug
is valid (i.e. it is not a duplicate, not incomplete/needing
more information and therefore is required to be fixed), the
following events describe one instance of the above four
steps in more detail (also shown in Figure 1):

1) A new bug is reported in the bug database which has
been evaluated as a valid bug.

2) The bug is assigned to a developer for fixing.
3) The developer fixes the bug.
4) The bug is assigned to a tester for verification.
5) The bug is verified and closed or alternatively is

reopened due to an incorrect fix.
We have restricted the scope of this paper to schedule
resources for a single round of these five events. So if a
bug-fix from a developer fails at testing and is re-opened,
a second round of events need to be taken, however, this is
not dealt with in this paper since it is not known in advance
how many of these round of activities would be required.

It is clear from the different bug life cycle events that
given a number of bugs reported in the bug data base, there
are two resource consuming activities taking place: develop-
ment activity for fixing bugs and testing activity for verifying
these bug-fixes. The criticality and resource demands for
various bugs require resources with desired competencies
and skills; moreover this has to be balanced with availability/
workload of resources for getting the job done. Due to all
that common constraint of limited resources to play with
and engagement of resources in multiple projects concur-
rently, the bug-fixing events are in a contention for finding
resources that have the availability and competence to fix/
verify reported bugs. To schedule the capable and available

134

resources, to balance the competing objectives and to bring
near-optimal value by using scheduling, we need a degree of
formalism to describe the reported bugs and required human
resources. This is done by describing a bug and a human
resource model.

A. The bug model

This paper only focuses on the bugs found during system
testing. This is however more of a constraint rather than
a rule and our proposed methodology should be equally
applicable to bugs found at other testing levels.

We define a bug data repository, BR, as a collection of
reported bugs, BR = {B1, B2, . . . , Bn}, where each bug
Bi in this repository has the following attributes:

1) Bug ID: A unique identification of the bug.
2) Bug description: A short description of the bug.
3) Bug severity: The perceived impact of the bug, having

possible values of High, Medium and Low.
4) Bug priority: A classification indicating the order in

which the bugs are addressed, having possible values
of High, Medium and Low.

5) Required skills: The skills required for bug-fixing,
which are used to select the candidate resources.
Each required skill is described as a triplet
(SKT, SKN, SKL), where

a) SKT : The type of required skills, which in our
context are two, namely development skills and
testing skills.

b) SKN : The name of a specific required skill, e.g.
, programming language skills for the skill type:
development and test design skills for the skill
type: testing.

c) SKL: The minimum required competency in
a particular skill for fixing/verifying the bug,
having possible values of Low, Medium and
High.

It is to be noted that the definition of skills required
to fix/verify a bug would be different across software
companies, however the skill structure defined above
is flexible to incorporate different skill types.

6) Estimated effort for fixing the bug: The estimated
required effort, in number of person-hours, to be
invested in development and testing of the bug-fix.
Note that this estimated required effort is for one round
of events, as described in Section III.

7) Assigned time: The date when the bug-fixing activity
can be started.

8) Deadline for bug-fixing: The date by which the bug
has to be fixed and verified. This attribute is used as
a constraint for scheduling.

9) Actual bug fixing time: The actual date when the
bug fixing is finished. This includes both the actual
development and the actual testing time taken by a

bug for resolution. This is given by the scheduling
results.

10) Coefficient of schedule benefit (CSB): If the actual bug
fixing time is before the deadline for bug-fixing, there
is an incurred benefit given by CSB which is described
by the benefit for each day before the deadline.

11) Coefficient of schedule penalty (CSP): If the actual
bug fixing time is later than the deadline, it is
expected that some other work activity would get
affected. Thus there is a penalty, CSP, involved in
this case for each day used up later than the deadline.

The values for the coefficients CSB and CSP
are configurable parameters chosen accordingly by
the stakeholders. For instance, the penalty in missing
a deadline might have higher impact than the benefit
in fixing the bug before deadline; so CSP might get
a higher stakeholder value than CSB.

From the above attributes we can determine the value of
each bug based on the following value function:

V alue(Bi) = f(Bi.priority,Bi.severity, Bi.deadline,

Bi.actual fixing time, Bi.CSB,Bi.CSP)

Among these parameters, actual bug-fixing time is decided
by the scheduling results and the others are determined by
the value objectives of stakeholders before the scheduling.
The summation of the values of all the bugs gives us the
overall value of the bug-fixing process:

V alue(BS) =
n∑
i

V alue(Bi)

B. The human resource model

The human resource model captures the competencies
and availability of development and testing personnel to
undertake bug-fixing/verification. We make use of the human
resource model proposed by Xiao et al. [22] to describe
different attributes of human resources in the bug-fixing
process. A human resource, HR, is defined in terms of four
attributes:

1) HR ID: A unique identification of the human resource.
2) SKLS: The set of skills possessed by a human re-

source, SKLS = {skl1, skl2, . . . , skln}. Each skli
(1 ≤ i ≤ n) is defined by a triplet as skli =
(SKT, SKN, SKL). The elements in this triplet are
the skill type (SKT), skill name (SKN) and skill
level (SKL). For example, an experienced testing
resource (SKT) might be highly competent (SKL)
in a certain test design technique (SKN).

3) EXPD: The work experience figure, in number of
years, for the human resource. This figure can given
an indication of the skill level of a particular resource.

4) STMW: The time and the workload that can be
scheduled for a human resource. STMW consists of

135

all free time periods and the workload per day in each
of these time periods:

STMW = {([Ts1, Te1],W1), ([Ts2, Te2],W2),
. . . , ([Tsk, Tek],Wk), }

where Tsi and Tei represent the start and end date of
the ith free time period respectively, Wi represent the
workable hours per day that can be scheduled in the
ith free time period. The unit for Wi is person hour.
For example, ([25−Mar−2010, 07−Apr−2010], 6)
indicates that the resource is available between 25 −
Mar − 2010 and 07 − Apr − 2010 for 6 hours per
day, excluding the weekends.

If a human resource has all the skills required for fixing a
bug, then depending upon the available time periods, this
human resource can be scheduled for the bug-fixing task.
Thus according to the human resource descriptions and skill
requirements of bugs, the capable resources for each bug-
fixing event/activity can be scheduled.

However the organizations might lack the required compe-
tencies for fixing certain bugs within the stipulated deadline.
For example, if the verification of a bug-fix requires a
high skill level of domain knowledge on part of the testing
resource but the one available has medium or low skill levels.
In such a scenario, we setup certain rules aimed at relaxing
the skill requirements in order to provide additional candi-
date capable resources for bug-fixing. Thus the organization
can take a risk of lowering the skill requirements in an
attempt to close a bug on deadline. Following are the rules to
relax the skill requirements and provide additional candidate
capable resources for bug-fixing if:

• the skill level gap between what is required and what
is available is less than a specific number such as ‘1’.
This number indicates the scale of gap, so e.g. the gap
is ‘1’ if there is a requirement of high level of a certain
skill but only a medium one is available.

• the number of skills possessed by resources, having
levels lower than the requirement, is less than a given
value, e.g., 3, that is, at most a resource is lacking in
3 skill levels than what is the requirement.

IV. SCHEDULING WITH A GENETIC ALGORITHM (GA)

Scheduling resources for bug-fixing activities represent a
problem with different competing constraints and even with
a moderate number of bugs, the search space can become
vast as the number of combinations grow. To deal with the
complexity of such a combinatorial optimization problem
we apply a genetic algorithm (GA) to achieve maximum
possible value out of the bug-fixing process.

GA is an evolutionary algorithm that uses simulated
evolution as a search strategy to evolve potential solutions
and uses operators inspired by genetics and natural selec-
tion [23]. A GA encodes the candidate solutions to the

0/1 ... 0/1 0/1 ... 0/1 0/1 ... 0/1 ...

B1
DEV1 TST1

......

Size = smallest integer
greater

than or equal to log2r1,1

...... Bn

DEVn TSTn

Resource genes

Priority for
B1

...... Priority for
Bn

Priority genes

Size = smallest integer
greater

than or equal to log2rn,2

Size = g1 Size = gn

... 0/1 ...

Figure 2. The bug-fixing chromosome structure.

search problem as finite length strings called chromosomes.
The chromosomes are made up of components called genes
while the values of these genes are called alleles. A fitness
measure discriminates good candidate solutions from bad
ones and guides the search towards feasible areas in the
search space. A genetic algorithm maintains a population
of solutions which is iteratively recombined and mutated to
evolve successive generations of candidate solutions.

A. Encoding and decoding of chromosome

Before encoding the scheduling problem as a GA chro-
mosome, the following assumptions are made:

• Only one development resource and one testing re-
source can be allocated to each bug.

• One developer can only fix one bug at a time. Similarly
one tester can verify one bug-fix at a time.

We use a binary representation of integers to encode the
bug-fixing problem as a chromosome, an approach similar
to the one in [8]. We establish a set of resource genes and
a set of priority genes. For each bug Bi in bug repository
BR = {B1, B2, . . . , Bn}, the fixing of bug Bi includes two
activities, development (DEV) and testing (TST). For each
of these two activities, there are number of ri capable (or
additional candidate capable) resources that can be allocated
to it. We encode these capable resources as a set of binary
genes, where the size of the set is smallest integer greater
than or equal to log2ri,j where i represents bug i and j
represents activity type (DEV or TST). The binary values of
these genes are used to represent the decimal number that
identifies a scheduled resource as shown on the left part of
Figure 2.

When two or more activities described by resource genes
contend for the same resource, which activity can first
acquire resources should be determined. Thus a group of
genes named as priority genes are set, describing the activity
priority (shown on the right part of Figure 2, where g is the
priority gene size for each bug). The activity with higher
priority is assigned to the resource first while if two activities
have the same priority, the one placed to the left in the
chromosome is assigned to the resource first.

Decoding is the reverse process of encoding. First, re-
source genes of each activity are decoded to a real number,

136

giving us scheduled resource for the activity. Second, the
priority genes for each activity are decoded to a real number,
giving us the priority of each activity. Third, the start time
and end time for each activity is calculated. This calculation
satisfies the following constraints:

1) If two activities require the same resource, the one
with higher priority will be scheduled first.

2) The availability constraints of the human resources
should be satisfied.

B. Multi-objective fitness evaluation of candidate solutions

Each scheduling result decoded by a chromosome is
evaluated by means of a fitness function. The fitness function
is designed to keep in view the scheduling objectives.
Two generic and two specific objectives are taken in to
consideration for scheduling. The generic objectives are:

• Objective 1: Bugs with higher priority and severity
bring higher value on fixing.

• Objective 2: From a scheduling perspective, the max-
imum total value of fixing all the bugs should be
obtained.

Besides these generic objectives, two specific objectives are
used, each bringing a different value return for getting a bug
fixed. One specific objective is the strict deadline objective:

• Objective 3: The deadline for each bug is strict. If a
bug cannot be fixed before a deadline, the value for
fixing this bug is minimum, i.e., 0. If it can be fixed
before deadline, the value for fixing it is computed by
its priority, severity and preference weight.

By using objectives 1, 2 and 3, the value of a bug B is
described as follows:

V alue(B) = (α∗priority+β∗severity)∗HasFinished(B)

where α and β are the preference weights for priority and
severity respectively; HasFinished(B) is an operator:

HasFinished(B) =

1 B is fixed before deadline
0 B cannot be fixed before deadline

The other specific objective is the relaxed deadline objective:
• Objective 4: If bug-fixing is finished before the dead-

line, there is an incurred benefit. If bug-fixing is finished
later than deadline, a penalty is applied.

By using objectives 1, 2 and 4, the value of a bug B is
described as follows:

V alue(B) = (α∗priority+β∗severity)∗ScheduleV alue(B)

where α and β are the preference weights of priority and
severity respectively, while ScheduleV alue(B) is computed
as follows:

ScheduleV alue(B) =

8><>:
(B.Deadline−B.F ixedT ime) ∗B.CSB

for Deadline ≥ FixedT ime
(B.Deadline−B.F ixedT ime) ∗B.CSP

for Deadline < FixedT ime

where CSB and CSP are configurable parameters, set
by the user. The strength of these coefficients indicate the

impact of benefit or otherwise on the bug-fixing process
so e.g. if the impact of missing a deadline is more, the
corresponding coefficient is set to a higher value.

No matter whether the deadline of a bug is strict or not,
the value function for the bug-fixing process is:

V alue(BS) =
n∑
i

V alue(Bi)

This value function is used as a fitness function during the
GA evolution process.

V. INDUSTRIAL CASE STUDY

Our proposed methodology for scheduling resources for
bug-fixing activities is evaluated using real-world data from
a large Enterprise Resource Planning (ERP) software devel-
oped by a global provider of geo-technology and information
technology services. The company consists of over 600
skilled professionals and have successfully been certified as
CMMi level 3 compliant. The ERP project has completed
several releases while the data used in this paper comes
from a batch of bugs reported by the testing team for
an upcoming release. This upcoming release incorporates
customized functionality for one of their telecom clients.
The project team working on the upcoming release have
to schedule appropriate resources to cut-down the back-log
of reported bugs from the testing team. The project leader
plans for fixing every bug by a set deadline (keeping in
view the release date for the customer) and estimates the
required effort using expert judgement. The project leader
is responsible for triaging the bugs to resources having
the required skills (along with required skill levels) and
available times. The skill set and associated levels for every
resource in the project is maintained by the human resource
department and the project leader also has own qualitative
assessments regarding the skill levels of resources under
him. The empty time slots for every resource is available
through a centralized calendar application.

Therefore, having bugs with different priority, severity,
time constraints, resource constraints and having resources
with varying skill sets with associated skill levels and avail-
able time slots, an automated mechanism to triage bugs with
maximum possible value for the organization is required.

A. Description of bugs and human resources

We evaluated our approach on a set of 25 bugs logged in
the bug repository during system testing. The ID, descrip-
tion, severity, priority, assigned time, deadline and estimated
effort are shown in Table I. The bug descriptions have been
modified to protect privacy. As discussed in Section III, there
are two resource consuming activities taking place during the
bug-fixing process: development (DEV) and testing (TST);
each of these activities require relevant skill-set. Although
there can be different ways of classifying skills required for
both development and testing, we use more general skill

137

Table I
BUG DESCRIPTIONS.

Bug
ID

Bug Description Severity
(H:High,
M:
Medium,
L:Low)

Priority
(H:High,
M:
Medium,
L:Low)

Assigned
time

Deadline Estimated effort

1 Reservations removed. M H 25-
Mar-10

12-Apr-
10

DEV: 3 days, TST: 1
day; 32 Hours

2 Built-in redundancy is
lost.

M H 25-
Mar-10

12-Apr-
10

DEV: 3 days, TST: 4
days; 32 Hours

3 Replication too slow. M H 25-
Mar-10

12-Apr-
10

DEV: 3 days, TST: 1
day; 32 Hours

4 Scheduled periodic
account management job
not working.

H H 25-
Mar-10

12-Apr-
10

DEV: 4 days, TST: 2
days; 48 Hours

5 The scheduled job cannot
perform evaluation.

H H 25-
Mar-10

12-Apr-
10

DEV: 4 days, TST: 2
days; 48 Hours

6 Modifying existing sched-
ule not allowed.

H H 01-
Apr-10

19-Apr-
10

DEV: 4 days, TST: 2
days; 48 Hours

7 History of customer pro-
file not loaded.

M H 25-
Mar-10

12-Apr-
10

DEV: 3 days, TST: 4
days; 32 Hours

8 Too low processing per-
formance.

M H 25-
Mar-10

12-Apr-
10

DEV: 3 days, TST: 1
day; 32 Hours

9 Req002 not fulfilled. H H 25-
Mar-10

12-Apr-
10

DEV: 4 days, TST: 2
days; 48 Hours

10 Volume input/output not
working.

M H 25-
Mar-10

12-Apr-
10

DEV: 3 days, TST: 1
day; 32 Hours

11 CustomerHandler crashed. M M 25-
Mar-10

12-Apr-
10

DEV: 3 days, TST: 1
day; 32 Hours

12 Fallback fails in step 2 of
use case 1.

H M 25-
Mar-10

12-Apr-
10

DEV: 4 days, TST: 2
days; 48 Hours

13 User data not updated in
customerHandler memory.

H M 01-
Apr-10

19-Apr-
10

DEV: 4 days, TST: 2
days; 48 Hours

14 Failed to generate cus-
tomer request.

M M 25-
Mar-10

12-Apr-
10

DEV: 3 days, TST: 1
day; 32 Hours

15 Configuration file
corrupted.

M M 01-
Apr-10

19-Apr-
10

DEV: 3 days, TST: 1
day; 32 Hours

16 The configuration log is
missing latest settings.

M M 01-
Apr-10

19-Apr-
10

DEV: 3 days, TST: 1
day; 32 Hours

17 Too low performance for
handling batch requests.

M M 01-
Apr-10

19-Apr-
10

DEV: 3 days, TST: 1
day; 32 Hours

18 Page not displayed on
server authentication.

L M 25-
Mar-10

12-Apr-
10

DEV: 1.5 days, TST:
0.5 day; 16 Hours

19 Notification email not
send.

L M 25-
Mar-10

12-Apr-
10

DEV: 1.5 days, TST:
0.5 day; 16 Hours

20 Database replication error. M M 01-
Apr-10

19-Apr-
10

DEV: 3 days, TST: 1
day; 32 Hours

21 Incorrect error code. L L 25-
Mar-10

12-Apr-
10

DEV: 1.5 days, TST:
0.5 day; 16 Hours

22 Incorrect salary shown. L L 25-
Mar-10

12-Apr-
10

DEV: 1.5 days, TST:
0.5 day; 16 Hours

23 Report taking too long to
generate.

L L 01-
Apr-10

19-Apr-
10

DEV: 1.5 days, TST:
0.5 day; 16 Hours

24 Message update required. L L 01-
Apr-10

19-Apr-
10

DEV: 1.5 days, TST:
0.5 day; 16 Hours

25 Usage profile not updated. L L 01-
Apr-10

19-Apr-
10

DEV: 1.5 days, TST:
0.5 day; 16 Hours

requirements that could easily be mapped to more specific
skill-set at our subject company. The skill requirements
for each bug are described in Table II where H: High,
M: Medium and L: Low. Human resource attributes for
available development and testing personnel (as discussed
in Section III-B) are shown in Table III.

VI. THE SCHEDULING RESULTS

We applied the GA proposed in Section IV to schedule
capable resources for bug-fixing activities, based on the bug
model and human resource model data given in Section III.
The GA used the following parameters: Population size:
100, total number of generations: 500, cross-over rate: 0.8,
mutation rate: 0.01, selection method: ratio. These param-
eters were obtained after some experimentation, however,
in future we need a more systematic mechanism of tuning
them.

We assume that delaying the bug-fixing after the deadline
has greater impact than fixing it before, therefore, CSB

Table II
SKILL REQUIREMENTS OF EACH BUG.

Development skills Testing skills

B
ug

ID

A
na

ly
tic

al

Pr
og

ra
m

m
in

g
la

ng
ua

ge

D
eb

ug
gi

ng

R
ef

ac
to

ri
ng

U
se

of
ID

E

C
on

fig
ur

at
io

n
m

an
ag

em
en

t

U
se

of
lib

ra
ri

es
an

d
fr

am
ew

or
ks

Te
st

pl
an

ni
ng

(T
P)

Te
st

de
si

gn
(T

D
)

Te
st

ex
ec

ut
io

n
(T

E
)

Te
st

re
vi

ew
(T

R
)

us
e

of
bu

g
tr

ac
ki

ng
to

ol

D
om

ai
n

kn
ow

le
dg

e
(D

K
)

1 H M H M M M M H H H M M H
2 H M H M M M M H H H M M H
3 H M H M M M M H H H M M H
4 H H H H M M M H H H M M H
5 H H H H M M M H H H M M H
6 H H H H M M M H H H M M H
7 H M H M M M M H H H M M H
8 H M H M M M M H H H M M H
9 H H H H M M M H H H M M H
10 H M H M M M M H H H M M H
11 H M H M M M M H H H M M H
12 H H H H M M M H H H M M H
13 H H H H M M M H H H M M H
14 H M H M M M M H H H M M H
15 H M H M M M M H H H M M H
16 H M H M M M M H H H M M H
17 H M H M M M M H H H M M H
18 M M M L L L L M M M L L M
19 M M M L L L L M M M L L M
20 H M H M M M M H H H M M H
21 M M M L L L L M M M L L M
22 M M M L L L L M M M L L M
23 M M M L L L L M M M L L M
24 M M M L L L L M M M L L M
25 M M M L L L L M M M L L M

is set as 10 and CSP as 30 for every bug, i.e., one day
delay in bug-fixing has three times effect on the value than
completing the bug-fixing one day before. Based on the
configuration of coefficients and weights in balancing objec-
tives (Section IV-B) and resources (Section V-A), different
scenarios suggest strategies for managing resources for the
bug-fixing tasks. We then discuss the scheduling results out
of these scenarios.

A. Scenario 1: Priority preference weight, α = 20; Severity
preference weight, β = 5

With priority weight, α, set to 20 and severity preference
weight, β, set to 5, we first use objectives 1, 2 and 3
from Section IV-B. That is, we use the strict deadline as
an objective and find that, using data from Section V-A,
only 11 out of 25 bugs can be scheduled for fixing. These
bugs are listed in Table IV and the corresponding Gantt
chart plan for fixing these bugs is shown in Figure 3.
Gantt chart is an easy way to illustrate a project schedule
and provides an intuitive interface for the project leader to
monitor scheduling elements. As is clear that using a strict
deadline objective, only a limited number of bugs can be
fixed.

We now use the relaxed deadline objective to schedule
more bugs by relaxing the deadline constraint. We assume
that all the resources are available after 20-Apr-2010 and

138

Table III
HUMAN RESOURCE DESCRIPTIONS.

HR
ID

(SKT, SKN, SKL) EXPD
(Years)

STMW

HR1 (Developer, Analytical, H)

6

([25-Mar-2010, 07-Apr-2010], 6)
(Developer, Programming Lang., H)

([12-Apr-2010, 15-Apr-2010], 6)

(Developer, Debugging, H)
(Developer, Refactoring , H)
(Developer, IDE, M)
(Developer, CM, M)
(Developer, Lib. and Frameworks, M)

HR2 (Developer, Analytical, H)

6

([20-Mar-2010, 04-Apr-2010], 8)
(Developer, Programming Lang., H)

([12-Apr-2010, 14-Apr-2010], 8)

(Developer, Debugging, H)
(Developer, Refactoring , H)
(Developer, IDE, M)
(Developer, CM, M)
(Developer, Lib. and Frameworks, M)

HR3 (Developer, Analytical, M)

2

([23-Mar-2010, 12-Apr-2010], 8)
(Developer, Programming Lang., M)

([15-Apr-2010, 22-Apr-2010], 8)

(Developer, Debugging, M)
(Developer, Refactoring , M)
(Developer, IDE, M)
(Developer, CM, L)
(Developer, Lib. and Frameworks, L)

HR4 (Developer, Analytical, M)

2

([23-Mar-2010, 05-Apr-2010], 6)
(Developer, Programming Lang., M)

([12-Apr-2010, 17-Apr-2010], 6)

(Developer, Debugging, M)
(Developer, Refactoring , M)
(Developer, IDE, M)
(Developer, CM, L)
(Developer, Lib. and Frameworks, L)

HR5 (Tester, TP, H)

4

([25-Mar-2010, 08-Apr-2010], 4)
(Tester, TD, H)

([12-Apr-2010, 14-Apr-2010], 4)
(Tester, TE, H)
(Tester, TR, M)
(Tester, Bug Tracking Tool, M)
(Tester, DK, M)

HR6 (Tester, TP, M)

2

([25-Mar-2010, 06-Apr-2010], 3)
(Tester, TD, M)

([09-Apr-2010, 16-Apr-2010], 3)
(Tester, TE, M)
(Tester, TR, L)
(Tester, Bug Tracking Tool, L)
(Tester, DK, M)

Table IV
BUGS THAT CAN BE FIXED UNDER A STRICT DEADLINE (α=20, β=5).

Bug
ID

Value DEV TST

2 70 HR2: ([25-Mar-2010, 26-Mar-2010], 8)
([29-Mar-2010, 29-Mar-2010], 8)

HR5: ([30-Mar-2010, 31-Mar-2010], 4)

3 70 HR2: ([30-Mar-2010, 01-Apr-2010], 8) HR5: ([06-Apr-2010, 07-Apr-2010], 4)
9 75 HR1: ([29-Mar-2010, 01-Apr-2010], 6) HR5: ([02-Apr-2010, 02-Apr-2010], 4)

([05-Apr-2010, 05-Apr-2010], 4)
10 75 HR1: ([02-Apr-2010, 02-Apr-2010], 6)

([05-Apr-2010, 07-Apr-2010], 6)
HR5: ([08-Apr-2010, 08-Apr-2010], 4)
([12-Apr-2010, 12-Apr-2010], 4)

18 45 HR4: ([25-Mar-2010, 26-Mar-2010], 6) HR5: ([29-Mar-2010, 29-Mar-2010], 4)
19 45 HR3: ([25-Mar-2010, 26-Mar-2010], 8) HR6: ([29-Mar-2010, 30-Mar-2010], 3)
21 25 HR1: ([25-Mar-2010, 26-Mar-2010], 6) HR6: ([31-Mar-2010, 01-Apr-2010], 3)
22 25 HR3: ([29-Mar-2010, 30-Mar-2010], 8) HR5: ([01-Apr-2010, 01-Apr-2010], 4)
23 25 HR3: ([01-Apr-2010, 02-Apr-2010], 8) HR6: ([05-Apr-2010, 06-Apr-2010], 3)
24 25 HR3: ([05-Apr-2010, 06-Apr-2010], 8) HR5: ([13-Apr-2010, 13-Apr-2010], 4)
25 25 HR3: ([07-Apr-2010, 08-Apr-2010], 8) HR6: ([09-Apr-2010, 09-Apr-2010], 3)

([12-Apr-2010, 12-Apr-2010], 3)

Figure 3. Strict deadline bug-fixing plan.

Table V
BUGS THAT CAN BE FIXED UNDER A RELAXED DEADLINE (α=20, β=5).

Bug
ID

Value Precedent days
compared to the
deadline

Bug
ID

Value Precedent days
compared to the
deadline

1 -18900.0 -9 14 -37500.0 -25
2 -23100.0 -11 15 -24000.0 -16
3 4900.0 7 16 -33000.0 -22
4 -4500.0 -2 17 -42000.0 -28
5 -40500.0 -18 18 4950.0 11
6 -33750.0 -15 19 4500.0 10
7 -21000.0 -10 20 -25500.0 -17
8 6300.0 9 21 2000.0 8
9 3750.0 5 22 1500.0 6
10 -16800.0 -8 23 1750.0 7
11 -31500.0 -15 24 1250.0 5
12 -52800.0 -32 25 2250.0 9
13 -51150.0 -31

each workday comprises of 8 working hours. Using objec-
tives 1, 2 and 4 from Section IV-B, the simulation results
appear in Table V. The data in Table V indicates that
relaxing the deadline enables all the bugs to be scheduled
for fixing but many of them are delayed as indicated by
negative integers in the third and sixth columns of Table V.
The corresponding Gantt chart plan is shown in Figure 4 that
can help show the project leader that negotiating a relaxation
in deadline would help fix all the bugs.

B. Scenario 2: Priority preference weight, α = 5; Severity
preference weight, β = 20

In this scenario, we change the priority and severity pref-
erence weights as α = 5 and β = 20 respectively; that is to
say that we now consider severity as more important than the
priority of a bug. Using the strict deadline as an objective,
the simulation results indicate that there are still 11 out of
25 bugs that can be scheduled before deadline. Although
the total number of bugs that could be fixed before deadline
remains the same for both the scenarios, a comparison of
two schedules indicate that the two scheduling plans differ
at bug IDs 3, 5, 10 and 16. This is shown in Table VI. The
data in Table VI show that increasing the severity preference
weight β (scenario 2) has resulted in scheduling bug ID 5
with highest priority but at the cost of not fixing bug IDs 3
and 10 from scenario 1. Since bug IDs 3 and 10 cannot be
fixed, the available resources are enough to fix bug ID 16.

Scenarios 1 and 2 indicate that by plugging different
combinations of priority and severity preference weights, the
project leader can balance the importance of fixing certain
bugs at the cost of others (provided that the deadline is
strict). This, in our view, suggest valuable strategies for
resource scheduling.

C. Scenario 3: Priority preference weight, α = 20; Severity
preference weight, β = 5; Simulating virtual resources

In the previous two scenarios we see that, using a strict
deadline, the resources are not enough to fix all the bugs
on or before the deadline. We also saw that one way to

139

Figure 4. Relax deadline bug-fixing plan.

Table VI
COMPARISON OF BUG-FIXING SCHEDULES UNDER DIFFERENT PRIORITY

AND SEVERITY PREFERENCE WEIGHTS.

Bug ID Priority Severity Value preference weight
α = 20; β = 5 α = 5; β = 20

2 3 2 70 55
3 3 2 70 0
5 3 3 0 75
9 3 3 75 75
10 3 2 75 0
16 2 2 0 50
18 2 1 45 30
19 2 1 45 30
21 1 1 25 25
22 1 1 25 25
23 1 1 25 25
24 1 1 25 25
25 1 1 25 25

provide more candidate resources is to relax the deadline.
The other way to achieve the deadline is, of course, addition
of more resources. Therefore, we add virtual resources for
fixing bugs in this scenario. Initially we have 6 resources and
are able to schedule 11 out of 25 bugs for fixing. Increasing
the resources to two more by adding one development
resource and one testing resource, with high skill levels
in all skills, enables scheduling over 15 bugs for fixing.
Similarly increasing the resources to 10 by adding two
highly-skilled development resources and two highly-skilled
testing resources allow scheduling more than 20 bugs before
deadline (Figure 5).

This scenario gives another option to the project leader
for viewing the scheduling outcome if more resources were
available than initially assigned. Therefore, the simulation

Figure 5. Effects of increasing number of resources.

of virtual resources can provide schedules under varying
circumstances, keeping in view the available resource pool.

VII. COMPARISON WITH HILL-CLIMBING SEARCH

Hill-climbing (HC) is a basic local search algorithm and,
likewise GA, is used to compute the value obtained in
scheduling resources for bug-fixing tasks. We have used the
three scenarios discussed in Section VI to compute the total
bug value by using HC and have compared it with GA. The
results are shown in Figure 6. The figure shows that if the
number of bugs is small (i.e. 1 to 3), GA and HC obtain the
same optimal value. But when the scale of problem increases
with an increase in number of bugs, GA gives better results
than HC. In order to test whether any significant differences
exist between the bug values from two algorithms, we used
Wilcoxon rank sum test. The p-value of 0.004 confirmed
that the bug values from HC and GA do not have equal

140

Figure 6. A comparison of total bug value obtained by using GA and HC.

medians at 0.05 significance level. Thus bug values from
GA are significantly different and better than those of HC.

VIII. DISCUSSION

Considering that we have a need to support efficient and
effective bug-assignment policies, this paper has provided
early results as to how a GA can help strike a balance
between competing constraints to achieve near-optimal value
for the organization. Due to the dynamic nature of the
bug-fixing schedules, different scenarios are possible and
these changing scenarios have to be modeled effectively for
near-optimal solutions. The multi-objective fitness function
proposed in this work attempts to model the uncertainty
in the scheduling problem. The scenarios discussed here
provide a way to schedule resources under different cir-
cumstances, e.g., having a strict/flexible deadline, having
assigned different weights to severity and priority and last
but not least, the ability to foresee the resource requirements
by adding virtual resources to meet the deadline. GA is able
to effectively suggest different strategies to tackle the bug-
fixing process and is found to be more effective than hill-
climbing. Consequently the project leaders can use these
results to support their resource scheduling decisions.

We are also aware of certain limitations of our study. First
we have some assumptions that might get violated, e.g., it
is common that the bug-fix is verified not to be correct by
the testing team and a second round of bug-fixing activities
is undertaken. If this is the case, then the different elements
of the bug model would require new data for the second
round of activities. We, however, limit ourselves to only one
round of bug-fixing activities in this paper. Second, there
are some rules that are followed for the relaxed deadline
objective. While these rules would differ with respect to the
expectations of the project leader of her team members, we
followed some intuitive ones. Any change in this rules is,
however, possible. Third, there is a possibility that a resource
works concurrently on more than one assignment. However

we only consider the empty time slots that a particular
resource has for dealing with one bug at a time. If such a
division of workload is not possible then it is expected that
the human resource model needs to incorporate this change.
Fourth, a company might face the difficulty to quantify the
skills and the associated levels. As our subject company
is on the path of CMMi Level 4, such a quantification
is seen as a continuing improvement opportunity for the
workforce. The human resource model presented here uses
a simple classification of skills which can be changed to
suit specific needs. There is a possibility that the human
resource model in this paper has ignored relevant human
performance factors. An important point to make here is that
the company using such an approach needs to continuously
update the skill database of its resources since it is common
for the resources to educate themselves and learn as part of
the project experience.

IX. VALIDITY THREATS

There can be three types of validity threats to the kind of
study we have conducted. Construct validity threats refer to
the extent the experiment setting actually reflects the con-
struct under study [24]. These threats might arise due to the
assumptions we made in the study and the way we modeled
the problem. However, a search-based technique such as
GA is independent of the way the problem is modeled; it
is the fitness function that contains the crucial information
and needs to be adapted for a more complex model. The
assumptions in this paper made sense for the type of case
study discussed, however, as mentioned in Section VIII, the
bug and human resource model might change if a different
process of bug-fixing is followed. Internal validity threats
refer to any sources of bias that might have affected the
results. Since GA is a stochastic algorithm, different runs
produces different solutions. The different GA parameters
were obtained after careful experimentation and taking into
account that further changing the parameter values do not
have significant impact on the results. Moreover, the GA was
run multiple times (30) to overcome randomness inherent
in the GA. External validity threats are concerned with
generalization. The results obtained in this paper as such
should be applicable to the situations where our assumptions
are held. Otherwise, the bug and the human resource model
needs to be adapted accordingly.

X. CONCLUSIONS AND FUTURE WORK

We have presented a search-based resource allocation
method for bug-fixing tasks. We proposed models for the
bug-fixing process, the human resources and the capability
matching method between bug-fixing activities and human
resources. On the basis of these models and our proposed
method, the resources were allocated for bug-fixing activities
using a GA. Depending on differing objectives, three scenar-
ios were discussed using an industrial data set and the results

141

showed that GA was able to give schedules having balanced
different objectives and entailing maximum value for the
organization. Comparison with hill-climbing showed that
GA gave statistically better results in terms of maximizing
the value objective.

Based on this paper, some interesting future work can be
undertaken:

• Combining the bug-fixing process with other resource
consuming activities that might happen concurrently,
e.g., testing of newly implemented requirements might
take place in parallel with bug-fixing activities, proba-
bly needing similar resources.

• Increasing the generalizability of the proposed method
by considering scheduling a larger set of bugs.

• Supplementing the scheduling with cost issues, i.e., the
cost incurred in investing resources to perform different
activities might impact the value objective.

• Analyzing the sensitivity of parameters in the GA and
the fitness function, such as population size of the
GA, priority preference weight and severity preference
weight of the fitness function.

XI. ACKNOWLEDGEMENTS

Junchao Xiao is supported by the National Natural Sci-
ence Foundation of China under grant Nos. 90718042,
60903051, the 863 Program of China under grant No.
2007AA010303, as well as the 973 program under grant No.
2007CB310802. Wasif Afzal is supported by the Swedish re-
search school in verification and validation (www.swell.se).

REFERENCES

[1] H. Pham, Software reliability. Singapore: Springer-Verlag,
2000.

[2] J. Anvik, L. Hiew, and G. Murphy, “Who should fix this bug?”
in Procs. of the Int. Conf. on Software Engineering, 2006.

[3] P. Laplante and N. Ahmad, “Pavlov’s bugs: Matching repair
policies with rewards,” IT Professional, vol. 11, no. 4, 2009.

[4] M. B. Wall, “A GA for resource-constrained scheduling,”
Ph.D. dissertation, Dept. of Mechanical Eng., Massachusetts
Institute of Technology, USA, 1996.

[5] L. Ozdamar and G. Ulusoy, “A survey on the resource-
constrained project scheduling problem,” IIE Transactions,
vol. 27, pp. 574–586, 1995.

[6] M. Harman, S. A. Mansouri, and Y. Zhang, “Search based
software engineering: A comprehensive analysis and review
of trends techniques and applications,” Dept. of CS, King’s
College London, Tech. Report TR-09-03, 2009.

[7] G. Antoniol, M. Di Penta, and M. Harman, “Search-based
techniques applied to optimization of project planning for a
massive maintenance project,” in Procs. of the 21st IEEE Int.
Conf. on SW Maintenance. IEEE, 2005.

[8] J. Xiao, Q. Wang, M. Li, Q. Yang, L. Xie, and D. Liu,
“Value-based multiple software projects scheduling with GA,”
in Procs. of the 2009 Int. Conf. on SW Process, 2009.

[9] E. Alba and J. Chicano, “SW project management with GAs,”
Information Sciences, vol. 177, no. 11, pp. 2380–2401, 2007.

[10] C. Chang, H. Jiang, Y. Di, D. Zhu, and Y. Ge, “Time-
line based model for SW proj. scheduling with genetic
algorithms,” IST, vol. 50, no. 11, pp. 1142–1154, 2008.

[11] C. Kirsopp, M. J. Shepperd, and J. Hart, “Search heuristics,
case-based reasoning and software project effort prediction,”
in Procs. of the Genetic and Evolutionary Computation Conf.
Morgan Kaufmann Publishers Inc., 2002.

[12] W. Afzal, R. Torkar, R. Feldt, and T. Gorschek, “Genetic
programming for cross-release fault count predictions in large
and complex software projects,” in Evolutionary Computa-
tion and Optimization Algorithms in Software Engineering,
M. Chis, Ed. IGI Global, Hershey, USA, 2010.

[13] E. Hart, P. Ross, and D. Corne, “Evolutionary scheduling:
A review,” Genetic Programming and Evolvable Machines,
vol. 6, no. 2, pp. 191–220, 2005.

[14] A. Mockus, D. M. Weiss, and P. Zhang, “Understanding and
predicting effort in software projects,” in Procs. of the 25th
Int. Conf. on SW Eng. IEEE Computer Society, 2003.

[15] D. Cubranic and G. Murphy, “Automatic bug triage using text
categorization,” in Procs. of the 16th Int. Conf. on SW Eng.
and Knowledge Eng., 2004.

[16] H. Zeng and D. Rine, “Estimation of software defects fix
effort using neural networks,” in Procs. of the 28th Annual
Int. Computer SW and Applications Conf. - Workshops and
Fast Abstracts. IEEE Computer Society, 2004.

[17] G. Canfora and L. Cerulo, “Supporting change request as-
signment in open source development,” in Procs. of the 2006
ACM symp. on Applied computing. ACM, 2006.

[18] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, “SW
defect association mining and defect correction effort predic-
tion,” IEEE Trans. on SW Eng., vol. 32, no. 2, 2006.

[19] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How
long will it take to fix this bug?” in Procs. of the 4th Int. WS
on Mining SW Repositories. IEEE, 2007.

[20] “Bugzilla – A bug tracking tool.” http://www.bugzilla.org/,
Last checked 21 Mar 2010.

[21] IEEE std. classification for SW anomalies, IEEE Std. 1044-
1993, IEEE, Inc., USA, 1993.

[22] J. Xiao, Q. Wang, M. Li, Y. Yang, F. Zhang, and L. Xie,
“A constraint-driven human resource scheduling method in
software development and maintenance process,” in 24th
IEEE Int. Conf. on SW Maintenance. IEEE, 2008.

[23] J. Holland, Adaptation in natural and artificial systems.
Cambridge, MA, USA: MIT Press, 1992.

[24] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in software engineering:
An introduction. USA: Kluwer Academic Publishers, 2000.

142

