
Strong and Weak Contract Formalism for
Third-Party Component Reuse

Irfan Sljivo, Barbara Gallina, Jan Carlson, Hans Hansson
Mälardalen Real-Time Research Centre, Mälardalen University,

Västerås, Sweden
{irfan.sljivo, barbara.gallina, jan.carlson, hans.hansson}@mdh.se

Abstract—Our aim is to contribute to bridging the gap
between the justified need from industry to reuse third-party
components and skepticism of the safety community in integrating
and reusing components developed without real knowledge of the
system context. We have developed a notion of safety contract
that will help to capture safety-related information for supporting
the reuse of software components in and across safety-critical
systems.

In this paper we present our extension of the contract
formalism for specifying strong and weak assumption/guarantee
contracts for out-of-context reusable components. We elaborate
on notion of satisfaction, including refinement, dominance and
composition check. To show the usage and the expressiveness
of our extended formalism, we specify strong and weak safety
contracts related to a wheel braking system.

I. INTRODUCTION

More and more standards for certification of safety-critical
systems are offering support for reuse of third-party com-
ponents in order to reduce time-to-market and production
costs. An example is represented by the introduction of the
concept Safety Element out of Context (SEooC) within the
automotive ISO26262 standard [9]. Although this opportunity
to reduce time-to-market and production costs seems attractive,
reuse of third-party components is challenged by various
complications [10] and can easily incur additional costs. One
of the major problems for the safety-related systems is that
the context in which the reusable out-of-context component
is going to be used is unknown. On the one hand, if we
include too much information about the context in the reusable
component than it will be more difficult to reuse it in a different
context.

Component reuse within standards is present through the
use of commercial off-the-shelf (COTS) and modified off-the-
shelf (MOTS) items. The drawback of the off-the-shelf items
is usually that they lack the development process evidence
required for certification by the domain-specific safety stan-
dards [13]. The basic idea behind SEooC is to bridge that
gap by allowing the developer to first assume the safety-
related requirements applicable to a component, and then
to develop it to satisfy those requirements. Contract-based
approaches emerge as one of the means to capture safety
requirements and enable reuse and composition within safety-
critical systems [3]–[8]. A contract is a set of assumptions and
guarantees where guarantees are provided by the component
if assumptions are met by the component’s environment.

In our work, we are looking into means for capturing as
much as possible of safety-related information for reuse, but

still to keep the component more flexible, i.e., reusable. We
provide a further developed formalism for safety contracts with
strong and weak reasoning that enables capturing information
that need to hold for all contexts, i.e., that are out-of-context,
and information that are more context-specific.

To improve reuse possibilities of software components by
using contracts, just as components need to be designed for
reuse, so do contracts as well. For these purposes it is beneficial
to provide more expressive means of capturing information for
reuse. In our previous work [14], we have introduced fine-
grained contract extension with strong and weak contracts
reasoning. The strong contracts must always hold in order
for components to be reused (in any context), while the weak
contracts just offer additional information about a context in
which the component can operate. For example, information
such as timing are highly context-specific and should be
specified separately from the conditions that are needed for
the component to operate.

In this paper we use a wheel braking system as an example
of a safety-critical system to show how fine-grained contract
reasoning can be used to capture timing and safety informa-
tion. The system is originally used within ARP4761 airborne
systems recommended practice [1] to demonstrate the safety
process required for the airspace domain.

The main contribution of this work is extension and
adaptation of contract semantics to handle strong and weak
contracts. We associate each component with a set of strong
and weak contracts and define conjunction of strong and weak
contracts. The format of the contract in conjuncted form is
based on our previous work [14], where a contract consists
of strong assumptions, strong guarantees and multiple weak
assumption/guarantee pairs. In this work, we define notions
of satisfaction, refinement and dominance for contracts in the
conjuncted format. Further more, we show the usage of the
fine-grained contracts on the wheel braking system.

Comparing to related work, we are focusing more on
capturing contracts for out-of-context components where very
little, or no information at all is known about the context in
which the component is supposed to operate. We are putting
emphasis on the contents of out-of-context contracts and the
separation of mandatory and alternative/optional properties.

The rest of the paper is organized as follows: In Section II
we briefly present key notions we build upon and provide
essential information on the wheel braking system. We extend
and adapt the fine-grained contract formalism in Section III. In
Section IV we use our extended formalism to specify contracts



related to the wheel braking system. Related work is presented
in Section V and conclusions and future work in Section VI.

II. BACKGROUND

In this section we briefly provide some background infor-
mation on off-the-shelf items for safety-critical systems, sup-
port for reuse from safety standards, and assumption/guarantee
contracts. Finally, we also provide essential information related
to the wheel braking system.

A. Off-The-Shelf Items

Off-the-shelf (OTS) solutions offer reduced time-to-market
and increased affordability, and are expected to support ser-
vices with multiple safety-criticality levels [11]. There are
many types of OTS items including commercial OTS, modified
OTS, Software of Unknown Pedigree (SOUP) etc. While ones
are developed according to standards - COTS and MOTS, the
others are not - SOUP. On the other hand, some are to be used
”as is” without changes - COTS, and some can be modified
and changed - MOTS.

The use of OTS items within safety-critical systems has
been debated for years [13], since most of the safety-critical
systems need to be certified by a domain-specific safety
standard that requires some kind of evidence about the safety
of the system, that usually doesn’t come with OTS items.
As all the other reusable components, OTS items as well
suffer from the three basic issues in the creation and use
of reusable components illustrated by the well-known ”3C’s
Model” [12]: Concept, Content and Context. The third issue is
the most problematic for the safety community when it comes
to reusable components. The problem of context is usually
addressed by the concept of separation of concerns, where
different aspects of a component are kept as independent as
possible to maximize the reuse potential of the component.
Due to the system-wide nature of the safety-related properties
it is impossible to completely separate concerns in the context
of safety-related systems.

B. Safety Standards and Reuse

Safety standard authorities have been making an effort to
bridge the gap between the separation of concerns and the
system-wide nature of safety properties. As mentioned in the
introduction, an example is represented by the introduction of
the concept Safety Element out of Context (SEooC) within the
automotive ISO26262 standard. A SEooC is a safety-related
element which is not developed for a specific item, but is
developed based on ”assumptions on an intended functionality,
use and context” [9].

Within avionics domain, regulated by DO178B(C) safety
standard, the regulatory agency introduced the concept of
Reusable Software Component (RSC) [2]. The concept allows
developers of RSC to satisfy only a part of requirements
mandated by the safety standard, while the integrator of the
developed RSC is expected to complete the safety standard
objectives.

Besides the above-mentioned problem with separation of
concerns, another problem that occurs is the criticality of the
components developed out-of-context. Safety Integrity Level

(SIL) represents a measurement for quantifying risk reduction.
Different safety standards have different SIL categorizations
that range from events that have no risk involved to events
that may result in harm to human life and can be classified as
hazardous and catastrophic. The components not only need
to be developed according to a safety standards, but they
usually must be developed at a specific SIL. Within the
automotive industry standards, this problem is addressed by
ASIL decomposition, where ASIL is in fact Automotive SIL.
ASIL decomposition allows a developer to use a component
with a lower SIL by attaching a safety function with the
same lower SIL and showing that the two are independent.
The avionics industry defines five SILs and refers to them as
Design Assurance Level (DAL). DALs are categorized from
catastrophic failure conditions denoted with DAL A to failure
conditions that have no effect on safety denoted with DAL E.

C. Fine-grained Contracts

Traditional assumption/guarantee contract is a pair of as-
sertions C = 〈A,G〉 where a component makes assumptions
A on its environment and if those assumptions are met it
offers guarantees G in return. Contract semantics are defined
in terms of environments and implementations. It is said that
an environment satisfies a contract C = 〈A,G〉 if it provides
all of the contract assumptions A. An implementation satisfies
a contract C if provided the assumptions A it satisfies the
guarantees G.

As we mentioned in our previous work [14], moving
properties captured in-context to out-of-context reusable com-
ponent is a difficult work because many implicit and hidden
assumptions need to be identified about the specific context,
for the property to hold out-of-context. That is why we
extended the traditional contract-based formalism to allow
for distinguishing between properties that are context-specific
and properties that must hold for all contexts by adapting
strong and weak contract reasoning. The extended contract
format consists of strong assumptions and guarantees and
multiple weak assumption/guarantee pairs. While the strong
assumptions and guarantees must be satisfied always in order
for component to be used, the weak pairs offer additional
information in some specific contexts where besides the strong
assumptions, the weak assumptions are to be met as well.

D. Motivating Example

In this subsection we provide essential information related
to the wheel braking system that we use to show the usage and
expressiveness of our extended formalism. This information is
based on [1] and is taken from two previous works [7] and [6].

The example describes a Wheel Braking System (WBS)
within an aircraft that takes two input brake pedal signals and
outputs the brake signal that is applied on the wheel. The high
level architecture is shown in Figure 1.

The system is composed of two subsystems: Brake System
Control Unit (BSCU) and Hydraulics. The brake pedal signals
are forwarded to BSCU, which generates braking commands
and sends them to Hydraulics subsystem that executes the
braking commands. If the BSCU, which makes the normal
operation mode, fails then Hydraulics uses an alternate or
emergency mode to perform the braking.



Fig. 1. Wheel Braking System - High Level View

The WBS is designed so that it addresses requirement that
loss of all wheel braking is less probable than 1.0E-7 per
flight hour (”loss of all wheel braking” failure condition is
classified as hazardous). In order to address the availability and
integrity requirements imposed on BSCU, BSCU is designed
with two redundant dual channel systems: subBSCU1 and
subBSCU2, shown in Figure 2. Each of these subsystems
consists of Monitor and Command components. Monitor and
Command take the same pedal position inputs, and both
calculate the command value. The two values are compared
within the Monitor component and the result of the compar-
ison is forwarded as true or false through Valid signal. The
SelectSwitch component forwards the results from subBSCU1
by default. If subBSCU1 reports that fault occurred through
Valid signal, then SelectSwitch component forwards the results
from subBSCU2 subsystem.

Fig. 2. SubBSCUi

In this work we use contracts to capture safety and timing
properties of the system. The timing requirement on the system
is that its execution is no more than 10ms. We will detail
more about what is needed to be assumed for this requirement
to be guaranteed in the Section IV. The addressed safety
requirement is that no single failure within the BSCU shall
lead to ”inadvertent braking due to BSCU”.

III. FINE-GRAINED CONTRACTS FURTHER DEVELOPMENT

In this section we extend the theoretical foundations of the
fine-grained contracts presented in [14] and define contract
relations and operations.

Contract-based approaches usually assume that a number of
contracts in the form of assumption/guarantee pairs is attached
to a component. The different contracts can be associated with
different aspects or viewpoints of the system. We distinguish
between properties that must hold in all contexts and prop-
erties that are context-specific by categorizing the contracts

associated to components into strong and weak contracts.
Strong contracts 〈A,G〉 are composed of strong assumptions
(A) and strong guarantees (G), and weak contracts 〈B,H〉
of weak assumptions (B) and weak guarantees (H). While
strong assumptions must hold in order for a component to
be used in any context, weak assumptions and guarantees
just provide additional information for particular contexts. The
weak contracts ensure that in particular contexts satisfying the
strong (A) and the weak assumptions (B), the component offers
the weak guarantees (H).

For the purpose of defining operations and relations on
the component contract we need to conjunct the weak and
strong contracts to form a single component contract. For the
conjuncted contract C we use the format presented in [14]:

〈A,G, {〈B1, H1〉, . . . , 〈Bn, Hn〉}〉

where A and G are above-mentioned strong assumptions
and guarantees, and {〈Bn, Hn〉} represent a set of weak as-
sumption/guarantee pairs i.e., weak contracts. Since all strong
assumptions define a single set of environments (EC) in which
the component can operate, we conjunct all strong assumptions
into a single strong assumption (A) and all strong guarantees
into a single strong guarantee (G). Each weak contract is valid
in only a subset (En) of that single set of environments defined
by strong assumptions, i.e., En ⊆ EC . Hence we don’t conjunct
weak contracts that are valid in different subsets but represent
them in the contract as multiple weak assumption/guarantee
pairs.

A. Contract relations and operations

For a contract C in the conjuncted form we say that an
environment E is satisfying the contract if it satisfies the strong
assumptions (A) i.e. if E ∈ EC . We refer to environments that
satisfy the contract as correct environments. The set EC is the
set of all correct environments of contract C.

Any environment E ∈ EC can satisfy some weak as-
sumptions and be incompatible with others. The more weak
assumptions there are satisfied by the environment E the more
information about the component behaviour described by the
weak contracts can be reused in this context.

The rich component concept we are assuming encompasses
both implementation and contracts. We say that a component
implementation I satisfies a contract C = 〈A,G{〈Bn, Hn〉}〉
under two conditions: (1) implementation I satisfies the strong
guarantees G in all correct environments of C, and (2) for
all weak pairs within C, in all environments E ∈ EC sat-
isfying weak assumptions Bn, the implementation I satisfies
corresponding weak guarantees Hn. An implementation I that
satisfies the contract C is called a correct implementation of
the contract C.

We assume a hierarchical component structure where a
component can be primitive, i.e., atomic, or composite, i.e.,
consisting of subcomponents. By composing subcomponents
we must ensure that resulting component implementation
and contract holds. We check composition consistency of a
composite component and its subcomponents with contracts in
conjuncted form by (1) checking that the strong assumptions
that are not satisfied by the interconnected subcomponents are
assumed by the strong assumptions of the composite, and



(2) checking that the composite contract follows from the
subcomponent contracts.

For two traditional assumption/guarantee contracts C1 and
C2 we get a composition contract by (1) composing assump-
tions that are not satisfied by the interconnected components,
and (2) intersection of the guarantees. We compose two
contracts in conjuncted form by (1) composition of the strong
pairs, and (2) composition of the weak pairs such that there
exists at least one environment satisfying the resulting weak
pair within the set of all correct environments of the resulting
contract, i.e., the intersection of the set of environments satisfy-
ing strong assumptions and the set of environments satisfying
weak pair is not empty.

Relations of dominance and refinement are essential for
checking composition and decomposition of contracts. We
adapt the notion of dominance and refinement from [3] and [6]
by including the weak and strong contract reasoning. Refine-
ment coincides with weakening of assumptions and strength-
ening the guarantees within traditional assumption/guarantee
contracts. While refinement of contracts in traditional form
can be applied to strong and weak contracts individually, we
say that refinement holds for two contracts C and C1 in
conjuncted form where C1 refines C by (1) checking that the
strong assumption/guarantee pair 〈A1, G1〉 of C1 refines strong
assumption/guarantee pair 〈A,G〉 of C, and (2) that for each
weak pair 〈B,H〉 within C such that B is related to C1 there
is at least one strong or weak contract within C1 such that it
refines or implies 〈B,H〉.

We say that composite component contract C dominates
subcomponent contracts C1 and C2 if: (1) composition of
any correct implementations of C1 and C2 forms a correct
implementation of C, (2) for every subcomponent contract C ′

we say that correct implementations of other subcomponent
contracts and a correct environment of the composite contract
constitute a correct environment for the subcomponent contract
C ′. This means that for every weak assumption/guarantee pair
〈B,H〉within C such that B is related to a subcomponent Cn

there is at least one strong or weak contract within Cn that
implies or refines it. With our updated correct environment and
implementation notions, conditions for checking dominance
stay the same as in [3] and [6].

IV. CASE STUDY

In this section we show the usage and expressiveness of the
extended contract formalism using the strong and weak con-
tracts on the wheel braking system described in Section II-D.
We show that specifying contracts to provide better support for
reuse requires additional constructs for contract specification
and that the proposed contract formalism is more expressive
for capturing this information.

In this example we use contracts to capture safety and
timing analysis of WBS. We use contract language based
on patern-based Requirement Specification Language as used
in [7] and Othello System Specification from [6]. For spec-
ifying timing properties we use Change({P}) for the event
of change of the ports {P}, and Delay between(p1, p2) to
specify delay between the two changes p1 and p2.

As mentioned in our previous work [14], capturing timing
information for reuse purposes requires additional constructs

in identifying a set of assumption required for the reused
timing information to be valid. In our work, we specify timing
properties for reusable components within weak contracts i.e.,
weak assumption/guarantee pairs, because the timing informa-
tion may be reused only if all of the assumptions related to
timing are met, otherwise we can not reuse the behaviour of
the component as described by the corresponding guarantees.
Specifying timing information within weak contracts allows us
to describe the timing behaviour of the component in different
alternative contexts, e.g., timing properties of a component for
different compilers or different compiler configurations. We
present all contracts for this example in the conjuncted form.

A. Usage of the strong and weak contracts

TABLE I. WBS CONTRACT

A: Pedal1==Pedal2
G: -

{〈B1: Platform==x and Compiler==y;
H1: Delay between (Change(Pedal1,Pedal2),
Change(Brake Line)) ≤ 10ms〉;}

The WBS component is composed of BSCU and Hydraulics
subcomponents as shown in Figure 1, Section II-D. The WBS
component contract in Table I describes a set of environments
in which the system component can work by imposing the con-
straint that the two input pedals must be the same, otherwise
all the mechanisms and redundancy within the WBS make no
sense. As an additional information describing the component
for certain correct environments, we make timing contract
within weak assumption/guarantee pair by stating that for
this particular platform, compiler and compiler configuration
the component terminates within 10ms. This does not mean
that the component shouldn’t be used in an environment that
doesn’t satisfy those weak assumptions, but just that the timing
behaviour of the component in that environment is known.

Tables II and III show BSCU and Hydraulics component
contracts. While BSCU contract states that it requires the input
pedals to be equal for the component to be able to operate, the
Hydraulics contract requires only that the correct Valid signal
from BSCU is received. We can see that composition of the
subcomponents is correct since WBS takes Pedal1==Pedal2
assumption from the BSCU subcomponent contract, since it
cannot be satisfied by the interconnected components, while
BSCU.Valid assumption from Hydraulics contract is satisfied
by the interconnected BSCU component.

TABLE II. BSCU CONTRACT

A: Pedal1==Pedal2
G: -

{〈B1: (SubBSCU1.Valid or SubBSCU2.Valid);
H1: BSCU.Valid 〉;
〈B2: Platform==x and Compiler==y;
H2: Delay between (Change(Pedal1,Pedal2),
Change(CMD AS,AS)) ≤ 5ms〉;}

The timing contracts in Tables I, II and III are defined
for the same environment described by the assumed platform,
compiler and compiler configuration. In order for the decom-
position to be correct, the dominance should hold. The first



TABLE III. HYDRAULICS CONTRACT

A: BSCU.Valid;
G:-

{〈B1: Platform==x and Compiler==y
H1: Delay between (Change(Valid), Change(Brake Line)) ≤
5ms〉;}

condition for dominance specifies that correct implementations
of BSCU and Hydraulics contracts form a correct implemen-
tation of WBS contract, which ensures that the timing contract
of the composite is implied by the timing contracts of the
subcomponents. Based on the refinement relation defined in
Section III-A, this way we imply that both related components
BSCU and Hydraulics of WBS timing contract must either have
a contract that refines or implies it. Refinement between the
WBS contract and the subcomponent contracts holds since the
strong pair is refined by the subcomponent contract strong pairs
and the timing pair is refined and implied by the timing pairs
of the subcomponents contracts.

TABLE IV. SUBBSCUI CONTRACT

A: Pedal1==Pedal2
G: -

{〈B1: no fault in Monitor;
H1: SubBSCUi.Valid 〉;
〈B2: (Monitor developed to DAL A);
H2: SubBSCUi.Valid with high confidence〉;
〈B3: Platform==x and Compiler==y;
H3: Delay between (Change(Pedal1,Pedal2),
Change(Valid,CMD AS,AS)) ≤ 4ms〉;}

TABLE V. SUBBSCUI.MONITOR CONTRACT

A: Pedal1==Pedal2
G:Monitor developed according to DAL A;

{〈B1: Platform==x and Compiler==y;
H1: Delay between (Change(Pedal1,Pedal2), Change(Valid)) ≤
2ms〉;}

TABLE VI. SUBBSCUI.COMMAND CONTRACT

A: Pedal1==Pedal2
G: Command developed according to DAL B;

{〈B1: Platform==x and Compiler==y;
H1: Delay between (Change(Pedal1,Pedal2),
Change(CMD AS,AS)) ≤ 1ms〉;}

In the previous works done on this system by [7]
and [6], the safety requirement that ”no single failure
within BSCU shall cause inadvertent braking” is specified
as ”No Double Fault” variable meaning that always at least
three out of four components within BSCU (two Monitors and
two Commands) work correctly. This assumption is a direct
representation of the requirement that no single failure shall
cause BSCU to fail, by imposing too strict requirement on the
system. The BSCU can handle if more than one component of
the four within BSCU fails, so for example if both Command
components fail, the Monitors can still report the error and
provide correct Valid signal. Another issue with the way safety
contracts have been captured is separation of concerns. By

TABLE VII. SUBBSCUI.SELECTSWITCH CONTRACT

A: -
G: always terminates;

{〈B1: (Platform==x and Compiler==y) AND Valid1==TRUE;
H1: Delay between (Change(CMD AS1,AS1),
Change(CMD AS,AS)) ≤ 0,25ms〉;}
〈B2: (Platform==x and Compiler==y) AND Valid1== FALSE;
H2: Delay between (Change(CMD AS1,AS1),
Change(CMD AS,AS)) ≤ 1ms〉;}

using the ”No Double Fault” variable on WBS level, authors
are not respecting the encapsulation of SubBSCUi level by
making assumptions about its internal structure on higher
levels.

Our specification of the above-mentioned safety require-
ment can be seen through Tables II, IV, V andVI. We assume
that no external fault is propagated through the pedal signals
and that faults in this context refer to internal faults. In that case
we can guarantee that the correct Valid signal will be provided
by the BSCU if either of its subcomponents SubBSCU1 or
SubBSCU2 provide the correct Valid signal, as assumed in
BSCU contract in Table II. For the reasoning to hold, the
subcomponents SubBSCU1 and SubBSCU2 guarantee the Valid
signal only when the corresponding Monitor subcomponent is
fault-free, Tables IV and V. To be able to guarantee Valid
signal with a certain confidence, we capture the required
DAL of Monitor within a weak pair. This way by respecting
the separation of concerns and making assumptions only on
assumed externally visible properties of interconnected and
subcomponents, we allow for extra flexibility of the system,
hence better reuse possibilities.

On the primitive components level, that are not composed
of subcomponents, we sometimes must make guarantees that
are based on the external evidence i.e., guarantees that do
not follow from assumptions. For example, for components
Monitor and Command we make a statement/guarantee about
the component that says that the component is developed ac-
cording to a specific DAL. This information is essential when it
comes to completing the safety contract structure. Some com-
ponents can be considered reliable, such as SelectSwitch, where
we specified that it always terminates as its strong guarantee
in Table VII. The timing contract of SelectSwitch component
specifies its behaviour for two alternative situations in which
the component has different timing behaviour. It performs
much faster when it just forwards the values by default from
SubBSCU1 (Valid1 == TRUE), than when it must switch to
the redundant component SubBSCU2 (Valid1 == FALSE).

B. Discussion on benefits of the extended formalism

Developing a new or moving an existing component to
an out-of-context setting implies capturing increased number
of assumptions and guarantees that are used to describe the
behaviour of the component in different contexts, as we can
see on the timing contracts examples from Section IV-A.
Accordingly, the introduction of the additional constructs with
the extended formalism offers us with possibility to specify
conditions that are out-of-context i.e., that must be satisfied by
any environment in order for component to operate or offer
any kind of reuse in that environment (strong assumptions).



Then, within all of those environments in which the component
can operate and offer reuse, we have the possibility to specify
conditions using weak contracts that describe behaviour of the
component in some of the correct environments. For example,
we use weak contracts i.e., weak assumption/guarantee pairs,
to specify timing behaviour in different environments, or safety
behaviour under different failure conditions, but all of these
information can only be reused after the strong assumptions
are met by the environment in which we use the component.
As can be seen through contract examples in Section IV-A,
this way of capturing context-specific information allows for
extra flexibility of the system that enhances reuse possibilities.

V. RELATED WORK

Contract-based design has been a research topic of many
works in the recent years [3]–[8]. These works are largely
based on developing a theoretical foundation for contract-based
framework and creating verification techniques for contract-
based design. These works mainly focus on an Original Equip-
ment Manufacturer (OEM)-supplier relationship. Through the
examples provided in [4], [6], [7] and the formalisms [3]–
[5], [8] we could notice the lack of focus on specifying
contracts for out-of-context components that are planned to
be instantiated or used in different contexts. When an OEM is
developing a component for a supplier, OEM usually has some
requirements and demands about the component it needs to
develop, which means that the context in which the component
is supposed to operate is not completely unknown and many
assumptions can be omitted since they are implied. When we
want to actually move an in-context component to an out-of-
context setting, or develop an out-of-context component, the
number of properties that need to be captured increases and a
more expressive way of capturing them is needed.

Comparing to the related work, in this paper we build
on our previous work [14] and further extend the contract-
based formalism [3] and [6] to provide more expressiveness
for specifying contracts for out-of-context components. We
additionally use an example that was used by [7] and [6] to
show the usage of the strong and weak contracts for specifying
out-of-context component contracts.

VI. CONCLUSION AND FUTURE WORK

We have presented our extended contract formalism for
specifying strong and weak contracts to support reuse of
safety-related information within safety-critical systems. We
specify strong and weak contracts for components that are
developed or moved to out-of-context setting, where very
little or no information is known about the contexts of the
component. We distinguish between properties that must hold
for all contexts and properties that are more context-specific
and are specified as additional or optional properties. The
introduced additional constructs provide us with the possibility
to capture context-specific information within contracts but still
retain system flexibility that is needed to offer better reuse
possibilities. Moreover, we define relations of satisfaction for
implementations and environments in terms of strong and weak
contracts, as well as relations of refinement and dominance
between contracts. Finally, we use a wheel braking system as
an example of a safety-critical system to demonstrate the usage
and expressiveness of the extended formalism.

In our future work we plan to extend one of the existing
contract languages such as Requirement Specification Lan-
guage or Othello System Specification to support the presented
extended formalism with strong and weak contracts. Further
on, we see possibilities to establish a closer relation between
the contracts in the presented form and safety argumentation
used within the certification process of safety-critical systems.

ACKNOWLEDGEMENTS

This work is supported by the Swedish Foundation for
Strategic Research (SSF) project SYNOPSIS and the EUs
Artemis-funded SafeCer project.

REFERENCES

[1] SAE ARP4761 Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment, Dec.
1996.

[2] AC 20-148. Reusable Software Components. Federal Aviation Admin-
istration, December 2004.

[3] S. S. Bauer, A. David, R. Hennicker, K. Guldstrand Larsen, A. Legay,
U. Nyman, and A. Wasowski. Moving from specifications to contracts
in component-based design. In Proceedings of the 15th interna-
tional conference on Fundamental Approaches to Software Engineering,
FASE’12, pages 43–58, Berlin, Heidelberg, 2012. Springer-Verlag.

[4] I. Ben-Hafaiedh, S. Graf, and S. Quinton. Reasoning about safety
and progress using contracts. In Proceedings of the 12th international
conference on Formal engineering methods and software engineering,
ICFEM’10, pages 436–451, Berlin, Heidelberg, 2010. Springer-Verlag.

[5] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis. Multiple Viewpoint Contract-Based Specification and
Design. In Proceedings of the Software Technology Concertation on
Formal Methods for Components and Objects (FMCO’07), volume
5382. Springer, October 2007.

[6] A. Cimatti and S. Tonetta. A property-based proof system for contract-
based design. In 38th Euromicro Conference on Software Engineering
and Advanced Applications, SEAA 2012, Cesme, Izmir, Turkey, Septem-
ber 5-8, 2012, pages 21–28. IEEE Computer Society, 2012.

[7] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand. Using
contract-based component specifications for virtual integration testing
and architecture design. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011, pages 1–6. IEEE, 2011.

[8] S. Graf and S. Quinton. Contracts for bip: Hierarchical interaction
models for compositional verification. In Proceedings of the 27th IFIP
WG 6.1 international conference on Formal Techniques for Networked
and Distributed Systems, FORTE ’07, pages 1–18, Berlin, Heidelberg,
2007. Springer-Verlag.

[9] ISO 26262-10. Road vehicles — Functional safety — Part 10: Guideline
on ISO 26262. International Organization for Standardization, 2011.

[10] O. Kath, R. Schreiner, and J. Favaro. Safety, Security, and Soft-
ware Reuse: A Model-Based Approach. In Proceedings of the 4th
International Workshop on Software Reuse and Safety, RESAFE ’09,
Washington, D.C., US, September 2009.

[11] E. Kesseler. Assessing cots software in a certifiable safety-critical
domain. Information Systems Journal, 18(3):299–324, 2008.

[12] L. Latour, T. Wheeler, and B. Frakes. Descriptive and predictive aspects
of the 3cs model: Seta1 working group summary. In Proceedings of
the first international symposium on Environments and tools for Ada,
SETA1, pages 9–17, New York, NY, USA, 1991. ACM.

[13] F. Redmill. The COTS Debate in Perspective. In Proceedings of the 20th
International Conference on Computer Safety, Reliability and Security,
SAFECOMP ’01, pages 119–129, London, UK, 2001. Springer-Verlag.

[14] I. Sljivo, J. Carlson, B. Gallina, and H. Hansson. Fostering Reuse
within Safety-critical Component-based Systems through Fine-grained
Contracts. In International Workshop on Critical Software Component
Reusability and Certification across Domains, June 2013. http://www.
es.mdh.se/publications/2970-.


