
An Evolutionary Perspective on Socio-Technical Congruence:

The Rubber Band Effect

Stefanie Betz
Blekinge Institute of Technology

Karlskrona, Sweden
e-mail: stefanie.betz@bth.se

Andrew Moss
Blekinge Institute of Technology

Karlskrona, Sweden
e-mail: andrew.moss@bth.se

Claes Wohlin
Blekinge Institute of Technology

Karlskrona, Sweden
e-mail: claes.wohlin@bth.se

Darja Šmite
Blekinge Institute of Technology

Karlskrona, Sweden
e-mail: darja.smite@bth.se

Wasif Afzal
Bahria University

Islamabad, Pakistan
e-mail: wasif.afzal@gmail.com

Jürgen Börstler
Blekinge Institute of Technology

Karlskrona, Sweden
e-mail: jurgen.bostler@bth.se

Samuel Fricker
Blekinge Institute of Technology

Karlskrona, Sweden
e-mail: samuel.fricker@bth.se

Mikael Svahnberg
Blekinge Institute of Technology

Karlskrona, Sweden
e-mail: mikael.svahnberg@bth.se

Tony Gorschek
Blekinge Institute of Technology

Karlskrona, Sweden
e-mail: tony.gorschek@bth.se

Abstract— Conway’s law assumes a strong association
between the system’s architecture and the organization’s
communication structure that designs it. In the light of
contemporary software development, when many companies
rely on geographically distributed teams, which often turn
out to be temporarily composed and thus having an often-
changing communication structure, the importance of
Conway’s law and its inspired work grows. In this paper, we
examine empirical research related to Conway’s law and its
application for cross-site coordination. Based on the results
obtained we conjecture that changes in the communication
structure alone sooner or later trigger changes in the design
structure of the software products to return the socio-
technical system into the state of congruence. This is further
used to formulate a concept of a rubber band effect and
propose a replication study that goes beyond the original
idea of Conway’s law by investigating the evolution of socio-
technical congruence over time.

Keywords-Conway’s Law, Socio-Technical Congruence,
Evolution

I. INTRODUCTION
According to a widely held belief offshore sourcing

enables cost reduction (in terms of time and money) [1].
Therefore, many software companies today transfer their
software products or scale up the development
organization utilizing human resources from different
locations all over the world [2-4]. Software companies that
are involved in our research projects are no exception.
Some companies jump on an offshore outsourcing
bandwagon and thus choose to work with company
external developers, and, consequently changing the

development organization during the lifecycle of software
products. These changes, however, are found to impact
efficiency and quality of the development [5]. In addition,
if and when outsourcing relationships fail, the companies
are forced to backsource the development or switch
vendors [6]. Other companies choose offshore insourcing
and expand through acquisitions or establishing their own
sites, often in far offshore locations. This enables multi-
national companies to select from a variety of choices of
developing their software products here, there or
everywhere. For example, Ericsson initiated development
of a large software product in 2001 in Sweden, but was
forced to scale up development in India in 2004, which led
to a later transfer of the entire product development to
India during 2009-2010, where the product is evolving to
date [7]. Notably, both distribution and transferring of
software development over geographic, temporal and
cultural borders has been associated with numerous
challenges in achieving a successful communication,
coordination, and control [8, 9]. For example, tasks
performed in globally distributed projects have in some
cases been found to be delayed considerably compared to
similar tasks in co-located projects [10]. In particular,
achieving efficient communication and coordination
across distance are especially challenging in
geographically distributed development [9]. Consequently,
industry is having a hard time in achieving the perceived
benefits [1, 8].

One promising research direction that targets
alleviation of cross-site coordination and communication
is related to the concept of socio-technical congruence. In
1968, Melvin Conway proposed that the communication

structure is coupled with the software architecture. His
thesis is formulated as follows: “any organization which
designs a system will inevitably produce a design whose
structure is a copy of the organization's communication
structure” [11]. In the past decades this law has been
evaluated and revisited.

Baldwin and Clark [90] have refined Conway’s law by
stating that in the design of a complex system the technical
and organizational structures “will “mirror” one another
in the sense that the network structure of one corresponds
to the structure of the others” [90]. Thus, they have
complemented Conway’s law by adding an additional
direction of causality. Not only does the technical structure
correspond to the organizational structure, in addition the
organizational structure mirrors the technical structure.

Cataldo et al. [12] introduced a new concept based on
Conway’s law: socio-technical congruence. They defined
socio-technical congruence as the alignment between
coordination requirements extracted from technical
dependencies among tasks, and the actual coordination
activities performed by the engineers. Moreover, [12]
provides evidence that socio-technical congruence on the
task level shows a positive impact on software
development productivity.

Furthermore, the organization’s communication
structure (i.e. social structure), design structure (i.e.
technical structure) as well as the socio-technical traces
used in the studies evaluating and refining Conway’s law
have been interpreted differently. The socio-technical
traces explain how the social structures were mapped into
the technical structures and vice-versa. Consequently,
social structures have been illustrated using organizational
structure, people structure (like teams), processes,
locations, and their relations. Technical structures have
been illustrated using intermediate and software artifacts
and their relationships as well as derived information. The
socio-technical traces used include processes, artifacts, and
effects of socio-technical interaction (e.g. task assignment
and file ownership).

Nevertheless, following [90] as well as [12] and
assuming validity of social-technical congruence implies
that changing the organizational structure alone or
changing the technical structure alone is problematic. This
has an important implication on software companies
restructuring the development organization as a
consequence of sourcing decisions. In this light, more
empirical studies are needed to investigate the congruence
between organizational and technical structures and its
evolvement over time.

The research presented here summarizes findings from
a systematic review (approach described in Section II) of
empirical studies that validate the importance of socio-
technical congruence by looking at the pros and cons of
congruent and incongruent scenarios (presented in Section
III). Based on related work we discuss how social and
technical structures co-evolve in organizations that make

sourcing decisions, and what can be expected in terms of
compliance with socio-technical congruence. In response
we present the concept of a “rubber band effect” and
propose a longitudinal study that goes beyond the original
idea of Conway’s law by studying the evolution of socio-
technical congruence over time (see Section IV).

II. RESEARCH APPROACH
Conway’s law published in 1968 [11] marks the first

documented conjecture that the structure of software under
development cannot be separated from the organizational
structure of the people designing it. In this paper a
literature review based on forward Snowballing [13] was
performed to understand how far Conway’s law has been
evaluated and for what purpose. The following research
questions were answered with the review:
! How are socio-technical structures and traces

measured?
! What are the purposes of the application of Conway’s

law?
! What is the empirical evidence for or against validity

of Conway’s law?
We did not perform a full systematic literature review

[14], but a literature review with a systematic approach as
opposed to ad-hoc. In our review, papers were identified
based on references to Conway’s original publication [11].
A search string (“How do Committees Invent”) was
applied to the Scopus database on February 7, 2012,
resulting in 128 papers that were published between 1987
and 2011. Overall, six researchers participated in the
literature review. The initial set of papers was reduced by
11 papers using the following exclusion criteria:
! Not accessible: 6
! Not peer reviewed: 4
! Duplicates: 1

The resulting 117 papers were then classified by one
researcher according to the studied areas as follows:
software development (9 papers), development
productivity (21), global software development (20), open
source (12), evolution (4), tooling (5), scalability (4),
project archeology (9), software architecture (5), software
use (6), software reverse engineering (5), and software
quality (3) and others (14). The latter were papers mainly
not focusing on Software Engineering but on history,
myths, education, research, telescopes, and alternative
theories. These papers have been excluded. If later in the
literature review process a researcher realized a mapping
was not correct, the paper has been mapped to the
corresponding area.

Next, based on a discussion between the researchers
taking part in the literature review, the areas of most
interest in the papers for the reviewers have been selected
for further data analysis. Namely:
! Major application areas: software development,

software reverse engineering, and software quality;
! Software development specialties: productivity,

project archeology, and architecture;

! Productivity concerns for commercial organizations:
evolution and global software development.

 Table I provides an overview of the selected
applications and the corresponding paper count resulted
from the paper classification. This selection allowed us to
gain an overview of the application of Conway’s law and
provided sufficient depth for understanding current
knowledge related to social and architectural change. As a
result, in total we have analyzed 76 papers. In order to do
so, each of the researchers taking part in the review
selected one to three application areas for analysis. If the
researchers had overlapping interests, it had been
discussed and decided who is taking which area.

TABLE I. SELECTED APPLICATIONS AREAS OF SOCIO-TECHNICAL
CONGRUENCE

Area References # of studies
Development Productivity [12, 24-43] 21
Global Software Development [1, 10, 44-61] 20

Software Development [15-23]
 9

Project Archeology [66-74] 9
Software Architecture [75-79] 5
Software Reverse Engineering [80-84] 5
Evolution [62-65] 4
Software Quality [85-87] 3

 Total: 76

The data extraction form was developed by two
researchers and tested using several publications. Besides
bibliographic information regarding the publication, the
following data has been extracted:
- Is Conway’s law discussed, explored or validated?
! Is there evidence for or against it?
! How are the social and technical structures defined?
! What are the socio-technical traces used?
! How social and technical structures interact with each

other?
! Which concepts are introduced?
! Which research questions drive the study?
! What is the information regarding the empirical

studies (research method, data collection, and data
analysis)?

! What are the main conclusions?
In the following, we discuss the results of the literature

review. We start with the different forms of social and
technical structures and the socio-technical traces
identified in the analyzed papers. The socio-technical
traces explain how the social structures were mapped into
the technical structures and vice-versa. Two researchers
have conducted the actual mapping of the references to the
identified forms of technical structures, the social
structures, and the socio-technical traces (see Table II-IV).
One researcher conducted the initial mapping by taking all
identified structures from the data extraction sheet,
grouping them together and mapping the corresponding
references. Next, the second researcher mapped the

corresponding references to the identified grouped
structures. In case of disagreement a mutual consent has
been sought-after. If this was not possible the second
researcher decided.

Then, we present the identified purposes of the
application of the socio-technical congruence in software
engineering projects. Finally, we discuss the identified
evidence for and against the validity of socio-technical
congruence.

III. RESULTS: SOCIO-TECHNICAL CONGRUENCE BASED
ON CONWAY’S LAW IN RESEARCH LITERATURE

Different forms have been suggested in literature to
illustrate the social structure in software development, see
Table II. Multiple entries are possible because sometimes
the social structure is measured several times using
different forms. Thus, social structures have been
described based on how organizations were structured
into units and teams, how people were collocated and
moved, people “attributes” and relationships, how work
was structured with processes and tasks, how people
collaborated through shared databases, meetings, how
people communicated and interacted, and the co-
authorship resulting from the software development.

TABLE II. FORMS OF SOCIAL STRUCTURES IDENTIFIED

Forms of Social
Structures

References # of
studies

Teams [1, 12, 18, 19, 45, 46,
49, 52, 59, 61, 73, 79]

12

Collocation and People
Movement

[10, 12, 38, 49, 50, 56-
58, 79]

9

Organizational Structure
and Attributes

[19, 23, 38, 39, 41, 57,
83, 85]

8

Communication Channels
and Traces

[12, 21, 47, 48, 62, 80] 6

Collaboration, Interaction,
and Meetings

[12, 38, 41, 47, 59] 5

Co-Authorship [22, 68, 71, 80] 4
Task Dependencies,
Attributes, and Correlation

[48, 68, 74] 3

People Attributes [22, 79] 2
Process Attributes [19, 41] 2
Interpersonal Relationships [53] 1
Programmer Coupling [37] 1
Legacy Inheritance [41] 1

Likewise, different forms have been suggested in

literature to illustrate the technical structure in software
development, see Table III. So, the technical structures
have been described based on the identification of
software items and their relationships captured in terms of
software architecture, source structure, interfaces, code
dependencies, item properties, co-editing, and
modification request dependencies.

TABLE III. FORMS OF TECHNICAL STRUCTURES IDENTIFIED

Forms of Technical
Structures

References # of
studies

Items [1, 19, 45, 50, 52, 58, 61,
62, 68, 71, 80, 85]

12

Software Architecture [21, 39, 52, 79, 81] 5
Source Structure [19, 22, 57, 62, 68] 5
Modification Request
Dependencies

[46, 49, 57, 61] 4

Code Dependencies and
Software Coupling

[12, 37, 38, 48] 4

Item Properties and
Collections

[22, 41, 73] 3

Interfaces [10, 18, 59] 3
Footprints [12, 62] 2
Traceability [41] 1
File Ownership [70] 1

Table IV describes the socio-technical traces used in

the analyzed studies, in particular, processes, artifacts,
and effects of socio-technical interaction.

TABLE IV. FORMS OF SOCIO-TECHNICAL TRACES IDENTIFIED

Socio-Technical
Traces

References # of
studies

Responsibility and
Task Assignment

[1, 12, 21, 46, 47, 52, 56,
58, 61]

9

File Ownership [36, 69, 70, 71, 73, 74,
85]

7

Authorship and Code
Commits

[22, 46, 48, 62, 68] 5

Work Item
Contribution

[10, 50, 58] 3

API Use or
Implementation

[38, 39] 2

Awareness Network [39] 1
Coordination Matrix [59] 1
Developer Spread [68] 1
Code Dependencies [85] 1

Analysis of the studies citing Conway’s original

proposition that we have included in the review suggests
that Conway’s law inspired research work can be
classified into several directions based on the exploratory
purpose of the authors:
! Understanding and managing development

organization [18, 22, 62, 68, 69, 74];
! Coordinating development work, including cross-site

collaborations [39, 45, 52, 57, 59];
! Improving software engineering [19], in particular,

development efficiency [12, 56];
! Minimizing communication and coordination

problems and overhead [1, 39, 52, 58, 47];
! Managing quality [10, 85].

From the 76 papers we analyzed, 2 papers assumed
that Conway’s law is valid, 13 explored the law, the

majority discussed it (44), 2 only mentioned it, and 15
reported evidence for or against the validity of Conway’s
law. Overall, more evidence was reported for Conway’s
law, than against the law. The way the social and the
technical structures are interpreted and how congruence is
measured affected the amount and direction of evidence.
In order to give an overview of existing evidence we
present in the following some of the cases reporting
quantitative or qualitative evidence.

Quantitative evidence gathered shows that socio-
technical congruence affects development efficiency in two
cases and that the modular structure of the architecture is
highly consistent with the communication structure in one
case.

! A case study concerned 114 developers grouped into
eight development teams distributed across three
development locations during 39 months of
development [12]. When the developers’ coordination
patterns were congruent with coordination needs, the
resolution time of modification requests was reduced
by 32%. Also, geographical and communication
congruence affected resolution time positively.

! A case study concerned 30 developers distributed
across two development locations during 30 months of
development [40]. The productivity of developers was
higher when they worked on tasks assigned to few
people and that required work in few modules than
when they worked on tasks with the opposite
characteristics.

! A case study concerned the third instance of a student
project at Siemens that simulated industrial software
development among distributed sites [59]. The project
employed an architecture that enabled an efficient
communication structure. The solution’s design
structure had the potential to guide task assignment
and team coordination.

 There is also quantitative evidence that shows that
socio-technical congruence affects the success of some
types of builds positively and other types negatively.

! The case concerned 151 developers distributed across
7 development locations during 12 months of
development [42]. For continuous builds an increase
in congruence correlated to build success probability.
However, for integration builds an increase in
congruence decreased build success.

Qualitative evidence shows that the software
architecture affects a programmer’s ability to work in
isolation and enables collaboration.

! A multi-case study concerned a case of up to seven
developers during 27 months of development and a
case of six to 14 developers during 21 months of
development [37]. The project with unmanaged
coupling had experienced less programmer
productivity than the project with partial coupling.
The study concluded that unmanaged coupling affects

a programmer’s ability to work in isolation, hence the
velocity of the programmer.

! A multi-case study concerned a case of 34 staff
members divided into two groups, the developers and
the verification and validation staff, and a case of 57
staff divided into five groups, each developing a
different part of the solution [39]. Developers
displayed their knowledge about the software
architecture when they followed code dependencies to
identify the teams to coordinate their work with.

Qualitative evidence was inconclusive regarding how
socio-technical congruence affected software integration.

! A multi-case study concerned ABB Robotics, Ericsson
System Management, Ericsson Core Network
Development, TietoEnator Telecom and Media, Volvo
Construction Equipment, Volvo Car Corporation, and
Bombardier Transportation [41]. A majority of the
interviewees stated that their company’s organization
often mirrored the system architecture and vice versa.
Such socio-technical congruence was important to
ease software integration and validation and to define
interfaces between organizational units.

! A case study concerned 57 developers divided into
five teams, each developing a part of the solution.
APIs were used as contracts between organizations,
hence reified the organizational structures that defined
the team boundaries [38]. The software development
project relied on APIs both for technical design and
social coordination. APIs established a common
language, but led to information overload, instability,
integration problems, and lack of awareness.

As described above, evidence has been reported for and
against the validity of socio-technical congruence. In
addition, there are several studies mentioning, assuming,
discussing, and exploring Conway’s law. But, the papers
analyzed investigate only if congruence exists and for
example how strong the congruence is, e.g. [12]. But, we
argue that socio-technical congruence evolves over time
with respect to social or technical changes. This has
implications for companies and needs to be investigated
further. Therefore, we propose the “rubber band effect”,
which is introduced and discussed together with its
implications below.

IV. IMPLICATIONS AND IDEA

A. Implications for Globalizing Software Companies
Assuming validity of socio-technical congruence

implies that changing organizational structure only or
changing software architecture only is problematic (if not
impossible). This has an important implication on software
companies restructuring the development organization as a
consequence of sourcing decisions. Multi-national
companies are nowadays confronted with a variety of
choices of developing their software products here, there
or everywhere. Our industry partners are facing the
following situation. Attempts to decrease development

cost and to access development resources often lead to
replacing the current development organization with a new
one, or distributing the development organization across
multiple locations. These changes, however, are found to
impact efficiency and quality of the development [5].
Thus, investigating socio-technical congruence in software
development projects could assist companies in distributed
development and sourcing decisions. In addition, assuming
that offshoring is initiated with cost savings in mind, it is
fair to assume that companies might be unwilling to invest
into preparations with regards to socio-technical
congruence. In fact, [3] claims that the principal error in
offshoring has been associated with an underestimation of
the importance of preparation. This means that even if
software development evolves compliant with Conway’s
law before sourcing, changes in the development
organization lead to a new organization working on an old
architecture, which is not necessarily following socio-
technical congruence.

Also, architectural changes need to be considered.
Software product development with a long lifecycle tends
to result in the growing entropy of the products and costly
maintenance, as well as undergo other radical changes,
such as merging with other related products. Attempts to
increase software evolvability often require finding ways
to change the software architecture. Assuming validity of
socio-technical congruence implies that changing the
software architecture will have an impact on the
organizational structure and it leads to the question how
this change will look like and how to proactively adapt to
these changes. In order to investigate this further, we
propose the “rubber band effect” and a research study as
described below.

B. Rubber Band Effect
Socio-technical congruence is said to be a natural

consequence of the communication and coordination needs
of the people developing the software. Such congruence
affects the organization and activities performed in that
organization on the one hand and the characteristics of the
software artifacts on the other hand. In the light of
software evolution it has been argued that the software
teams and the system architecture are the two important
foundations for successful software evolution, which may
aid or hinder changes during evolution [88]. The changes
however are inevitable. Changes often involve making
trade-offs between short-term development success and
evolvability of the developed software. This means that the
protection of the congruence is not always proactively
addressed.

The problems associated with non-congruence reported
in the research literature include poor efficiency, poor
quality, coordination overhead, etc. We therefore
conjecture that changes in social structures evoke technical
changes, and vice versa, by this following a “rubber band
effect”, which helps to restore the socio-technical
congruence. Thus, we define the rubber band effect as:
“changes in the social structure of an organization will

inevitably produce changes in the technical structure of
the organization, and vice versa, in order to restore the
socio-technical congruence”. These changes may occur by
chance or mistake and lead to perhaps serious problems.
Consequently, there are a couple of questions that need to
be answered in connection with this idea. Is it, for
example, possible that a change of either the social or the
technical structure is so abrupt and strong that the rubber
band will break? And where would this threshold lay?
Another important question is how much time is needed
for either the social or the technical structure to adapt to
the change in the other structure so that the socio-technical
congruence is restored again? Consequently,
understanding the interdependences between the
organizational and architectural changes could help to
mitigate the complexities associated with non-congruent
socio-technical structures and proactively address the
development needs. It is important to distinguish proactive
and reactive changes, what are the causes and the effects,
and help organizations in finding the most efficient ways
of implementing the changes.

C. Proposed Research Design
Retrospective analysis may help in understanding the

nature of the changes and time estimates for reactive
changes to take place. The proposed replication of
Conway’s law-related studies in particular and socio-
technical congruence in general shall target at testing the
”rubber band effect” by analyzing the co-evolution of a
complex development organization and a complex
software solution. In particular, we suggest seeking
answers to the following research questions:
! RQ 1.: Does socio-technical congruence exist?
! RQ 1.1: Is socio-technical congruence an equilibrium

state (does a “rubber band effect” exist)?
! RQ 1.2: Are there changes that irreversibly destroy

socio-technical congruence?
! RQ 2.: How does socio-technical congruence relate to

development productivity?
To be able to answer these questions, we propose a

partial replication of the study by Cataldo et al. [12],
which was chosen because of the focus on development
efficiency in a globally distributed setting by investigating
the impact of socio-technical congruence on development
productivity. The social structures used in the study are:
team membership, geographical location, modification
request co-commenting, and IRC communication. The
technical structures are: files edited for a modification
request and references between files. The social-technical
traces are: file authorship. Consequently, the socio-
technical congruence is measured by the alignment
between coordination requirements extracted from
technical dependencies among tasks, and the actual
coordination activities performed by the engineers [12].
These activities can take different forms, meaning the
social structure could be measured using different forms.
Thus, the authors [12] have used four different ways to
measure the actual coordination activities and based on
this the authors computed four different socio-technical

congruence measures (structural congruence, geographical
congruence, modification request communication
congruence, and IRC communication congruence).

We plan to conduct only a partial replication because
we use similar forms of social and technical structures as
[12], but not exactly the same. In particular, we do not take
the communication into account when investigating the
social structure. Thus, we plan to compute only the
structural and the geographical congruence. Besides, we
are focusing on the change of social and technical structure
and the impact of these changes on development
productivity (quantitative) and other product development
values (qualitative), e.g. innovation. The unit of analysis is
a software project in the software evolution stage, which
has gone through several organizational and/or
architectural changes. The investigation focuses on
qualitative and quantitative analysis of each change in
conjunction with consequent related changes. Whereas
[12] focuses on congruence measures from a global
perspective not related to changes. Consequently, we are
planning to collect the following data:
! Social structure: people (attributes: e.g. roles,

experience...), team membership and geographical
collocation;

! Technical structure: files edited for a modification
request, and references between files;

! Evolution: activation and resolution of modification
requests, and timing of changes to technical elements,
releases;

! Socio-technical traces: authorship from the source
code, and commenting of modification requests in task
management system.
By conducting the proposed study, we would like to

identify visible changes in technical and social structures
during the evolution, such as a transfer of software
development activities from one team to another, merges
of several sub-systems or major refactoring within a
product, and whether these provoke the rubber band effect.
In particular, if socio-technical congruence exists, then we
would like to identify whether changes in one of the
structures at one point of time evoke subsequent changes
in the other, to help restoring the congruence. The
restoration of the congruence might require time, and thus
a longitudinal study for comparison analysis is needed. We
are also interested in measuring how long such changes
take. Additionally, we assume that there might be cases, in
which the socio-technical congruence is irreversibly
destroyed due to the changes. We are interested to explore
the reasons for this, if such cases are identified. This
would ultimately require studying a long-term product
development with multiple social and technical changes,
or multiple product development cases.

Finally, we expect that the proposed study shall enable
evidence-based recommendations for how to proactively
deal with organizational and architectural changes and
help software organizations avoid making mistakes that
lead to lengthy reactive recoveries.

V. LIMITATIONS
The presented literature review and the proposed

research design have several limitations. First, the
conducted literature review is not a Systematic Literature
Review as proposed in [14]. We do not use a review
protocol and we have not covered all relevant scientific
databases. Thus, it is likely that we have missed relevant
papers, especially those not citing Conway’s paper but
conducting research on socio-technical congruence.
However, the chosen “snowballing” approach to conduct a
literature review has proven its effectiveness [89]. Some
other steps of the systematic literature review method [14]
have been omitted, e.g. a rigorous inclusion/exclusion
process, a formal quality assessment process or a
validation of review steps. In addition, we have not
reviewed all the papers found by our search. Instead we
classified them and chose several clusters to look at based
on the theme. Thus, we, as researchers, might have
introduced a bias in the outcome of the review.
Nevertheless, the goal of our review was not to conduct a
Systematic Literature Review, but to get an overview of
the existing research on Conway’s law and the empirical
evidence for or against the validity of Conway’s law and
by conducting the review we have achieved this goal. In
addition, our literature review can serve as a starting point
for a future mapping study or a systematic literature
review.

Second, regarding the proposed research design, it is
possible that we will not get all the data we plan to collect.
If this happens, we will have to adapt the data collection to
what is possible to collect. In order to minimize this threat
we have already started discussing the proposed study in a
steering group meeting including researchers and
industrial members.

VI. CONCLUSIONS
Literature shows that there are significant differences

in interpreting and applying Conway’s law. Many different
forms for social and technical structures as well as socio-
technical traces have been suggested. The social structures
have been described based on how organizations were
structured, how work was structured (e.g. on a task level),
how people were “structured” (e.g. collocated,
collaborated, and communicated), and the co-authorship
resulting from the development. The technical structures
have been described based on the identification of
software items and their relationships captured in different
terms of e.g. software architecture, code dependencies,
item properties, co-editing, and modification request
dependencies. Finally, the socio-technical traces used in
the reviewed literature to explain how the social structures
were mapped into the technical structures and vice-versa
are effects of socio-technical interaction (e.g. awareness
network), processes and tasks (e.g. responsibility and task
assignment), and people traces on artifacts (e.g. file
ownership, authorship and code commits).

Similarly to the social and technical structures the
purposes of the application of Conway’s law differ. Thus,
we have identified several directions based on the
exploratory purpose of the authors. Namely: understanding
and managing development organization, coordinating
development work, including cross-site collaborations,
improving software engineering, in particular,
development efficiency, minimizing communication and
coordination problems and overhead, and managing
quality. However, the research work citing Conway’s law
that we analyzed can be summarized under understanding,
managing, and improving software engineering.

Most of the papers we analyzed primarily discussed
Conway’s law. Nevertheless, evidence for or against the
validity of Conway’s law was reported. In general, more
evidence was reported to support Conway’s law, than
against it. It seems that this depends on the way the social
and the technical structures are interpreted and how the
structures are mapped by the socio-technical traces. This is
a very interesting finding and offers direction for future
research, including, for example, a systematic literature
review investigating the influence of the social structures,
the technical structures and the socio-technical traces
mapping them.

Overall, the evidence for socio-technical congruence
encourages the use of software architecture to facilitate
organizational growth, split or merger. At the same time it
also encourages the use of organizational structure to
facilitate software refactoring needed to increase
evolvability and ability to innovate with the software. The
proposed concept emphasizes the necessity to combine
organizational and technical changes. Continuous focus on
socio-technical congruence can help companies reduce or
prevent the negative impact of changes that break the
congruence. The suggested replication study will be based
on the research design by Cataldo et al. [12], although
adapted as explained and based on information available at
the company where the case study will be conducted.
Investigations of the information available and hence the
final research design is ongoing work, and hence we
cannot report exactly how the research design will differ
from the one by Cataldo et al. [12].

The proposed research is intended to increase the
understanding of whether and how architecture affects the
organization and vice-versa to improve decision-making in
situations where the organization or the software
architecture is changed. The ”rubber band effect” might be
effective for facilitating or actively blocking change. So
for example, is it possible to change the team structure to
facilitate architectural change or to change the architecture
to facilitate change of the development organization? We
therefore encourage other researchers to follow our idea
and collect evidence for or against its existence.

ACKNOWLEDGEMENT

This research is supported by BESQ+ project (2010/0311)
from the Knowledge Foundation in Sweden.

VII. REFERENCES
[1] E. Ó Conchuir, H. Holmström, P. J. Ågerfalk, and B. Fitzgerald,

"Exploring the Assumed Benefits of Global Software
Development," in Proceedings of the First International
Conference on Global Software Engineering, pp. 159–168, 2006.

[2] J. D. Herbsleb and D. Moitra, "Global Software Development,"
IEEE Software, vol. 18, pp. 16-20, 2001.

[3] E. Carmel and P. Tjia, Offshoring Information Technology:
Sourcing and Outsourcing to a Global Workforce. In: Cambridge
University Press, 2005.

[4] D. Damien and D. Moitra, "Guest Editors' Introduction: Global
Software Development: How far have we come?," IEEE Software,
vol. 23, pp. 17-19, 2006.

[5] R. Jabangwe and D. Smite, "An Exploratory Study of Software
Evolution and Quality: Before, During and After a Transfer," in
Proceedings of the 7th IEEE International Conference on Global
Software Engineering, pp. 41-50, 2012.

[6] N. B. Moe, D. Smite, and G. K. Hanssen, "From Offshore
Outsourcing to Offshore Insourcing: Three Stories," in Proceedings
of the IEEE 7th International Conference on Global Software
Engineering, pp. 1-10, 2012.

[7] D. Smite and C. Wohlin, "Lessons Learned from Transferring
Software Products to India," Journal of Software: Evolution and
Process, vol. 24, no. 6, pp. 605-623, 2012.

[8] D. Smite, C. Wohlin, T. Gorschek, and R. Feldt, "Empirical
Evidence in Global Software Engineering," Empirical Software
Engineering, vol. 15, pp. 91-118, 2010.

[9] H. Holmstrom, E. Ó Conchuir, P. J. Agerfalk, and B. Fitzgerald,
"Global Software Development Challanges: A Case Study on
Temporal, Geographical. and Socio-Cultural Distance," in
Proccedings of the IIEEE nternational Conference of Global
Software Engineering, pp. 3-11, 2006.

[10] J. D. Herbsleb and R. Grinter, "Architectures, Coordination, and
Distance: Conway's Law and Beyond," IEEE Software, vol. 16, pp.
63-70, 1999.

[11] M. Conway, "How do Committees Invent?," Datamation, vol. 14,
no. 4, pp. 28-31, 1968.

[12] M. Cataldo, J. Herbsleb, and K. Carley, "Socio-Technical
Congruence: A Framework for Assessing the Impact of Technical
and Work Dependencies on Software Development Productivity,"
in Proceedings of the Second ACM-IEEE International Dymposium
on Empirical Software Engineering and Measurement, pp. 2-11,
2008.

[13] J. Webster and R. T. Watson, "Analyzing the past to prepare for the
future: Writing a literature review," MIS Quarterly, vol. 26, no. 2,
pp. 13-23, 2002.

[14] B. A. Kitchenham, "Guidelines for performing Systematic
Literature Reviews in Software Engineering," Software
Engineering Group, School of Computer Science and Mathematics,
Keele University, Keele, Staffs, ST5 5BG, UK and Department of
Computer Science, University of Durham, UK, 2007.

[15] A. Atlas, "Accidental adoption: The story of scrum at
amazon.com," in AGILE'09, pp. 135-140, 2009.

[16] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, "Does
distributed development affect software quality?: an empirical case
study of Windows Vista," Communications of the ACM, vol. 52,
no. 8, pp. 85-93, 2009.

[17] B. Boehm, "The future of software processes," in Unifying the
Software Process Spectrum, M. Li, B. Boehm, and L. J. Osterweil,
Eds. Berlin Heidelberg: Springer, pp. 10-24, 2006.

[18] C. R. B. de Souza, D. Redmiles, L.-T. Cheng, D. Millen, and J.
Patterson, "Sometimes You Need to See Through Walls — A Field
Study of Application Programming Interfaces," Nature, vol. 6, no.
3, pp. 63-71, 2004.

[19] J. D. Herbsleb, "Beyond computer science," in Proceedings. 27th
International Conference on Software Engineering, pp. 23-27,
2005.

[20] P. Wallin, S. Johnsson, and J. Axelsson, "Issues related to
development of E/E product line architectures in heavy vehicles”,
in Proceedings of the 42nd Hawaii International Conference on
System Sciences, pp. 1-10, 2009.

[21] C. Amrit and J. I. Van Hillegersberg, "Detecting coordination
problems in collaborative software development environments,"
Information Systems Management, vol. 25, no. 1, pp. 57-70, 2008.

[22] G. Robles, J. Gonzalezbarahona, and J. Merelo, "Beyond Source
Code: The Importance of other Artifacts in Software Development
(a Case Study)," Journal of Systems and Software, vol. 79, no. 9,
pp. 1233-1248, 2006.

[23] S. Giesecke, "Taxonomy of architectural style usage," in
Proceedings of the Conference on Pattern Languages of Programs,
pp. 32-41, 2006.

[24] D. Balasubramaniam, R. Morrison, R. M. Greenwood, and B. In
Software Architecture, 2007. WICSA'07. Warboys, "Flexible
software development: From software architecture to process," in
Proceedings of the Working IEEE/IFIP Conference on Software
Architecture, p. 14, 2007.

[25] M. Balint, T. Girba, and R. Marinescu, "How developers copy," in
Proceedings of the 14th IEEE International Conference on
Program Comprehension, pp. 56-68, 2006.

[26] M. Bass, V. Mikulovic, L. Bass, H. James, and C. Marcelo,
"Architectural misalignment: An experience report," in
Proceddings of the Working IEEE/IFIP Conference on Software
Architecture, p. 17, 2007.

[27] A. Beckhaus, L. M. Karg, and D. Neumann, "The Impact of
Collaboration Network Structure on Issue Tracking's Process
Efficiency at a Large Business Software Vendor," in Proceedings
of the 43rd Hawaii International Conference on System Sciences
(HICSS), pp. 1-10, 2010.

[28] J. Bosch and P. Bosch-Sijtsema, "From integration to composition:
On the impact of software product lines, global development and
ecosystems," Journal of Systems and Software, vol. 83, no. 1, pp.
67-76, 2010.

[29] O. Greevy, T. Girba, and S. Ducasse, "How developers develop
features," in Proceedings of the 11th European Conference on
Software Maintenance and Reengineering, pp. 265-274, 2007.

[30] R. E. Grinter, "Recomposition: Coordinating a web of software
dependencies," Computer Supported Cooperative Work (CSCW),
vol. 12, no. 3, pp. 297-327, 2003.

[31] S. Marczak and D. Damian, "How interaction between roles shapes
the communication structure in requirements-driven collaboration,"
in Proceedings of the 19th IEEE International Requirements
Engineering Conference (RE), pp. 47-56, 2011.

[32] P. Wallin, S. Cedergren, S. Larsson, and J. Axelsson, "Limiting
practices in developing and managing software-intensive systems:
A comparative study," in Proceedings of Technology Management
for Global Economic Growth, pp. 1-9, 2010.

[33] M. Wermelinger, Y. Yu, and M. Strohmaier, "Using formal
concept analysis to construct and visualise hierarchies of socio-
technical relations," in Proccedings of the 31st International
Conference on Software Engineering-Companion Volume, ICSE-
Companion, pp. 327-330, 2009.

[34] S. Wong, Y. Cai, G. Valetto, G. Simeonov, and K. Sethi, "Design
rule hierarchies and parallelism in software development tasks," in
Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, pp. 197-208, 2009.

[35] Z. Lixin, "A Project human resource allocation method based on
software architecture and social network," in Proceedings of the
I4th International Conference on Wireless Communications,
Networking and Mobile Computing, pp. 1-6, 2008.

[36] F. Beck and S. Diehl, "On the congruence of modularity and code
coupling," in Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software
engineering, pp. 354-364, 2011.

[37] J. W. Cain and R. J. McCrindle, "An investigation into the effects
of code coupling on team dynamics and productivity," in
Proceedings 26th Annual International Computer Software and
Applications, pp. 907-913, 2002.

[38] C. R. B de Souza and D. F. Redmiles, "On the roles of APIs in the
coordination of collaborative software development," Computer
Supported Cooperative Work (CSCW), vol. 18, no. 5-6, pp. 445-
475, 2009.

[39] C. R. B. de Souza and D. F. Redmiles, "The Awareness Network,
To Whom Should I Display My Actions? And, Whose Actions
Should I Monitor?," IEEE Transactions on Software Engineering,
vol. 37, no. 3, pp. 325-340, 2011.

[40] J. D. Herbsleb and A. Mockus, "Formulation and Preliminary Test
of an Empirical Theory of Coordination in Software Engineering,"
in Proceedings of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineering, pp. 138-147,
2003.

[41] G. Mustapic, A. Wall, C. Norström, I. Crnkovic, K. Sandstrom, J.
Froberg, and J. Andersson, "Real world influences on software
architecture - interviews with industrial system experts," in
Proceedings of the Fourth Working IEEE/IFIP Conference on
Software Architecture, pp. 101-111, 2004.

[42] I. Kwan, A. Schroter, and D., Damian, "Does Socio-Technical
Congruence Have an Effect on Software Build Success? A Study of
Coordination in a Software Project," IEEE Transactions on
Software Engineering, vol. 37, no. 3, pp. 307-324, 2011.

[43] G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M. Wegman, and
C. Williams, "Using software repositories to investigate socio-
technical congruence in development projects," in Proceedings of
the Fourth International Workshop on Mining Software
Repositories, ICSE Workshops MSR'07, p. 25, 2007.

[44] A. Aneesh, "Global Labor: Algocratic Modes of Organization,"
Sociological Theory, vol. 27, no. 4, pp. 347-370, 2009.

[45] S. Beecham, J. Noll, I. Richardson, and N. Ali, "Crafting a Global
Teaming Model for Architectural Knowledge," in Proceedings of
the 5th IEEE International Conference on Global Software
Engineering, pp. 55-63.

[46] M. Cataldo and J. D. Herbsleb, "Communication networks in
geographically distributed software development," in Proceedings
of the ACM conference on Computer supported cooperative work,
pp. 579-588, 2008.

[47] M. Cataldo, M. Bass, J. D. Herbsleb, and L. Bass, "On
Coordination Mechanisms in Global Software Development," in
Proceedings of the International Conference on Global Software
Engineering, ICGSE, pp. 71-80, 2007.

[48] S. B. Fonseca, C. R. B. de Souza, and D. F. Redmiles, "Exploring
the Relationship between Dependencies and Coordination to
Support Global Software Development Projects," in Proceedings of
the IEEE international conference on Global Software
Engineering, ICGSE, pp. 243-244, 2006.

[49] L. D. Panjer, D. Damian, and M. A. Storey, "Cooperation and
coordination concerns in a distributed software development

project," in Proceedings of the 2008 international workshop on
Cooperative and human aspects of software engineering, pp. 77-80,
2008.

[50] T. Nguyen, T. Wolf, and D. Damian, "Global software
development and delay: Does distance still matter?," in
Proceedings of the IEEE International Conference on Global
Software Engineering, ICGSE, pp. 45-54, 2008.

[51] P. Ovaska, M. Rossi, and P. Marttiin, "Architecture as a
coordination tool in multi-site software development. Software
Process: Improvement and Practice," vol. 8, no. 4, pp. 233-247,
2003.

[52] M. Cataldo and J. D. Herbsleb, "End-to-end features as meta-
entities for enabling coordination in geographically distributed
software development," in Proceedings of the ICSE Workshop on
Software Development Governance, pp. 21-26, 2009.

[53] I. Heitlager, R. Helms, and S. Brinkkemper, "Evolving relationship
structures in multi-sourcing arrangements: the case of mission
critical outsourcing," in Global Sourcing of Information
Technology and Business Processes, I. Oshri and J Kotlarsky, Eds.:
Springer Berlin Heidelberg, pp. 185-201, 2010.

[54] N. Ramasubbu and R. K. Balan, "Towards governance schemes for
distributed software development projects," in Proceedings of the
1st international workshop on Software development governance,
pp. 11-14, 2008.

[55] F. Salger, "On the use of handover checkpoints to manage the
global software development process," in Proceedings of the On
the Move to Meaningful Internet Systems: OTM 2009 Workshops,
pp. 267-276, 2009.

[56] J. D. Herbsleb and A. Mockus, "An empirical study of speed and
communication in globally distributed software development,"
IEEE Transactions on Software Engineering, vol. 29, no. 6, pp.
481-494, June 2003.

[57] A. Mockus and D. M. Weiss, "Globalization by chunking: a
quantitative approach," IEEE Software, vol. 18, no. 2, pp. 30-37,
2001.

[58] F. Salger, "Software Architecture Evaluation in Global Software
Development Projects," in Proceedings of the On the Move to
Meaningful Internet Systems: OTM 2009 Workshops, pp. 391-400,
2009.

[59] A. Avritzer, D. Paulish, Y. Cai, and K. Sethi, "Coordination
implications of software architecture in a global software
development project," Journal of Systems and Software, vol. 83,
no. 10, pp. 1881-1895, 2010.

[60] D. Mishra and A. Mishra, "A review of non-technical issues in
global software development," International Journal of Computer
Applications in Technology, vol. 40, no. 3, pp. 216-224, 2011.

[61] M. Cataldo and J. D. Herbsleb, "Communication patterns in
geographically distributed software development and engineers'
contributions to the development effort," in Proceedings of the
2008 international workshop on Cooperative and human aspects of
software engineering, pp. 25-28, 2008.

[62] C. Del Rosso, "Comprehend and analyze knowledge networks to
improve software evolution," Journal of Software Maintenance and
Evolution: Research and Practice, vol. 21, no. 3, pp. 189-215,
2009.

[63] U. Eklund and C. M. Olsson, "A case study of the Architecture
Business Cycle for an in-vehicle software architecture," in
Proceedings of the Joint Working IEEE/IFIP Conference on
Software Architecture & European Conference on Software
Architecture, WICSA/ECSA, pp. 91-100, 2009.

[64] O. Nierstrasz, M. Denker, T. Gîrba, A. Lienhard, and D.
Röthlisberger, "Change-enabled software systems," in Software-
Intensive Systems and New Computing Paradigms, M. Wirsing, J.
P. Banâtre, M. Hölzl, and A. Rauschmayer, Eds.: Springer Berlin
Heidelberg, pp. 64-79, 2008.

[65] Á. Szőke, "A feature partitioning method for distributed agile
release planning," in Agile Processes in Software Engineering and
Extreme Programming, A. Sillitti, O. Hazzan, E. Bache, and X.
Albaladejo, Eds.: Springer Berlin Heidelberg, pp. 27-42, 2011.

[66] C. Bird, D. Pattison, R. D'Souza, V. Filkov, and P. Devanbu,
"Latent social structure in open source projects," in Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations
of software engineering, pp. 24-35, 2008.

[67] C. R. B De Souza, J. Froehlich, and P. Dourish, "Seeking the
source: software source code as a social and technical artifact," in
Proceedings of the 2005 international ACM SIGGROUP
conference on Supporting group work, pp. 197-206, 2005.

[68] D. Ganesan, D. Muthig, J. Knodel, and K. Yoshimura,
"Discovering Organizational Aspects from the Source Code
History Log during the Product Line Planning Phase--A Case
Study," in Proceeding of the 13th Working Conference on Reverse
Engineering, pp. 211-220, 2006.

[69] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse, "How
Developers Drive Software Evolution," in Proceedings of the
Eighth International Workshop on Principles of Software
Evolution, IWPSE’05, pp. 113-122, 2005.

[70] J. Han, C. Wu, and B. Lee, "Extracting development organization
from open source software," in Proceedings of the 2009 16th Asia-
Pacific Software Engineering Conference, APSEC ’09,
Washington, DC, USA, pp. 441–448, 2009.

[71] H.-Y. Huang, Q. Le, and J. H. Panchal, "Analysis of the structure
and evolution of an open-source community," in Journal of
Computing and Information Science in Engineering, vol. 11, no. 3,
2011.

[72] A. Jermakovics, A. Sillitti, and G. Succi, "Mining and visualizing
developer networks from version control systems," in Proceedings
of the 4th International Workshop on Cooperative and Human
Aspects of Software Engineering, CHASE ’11, New York, NY,
USA, pp. 24–31, 2011.

[73] M. Lungu, M. Lanza, T. Girba, and R. Heeck, "Reverse
engineering super-repositories," in Proceedings of the 14th
Working Conference on Reverse Engineering, WCRE, pp. 120–129,
2007.

[74] J. Tsay, H. K. Wright, and D. E. Perry, "Experiences mining open
source release histories," in Proceedings of the 2nd workshop on
Software engineering for sensor network applications, SESENA, p.
208, 2011.

[75] L. Bass, P. Clements, R. Kazman, and M. Klein, "Evaluating the
software architecture competence of organizations," in Proceedings
of the Seventh Working IEEE/IFIP Conference on Software
Architecture, WICSA, pp. 249-252, 2008.

[76] M. Broy, G. Reichart, and L. Rothhardt, "Architectures of
software-based functions in vehicles," Informatik Spektrum , vol.
34, no. 1, pp. 42-59, 2011.

[77] F. Buschmann, "On architecture styles and paradigms," IEEE
Software, vol. 27, no. 5, pp. 92-94, 2010.

[78] K. Rossi, M. Purao, S. Smolander, "Software architectures:
Blueprint, Literature, Language or Decision?," European Journal
of Information Systems, vol. 17, no. 6, pp. 575-588.

[79] A. Cockburn, "The interaction of social issues and software
architecture," Communications of the ACM, vol. 39, no. 10, pp. 40-
46, 1996.

[80] A. Bacchelli, "Exploring, exposing, and exploiting emails to
include human factors in software engineering," in Proceedings of
the 33rd International Conference on Software Engineering, ICSE,
pp. 1074-1077, 2011.

[81] I. T. Bowman and R. C. Holt, "Software architecture recovery
using Conway's law," in Proceedings of the 1998 conference of the
Centre for Advanced Studies on Collaborative research, p. 6, 1998.

[82] S. Ducasse and D. Pollet, "Software architecture reconstruction: A
process-oriented taxonomy," IEEE Transactions on Software
Engineering, vol. 35, no. 4, pp. 573-591, 2009.

[83] H. Hadaytullah, O. Räihä, and K. Koskimies, "Genetic approach to
software architecture synthesis with work allocation scheme," in
Proceedings of the 17th Asia Pacific Software Engineering
Conference (APSEC), pp. 70-79, 2010.

[84] J. Herbsleb, "Talking about concerns," in Proceedings of the tenth
international conference on Aspect-oriented software development ,
pp. 281-282, 2011.

[85] N. Nagappan, B. Murphy, and V. R. Basili, "The Influence of
Organizational Structure on Software Quality: An Empirical Case
Study," in International Conference on Software Engineering,
ICSE, pp. 521-530, 2008.

[86] N. Bettenburg, "Mining development repositories to study the
impact of collaboration on software systems," in Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, pp. 376-379, 2011.

[87] C. Del Rosso, "Software performance tuning of software product
family architectures: Two case studies in the real-time embedded
systems domain," Journal of Systems and Software, vol. 81, no. 1,
pp. 1-19, 2008.

[88] V. T. Rajlich and K. H. Bennett, "A staged model for the software
life cycle," IEEE Computer, vol. 33, no. 7, pp. 66-71, July 2000.

[89] T. Greenhalgh and K. R. Peacock, "Effectiveness and efficiency of
search methods in systematic reviews of complex evidence: audit
of primary sources," BMJ - Information in Practice, vol. 331, pp.
1064-1065, 2005.

[90] L. Colfer and C. Y. Baldwin, “Mirroring Hypothesis: Theory
Evidence and Exceptions,” working paper, Harvard Business
school, 2010.

