
Probabilistic Application Interfaces for Hierarchical
Scheduling

Nima Moghaddami Khalilzad, Meng Liu, Moris Behnam, Thomas Nolte
MRTC/Mälardalen University, Sweden

nima.m.khalilzad@mdh.se

Abstract—The concept of hierarchical scheduling is widely
used for scheduling complex real-time systems that are composed
of a number of components. In the conventional hierarchical
scheduling framework, targeting hard real-time systems, the size
of processor capacities assigned to components is derived based on
the worst case execution times of tasks. In this paper, we present
our ongoing work on bringing the notation of probabilistic
execution times in the context of hierarchical scheduling and
deriving probabilistic component processor requirements. When
dealing with soft real-time systems, this approach can eliminate
the unaffordable pessimism that exists in worst-case timing
analyses.

I. INTRODUCTION

Real-time embedded systems are increasingly growing
in complexity. Previously separated independent systems are
integrated to form new and more complex systems. To deal
with such systems, compositional hierarchical scheduling tech-
niques provide a modular approach in which the timing
properties of federated real-time systems are inferred from the
timing characteristics of their components [1], [2], [3]. The
conventional approach in analyzing the timing properties of
hierarchically scheduled systems is to derive the worst case
processor demand of components (applications) based on the
worst case processor demand of their inner sub-components
(tasks). The Worst Case Execution Time (WCET) of tasks are
the basic blocks of the analysis which are used in calculating
the processor demand of applications. A processor capacity
that can guarantee the worst case processor demand of the
corresponding application is assigned to each application.

While deterministic timing analysis based on WCET is
used in hard real-time systems, in soft real-time systems
stochastic analysis based on probabilistic execution time dis-
tributions can reduce the pessimism and hence the processing
capacity can be better utilized [4], [5]. In essence, the flexi-
bility of soft real-time systems in allowing a limited amount
of timing violations makes it possible to use probabilistic
models of execution time instead of WCET. Hence, in the
probabilistic domain the type of guarantees that the analysis
provides is not deterministic anymore, i.e, instead of studying
the schedulability of the system, the probability of having
a deadline miss ratio below a certain level is of interest
in the probabilistic analysis. In soft real-time systems, the
Quality of Service (QoS) can be inferred from the probabilistic
guarantees.

In our work, we bring the probabilistic analysis to the
context of a hierarchical scheduling framework. This approach
is especially beneficial in open real-time systems in which
applications are added and removed during run-time. For
instance, when the processor is overloaded, we can leverage
the probabilistic model of applications’ processor requirements
to decide the processor capacities assigned to the applications

The research leading to these results has received funding from the Swedish
Research Council (Vetenskapsrådet) under the project ARROWS.

such that the overall timing violations are minimized. In fact,
our aim is to propagate the uncertainty in task execution times
to the application interfaces and to utilize this information at
the integration phase.

Previous works in the area of probabilistic analysis mainly
target flat systems, i.e, non-hierarchical systems. The closest
work to our work is presented by Santinelli et al. which
introduced a component based framework for probabilistic
analysis of real-time systems [6]. Our work is different from
theirs in that we assume deterministic processor provision
through conventional reservation based scheduling techniques,
and we use the probabilistic processor requirements of appli-
cations to derive the reservation sizes assigned to them. While
in [6] the probabilistic component demands and probabilistic
processor provisioning is used to analyze the probability of
schedulability.

II. SYSTEM MODEL

We assume a single processor system consisting of N
applications. The applications are scheduled on the processor
using a “global scheduler”. Applications, in turn, are respon-
sible for scheduling their inner tasks. Although we start by
investigating single processors, our ultimate goal is to extend
the work and address multiprocessors.

A. System development model

We target a component based software development model
in which the following two roles are defined: (i) application
developer (ii) system integrator. The application developer is
responsible for developing real-time tasks and selecting an
appropriate scheduling policy for them. Then, the application
requirement is abstracted using a number of interface param-
eters. The system integrator on the other hand, receives a
number of applications and he/she is responsible for integrating
the applications such that the requirements specified in the
interface parameters are respected. The integrators’ task in-
volves assigning sufficient processor capacities to applications
and choosing an appropriate global scheduler.

B. Task model

In our work we assume a sporadic task model in which
task τi is represented with the following parameters: minimum
inter arrival time Ti, deadline Di and execution time Ci. The
execution time is assumed to be a random discrete variable
with a known Probability Function (PF) fCi

(.).

C. Application interface

Each application Aj is a set of nj sporadic tasks
{τ j1 , · · · , τ jnj

}. Applications express their processor require-
ments using the following two parameters called interface
parameters: Pj and Qj where Pj is the application period,



while Qj is a random discrete variable with a known PF
fQj

(.) which denotes the amount of processor requirement of
Aj every Pj time units. The application interface is provided
by the application developer to the system integrator.

D. Server model

The processor capacity becomes available to the appli-
cations through periodic servers compliant with the periodic
resource model introduced in [3]. The periodic servers are
expressed using the following parameters: Πj and Θj . The
periodic servers provide Θj time units of the processor time
to application Aj each Πj time units. In fact, the system
integrator designs servers based on the application interfaces.

Although we are targeting soft real-time applications, it
is still beneficial to use hard reservations such as periodic
servers to (i) handle the system complexity through processor
partitioning (ii) keep the timing isolation among applications
(iii) reason about the system performance at design stage.

E. From a task set to application interface

In a deterministic hierarchical framework, the application
interfaces often express the minimum amount of processor
capacity that can guarantee the schedulabilty of the applica-
tion’s inner tasks. Hence, the system integrator has to choose
a server that provides a processor capacity at least equal to
the application requirement. In fact, the server interfaces (Π,
Θ) express both processor requirement of applications and
processor supply of the servers. In contrast, the application
requirement and server supply are two separate interfaces in
our probabilistic hierarchical scheduling framework.

Moreover, the processor requirement of the applications is
often abstracted using a demand bound function dbf(t) which
denotes the maximum processor time needed by the task set
inside one application in time interval t. On the other hand,
the processor supply through servers is often abstracted using
a supply bound function sbf(t) that denotes the minimum
amount of processor capacity provided to the application in
time interval t. The application developer has to provide an
interfere such that the minimum processor supply through that
interface fulfills the following inequality for all time intervals:

sbf(t) ≥ dbf(t). (1)

In the deterministic analysis, dbf(t) returns one value for
each given input t, and the objective is to find the minimum
sbf(t) (and hence the optimal server parameters) that fulfills
the above inequality. However, in our probabilistic framework,
we redefine the demand bound function (dbf∗) such that for
each input t the output is a probability function with a known
distribution that expresses the probability distribution of the
processor demand in interval t:

dbf∗ : t→ fD(.),

where fD(x) = P(dbf(t) = x). Besides, the objective of our
probabilistic framework is to understand for a given server
budget Θj to what extent Inequality 1 holds.

The probabilistic interface is derived from the probabilis-
tic execution times. We suggest the following algorithm for
calculating the probabilistic budgets. In the algorithm, Qi is
the application budget that is under analysis. The goal is to

derive the probability of application Aj being schedulable
given that Θj = Qi. We intend to analytically derive a
range for Qi. t is the time interval that has to be taken into
account in the analysis. Similarly, we will bound t to bound
the number of iterations in the algorithm. For bounding t, we
will use techniques analogous to the ones used in deterministic
compositional analysis which use the scheduling policy and
task parameters for confining t.

Algorithm 1: calculating fQ(.)

1: for all Qi ∈ [Qmin, Qmax] do
2: for all tκ ∈ [0, tmax] do
3: fD = dbf∗(t);
4: p(Qi, tκ) = fD(Qi);
5: end for
6: fQ(Qi) = min

(
p(Qi, tκ)

)
;

7: end for

In Line 3 of Algorithm 1, the probability distribution of the
demand bound function for a given time interval t is calculated.
In Line 4, the probability of the demand being equal to the
budget under investigation (i.e., Qi) when the time interval is
equal to tκ is stored.

F. From application interfaces to periodic servers

Given a set of application interfaces, the system inte-
grator has to derive a set of periodic servers such that the
overall deadline miss ratio is minimized. When the system
is underloaded, the servers can be designed according to
the applications’ worst case processor requirements. However,
when the system is overloaded, some applications have to
receive smaller processor portions than their worst case re-
quirement. Hence, the probabilistic budget Q provides the
system integrator with valuable information to decide which
application that should be sacrificed such that minimal damage
is imposed to the system.

This mechanism can also be used by an online admission
controller which decides whether or not a new application
should enter the system and if yes how should the overall
processor capacity be redistributed.

REFERENCES

[1] Z. Deng and J. W.-S. Liu, “Scheduling real-time applications in an
open environment,” in Proceedings of the 18th IEEE Real-Time Systems
Symposium (RTSS’97), December 1997, pp. 308–319.

[2] G. Lipari and S. Baruah, “A hierarchical extension to the constant
bandwidth server framework,” in Proceedings of the 7th IEEE Real-
Time Technology and Applications Symposium (RTAS’01), May 2001,
pp. 26–35.

[3] I. Shin and I. Lee, “Periodic resource model for compositional real-
time guarantees,” in Proceedings of the 24th IEEE Real-Time Systems
Symposium, (RTSS’03), December 2003, pp. 2–13.

[4] J. L. Dı́az, D. F. Garcı́a, K. Kim, C.-G. Lee, L. Lo Bello, J. M. López,
S. L. Min, and O. Mirabella, “Stochastic analysis of periodic real-time
systems,” in Proceedings of the 23rd IEEE Real-Time Systems Symposium
(RTSS’02), December 2002, pp. 289–300.

[5] A. Burns, G. Bernat, and I. Broster, “A probabilistic framework for
schedulability analysis,” in Embedded Software. Springer Berlin Hei-
delberg, 2003, vol. 2855, pp. 1–15.

[6] L. Santinelli, P. Yomsi, D. Maxim, and L. Cucu-Grosjean, “A component-
based framework for modeling and analyzing probabilistic real-time
systems,” in Proceedings of the 16th IEEE Conference on Emerging
Technologies Factory Automation (ETFA’11), September 2011, pp. 1–8.


	Introduction
	System model
	System development model
	Task model
	Application interface
	Server model
	From a task set to application interface
	From application interfaces to periodic servers

	References

