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Abstract 
 

Component-based Software Engineering (CBSE) is a promising approach to 
improve quality, achieve shorter time to market and to manage the increasing 
complexity of software. Still there are a number of unsolved problems that 
hinder wide use of it. This is especially true for real-time systems, not only 
because of more rigorous  requirements and demanding constraints, but also 
because of lack of knowledge how to implement the component-based 
techniques on real-time development. 

 
In this paper we present a method for development of real-time systems using 
the component-based approach. The development process is analysed with 
respect to both temporal and functional constraints of real-time components. 
Furthermore, we propose what information is needed from the component 
providers to successfully reuse binary real-time components. 

 
Finally, we discuss a possibility of managing compositions of components and 
suggest how an existing real-time development environment can be extended 
to support our design method. 

1 Introduction 

Embedded real-time systems contain a computer as a part of a larger system and interact 
directly with external devices. They must usually meet stringent specifications for safety, 
reliability, limited hardware capacity etc. Examples include highly complex systems such as 
medical control equipment, mobile phones, and vehicle control systems. Most of such 
embedded systems can also be characterized as real-time systems, i.e., systems in which the 
correctness of the system depends on time factors. Real-time systems are usually used to 
control or interact with a physical system and the timing constraints are imposed by the 
environment. As a consequence, the correct behavior of these systems depends not only on 
the logical results of the computation but also at which time the results are produced [1]. If 
the system delivers the correct answer, but after a certain deadline, it could be regarded as 
having failed. 
 
The increased complexity of embedded real-time systems leads to increasing demands with 
respect to requirements engineering, high-level design, early error detection, productivity, 
integration, verification and maintenance. This calls for methods, models, and tools which 
permit a controlled and structured working procedure during the complete life cycle of the 
system [2]. When applying component-based software engineering (CBSE) methodology on 
the development of real-time systems, an important factor is reusability of real-time 
components. Designing reusable real-time components is more complex than designing 
reusable non-real-time components [3]. This complexity arises from several aspects of real-
time systems not relevant in non-real-time systems. In real-time applications, components 
must collaborate in meeting timing constraints. Examples of timing requirements can be 
deadline, period time, and jitter.  
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Furthermore, in order to keep production costs down, embedded systems resources must 
usually be limited, but they must perform within tight deadlines. They must also often run 
continuously for long periods of time without maintenance.  
 
A desirable feature in all system development, including the development of real-time 
systems is the possibility of reusing standard components. However, using any particular 
operating system or database system for a real-time application is not always feasible, since 
many such systems are designed to maximize the average throughput of the system but do not 
guarantee temporal predictability. Therefore, to guarantee predictability, we must use either 
specific COTS developed for real-time systems or an appropriate subset of the functionality 
provided by the COTS. Some commonly used real-time COTS are real-time operating 
systems, communication protocols (solutions), and to some extent real-time databases. This 
type of components provides an infrastructure to the application. Other commonly used 
infrastructures in non-real-time systems are JavaBeans, CORBA and COM. However, they 
are seldom used for real-time systems, due to their excessive processing and memory 
requirements and unpredictable timing characteristics, which is of utmost importance in the 
class of application we consider. They have, however, one desirable property which is 
flexibility, but predictability and flexibility have often been considered as contradicting 
requirements, in particular from the scheduling perspective. Increased flexibility leads to 
lower predictability. Hence, a model for hard real-time systems cannot support flexibility to 
the same extent as the above mentioned infrastructures.  
 
Further, we require to reuse application specific components. Example of two application 
specific component models are IEC-1131 [5] which is a standard for programming industrial 
control systems and port based objects which is a programming model developed for robotics 
[4]. Both these models provide support for hierarchical decomposition, parameterization, 
communication and synchronization between components. These types of models are quite 
similar to pipes and filters model, the difference is that the pipe only accommodates one data 
item, which means if the data has not already been processed when the new data arrives, it 
will be overwritten. However, both models lack the ability to specify timing attributes besides 
period time and priority which is not sufficient to specify timing sensitive systems.  
 
The development of standard real-time components which can be run on different HW 
platforms is complicated by the components having different timing characteristics on 
different platforms. Thus a component must be adapted and re-verified for each HW-platform 
to which it is ported, especially in safety-critical systems. Hence, we need to perform a timing 
analysis for each platform to which the system is ported. Given a system composed of a set of 
well-tested real-time components, we still face the composability problem. Besides 
guaranteeing the functional behavior of a specific component, the composition must also 
guarantee that the communication, synchronization and timing properties of the components 
and the system are retained. The composability problem with respect to timing properties, 
which we refer to as timing analysis, can thus be divided into (1) verifying that the timing 
properties of each component in the composed system still hold and (2) schedulability 
analysis  (i.e. system-wide temporal attributes such as end-to-end deadlines can be fulfilled).  
 
Timing analysis is performed at two levels, the task level and the system level.  At the task 
level the worst case execution time (WCET) for each task is either analyzed or estimated. If 
the execution time is measured, we can never be sure that we have determined the worst case. 
On the other hand if we use analysis, we must derive a safe value for the execution time. The 
estimated execution time must be greater than or equal to the real worst case and in the theory 
provided, the estimate can be excessive. The challenge here is thus to derive a value as close 
as possible to the real worst case execution time. Puschner gives a good introduction to this 
problem in the seminal paper [7]. At system level we analyze to determine if the system 
composed fulfils the timing requirements. Several different mature analysis methods exist, for 
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example, analysis for priority-based systems and pre-run-time scheduling techniques [8][9]. 
Both kinds of analysis have been proven to be useful in industrial applications [10][11].  
 
When designing a system, we can assign time budgets to the tasks which are not implemented 
by intelligent guesses based on experience. By doing this we gain two positive effects. Firstly, 
the system level timing analysis can be performed before implementation, thus providing a 
tool for estimating the performance of the system. Secondly, the time budgets can be used as 
an implementation requirement. By applying this approach we make the design process less 
ad hoc with respect to real-time performance. In traditional system design, timing problems 
are first recognized when the complete system or subsystem has been implemented. If a 
timing problem is then detected, ad hoc optimization will be begun, this most surely making 
the system more difficult to maintain. 
 
The paper is organized as following: In Section 2 we present a method for system 
development using real-time components which support early analysis of the timing behavior 
as well as the synchronization and communication between components. The method enables 
high-level analysis on the architectural design level. This analysis is important to avoid costly 
re-design late in the development due to the detection in the integration test phase that the 
system as developed does not fulfill the timing requirements. The presented method is an 
extension of [10], and it is a standard top-down development process to which timing and 
other real-time specific constraints have been added and precisely defined at design time. The 
idea is to implement the same principles, but also taking into consideration features of 
existing components which might be used in the system. This means that the system is 
designed not only in accordance with the system requirements, but also with respect to 
existing components. This concept assumes that a library of well-defined real-time 
components is available. The development process requires a system specification, obtained 
by analyzing the customer's requirements.  
 
Furthermore, in Section 3, we propose a method for composing components and how the 
resulting compositions could be handled when designing real-time systems. In Section 4 we 
describe how an existing real-time development environment can be extended to support our 
design method. Finally, in Section 5, we provide guidelines about what one should be aware 
of when reusing and online updating real-time components.  

2 Designing component based real-time systems 

In this section we present a method for system development using real-time components. This 
method is an extension of [10], which is also in use in developing real-time systems within a 
Swedish automobile manufacturing company. It is a standard top-down development process 
to which timing and other real-time specific constraints have been added and precisely 
defined (or more correctly, have been predicted) at design time. The idea is to implement the 
same principles, but also taking into consideration features of existing components which 
might be used in the system. This means that the system is designed not only in accordance 
with the system requirements, but also with respect to existing components. This concept 
assumes that a library of well-defined real-time components is available. The development 
process requires a system specification, obtained by analyzing the customer's requirements. 
We assume that the specification is consistent and correct, in order to simplify the 
presentation of the method. 
 
The development process with real-time components is divided into several stages, as 
depicted in Figure 2-1. Development starts with the system specification, which is the input to 
top-level design. At the top-level design, which includes the decomposition of the system into 
components, the designer browses through the component-library and designs the system, 
making selections from  the possible component candidates. 
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Figure 2-1:  Design model for real-time components 

 
The detailed design will show which components are suitable for integration. To select 
components, both real- and non real-time aspects must be considered. The scheduling and 
interface check will show if the selected components are appropriate for the system, if 
adaptation of components is required, or if new components must be developed. The process 
of component selection and scheduling may need to be repeated several times to refine the 
design and determine the most appropriate components. When a new component must be 
developed, it should be,  (when developed and tested) entered into the component library. 
When the system finally meets the specified requirements, the timing behavior of the different 
components must be tested on the target platform to verify that they meet the timing 
constraints defined in the design phase. A detailed description of these steps is given below.  

2.1 Top-level design 

The first stage of the development process involves de-composition of the system into 
manageable components. We need to determine the interfaces between them and to specify 
the functionality and safety issues associated with each component. Parallel with the 
decomposition, we browse the component library to identify a set of candidate components, 
(i.e., components which  might be useful in our design). 

2.2 Detailed design 

At this stage a detailed component design is performed, by selecting components to be used in 
each component from the candidate set. In a perfect world, we could design our system by 
only using the library components. In a more realistic scenario we must identify missing 
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components that we need according to our design but which are not available in the 
component library. Once we have identified all the components to be used, we can start by 
assigning attributes to them, such as time-budgets, periods, release times, precedence 
constraints, deadlines and mutual exclusion etc.  
 
A standard way of performing the detailed design is to use the WCET specified for every task 
which specifies  the upper limit of the time needed to execute a task. Instead of relying on 
WCET values for components at this stage, a time budget is assigned to each component. A 
component is required to complete its execution within its time budget. This approach has 
also been adopted in [14], and shown to be useful in practice. Experienced engineers are often 
needed to make correct assignments of time budgets. 

2.3 Scheduling 

At this point we need to check if the system's temporal requirements can be fulfilled, 
assuming time budgets assigned in the detailed design stage. In other words, we need to make 
a schedulability analysis of the system based on temporal requirements of each component. A 
scheduler which can handle the relevant  timing attributes has been presented in [14], 
however other approaches such as fixed priority schedulability analysis can easily also be 
used.  
 
The scheduler in [14] takes a set of components with assigned timing attributes, and creates a 
static schedule. If scheduling fails, changes are necessary. It may be sufficient to revise the 
detailed design by reengineering the temporal requirements or by simply replacing 
components with others from the candidate set. An alternative is to return to top-level design 
and either select others from the library or specify new components.  
 
During the scheduling we must check that the system is properly integrated; component 
interfaces are to be checked to ensure that input ports are connected and that  their types 
match. Further, if the specified system passes the test, besides the schedules, the infrastructure 
for communication between components will be generated. 

2.4 WCET verification 

Even if the component supplier provides a specification of the WCET, it must be verified on 
the target platform. This is absolutely necessary when the system environment is not as in the 
component specification. We can verify the WCET by running test cases developed by the 
component designer and measuring the execution time. The longest time is accepted as the 
component WCET. Obtaining the WCET for a component is a quite complicated process, 
especially if the source code is not available for the performance of the analysis. For this 
reason, correct information about the WCET from the component supplier is essential. 

2.5 Implementation of new components 

New components; those not already in the library must be implemented. A standard 
development process for the development of software components is used. It may happen that 
some of the new components fail to meet their assigned time budgets. The designer can either 
add these to the library for possible reuse in other projects or redesign them. In order to 
proceed, the target platform must be available at this stage. Once a component is implemented 
and verified we must determine its WCET on our target platform and verify the WCET of 
library components, if this has not been done before.   
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2.6 System build and test 

Finally, we build the system using old and new components. We must now verify the 
functional and temporal properties of the system obtained. If the verification test fails, we 
must return to the appropriate stage of the development process and correct the error. 

2.7 Component library 

The component library is the most central part of any CBSE system, since it contains binaries 
of components and their descriptions. When selecting components we examine the attributes 
available in the library. A component library containing real-time components should provide 
the following in addition to component identification, functional description, interface, 
component binary and  test cases: 
 

• Memory requirements - Important information when designing memory restricted 
systems, and when performing trade-off analysis. 

• WCET test cases - Test cases which indicate the WCET of the components WCET 
for a  particular processor family. Information about the WCET for previously used 
targets should be stored to give a sense of the components processor requirements. 

• Dependencies – Describing dependencies on other components. 
• Environment assumptions - Assumptions about the environment in which the 

component operates, for example the processor family. 
 

2.8 WCET test cases 

Since the timing behavior of components depends on both the processor and the memory 
organization, it is necessary to re-test the WCET for each target different from that specified.   
The process of finding the WCET can be a difficult and tedious process, especially if 
complete information or the source code is not available. Giving the WCET as a number does 
not provide sufficient information. What is more interesting in the test cases is the execution 
time behavior shown as a function of input parameters as shown in Figure 2-2. The execution 
time shows different values for the different input sub-domains. 
 
 

 Execution time 

Input 
domain 1 domain 2 domain 3 

 
Figure 2-2: An execution time graph 

 
 
Producing such a graph can also be a difficult and time-consuming process. In many cases, 
however, the component developer can derive WCET test cases by combining source code 
analysis with the test execution. For example, the developer can find that  the execution time 
is independent of input parameters within an input range (this is possible for many “simple" 
processors used in embedded systems but not for others).  
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The exact values of the execution time are not as important as the maximum value within 
input intervals, as depicted in Figure 2-3. When a component is instantiated, the WCET test 
cases are chosen from the appropriate input sub-domain. The timing behavior depends on 
how the component is instantiated.  
 

Execution time

Input
domain 1 domain 2 domain 3

 
Figure 2-3: Maximum execution time per sub-domain 

 

3 Composition of components 

As mentioned earlier a component consists of one or more tasks. Several components can be 
composed into a more complex one. This is achieved by defining an interface for the new 
component and connecting the input and output ports of its building blocks, as shown in 
Figure 3-1. 
 
This new kind of component is also stored in the component library, in much the same way as 
the other components. However, two aspects are different: the timing information and the 
component binary. The WCET of a composed component cannot be computed since its parts 
may be executing with different periods. Instead we propose that end-to-end deadlines should 
be specified for the input to and output from the component. End-to-end deadlines are set 
such that the system requirements are fulfilled in the same way as the time budgets are set. 
These deadlines should be the input to a tool which can derive constraints on periods and 
deadlines for the sub-components. This possibility remains the subject of research and cannot 
be considered feasible today. 
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Figure 3-1: Composition of components 
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Furthermore, we specify virtual timing attributes (period, release time and deadline) of the 
composed component, which are used to compute the timing attributes of sub-components. 
For example, if the virtual period is set to P, then the period of a sub-component A should be 
fA * P and the period of B is fB * P, where fA and fB are constants for the composed component, 
which are stored in the component library. This enables the specification of timing attributes 
at the proper abstraction level. The binary of the composed component is not stored in the 
component library. Instead references to the sub-components are stored, to permit the 
retrieval of the correct set of binaries. 

4 Example: RT components in Rubus OS 

Currently there are not so many real-time operating systems that have some concept of 
components. The Rubus operating system [19] is one of those. In this section we will describe 
the main features of Rubus, and then present extensions that will make it suitable to use 
together with our development process. The scheduling theory behind this framework is 
explained in [14]. 

4.1 Rubus 

Rubus is hybrid operating system, in the sense that it supports both pre-emptive static 
scheduling and fixed priority scheduling, also referred to as the red and blue parts of Rubus. 
The red part deals only with hard real-time and the blue part only with soft. Here we focus on 
the red part only.  
 
Each task in the red part is periodic and has a set of input and output ports, which are used for 
unbuffered communication with other tasks. This set also defines a task’s interface. A task 
provides the thread of execution for a component and the interface to other components in the 
system via the ports. In Figure 4-1 we can see an example of how a task/component interface 
could look like. 
 

Task:  BrakeLeftRight   
Period: 50 ms  
Release time: 10 ms 
Deadline: 30 ms 
Precedes: outputBrakeValues 
WCET: 2 ms 

oil pressure 

speed 

…. 

brake left wheel 

brake right wheel 

Task state information 

 
Figure 4-1: A task and its interface in the red model of Rubus  

 
Each tasks has an entry function that which as arguments have input and output ports. The 
value of the input ports are guaranteed not to change during the execution of the current 
instance of the task, in order to avoid inconsistency problems. The entry function is re-
invoked by the kernel periodically. 
 
The timing requirements of the component/task are shown in Figure 4-1. The timing 
requirements are specified by release-time, deadline, WCET and period. Besides the timing 
requirements, it is also possible to specify ordering of tasks using precedence relations, and 
mutual exclusion. For example the depicted task in  is required to execute before the 
outputBrakeValues task, i.e., task BrakeLeftRight precedes task outputBrakeValues. A system 
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is composed of a set of components/tasks for which the input and output ports have been 
connected, as depicted in Figure 4-2.  
 
 

 
Component:  

BrakeLeftRight 
 

oil pressure 

speed 

brake left wheel 

brake right wheel 

State information 

input 1 

input 2 

 
Component: 

OutputBrakeValues 

State information 

 
Figure 4-2: A composed system in the red model of Rubus 

 
When the design of a system is finished, a pre run-time scheduler is run to check if the 
temporal requirements can be fulfilled. If the scheduler succeeds then it also generates a 
schedule for the design, which is later used by the red kernel to execute the system. 

4.2 Extensions for CBSE 

Let’s see what is missing in Rubus and its supporting tools to make them more suitable for 
component based development. Firstly, there is currently no support for creating composite 
components, i.e., components that are built of other components. Secondly, some tool is 
needed to manage the available components and their associated source  files, so that 
components can be fetched from a library and instantiated into new designs.  Besides this 
there is a lack of real-time tools like: WCET analysis, allocation of tasks to nodes. 
 
Support for composition of components can easily be incorporated into Rubus, since only a 
front-end tool is needed that can translate component specifications to task descriptions. The 
front-end tool needs to perform the following for composition: 
 

1. assign a name to the new component 
2. specify input and output ports of the composition 
3. input and output ports are connected to the tasks/ components within the component, 

see Figure 4-3. 
4. generate task descriptions and port connections for the task within the component. 

 

Task:
BrakeLeftRight

oil
pressure

speed

brake left

brake right

Task state information

Task:
OutputBrakeValues

Task state information

Component: BrakeSystem

pressure

speed

 
 

Figure 4-3: Composition of components in Rubus 
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5 Reuse of RT Components 

Design for reuse means that a component from a current project should require a minimum of 
modification for use in a future project. Abstraction is extremely valuable for reuse. When 
designing components for reuse, designers should attempt to anticipate as many future 
applications as possible. Reuse is more successful if designers concentrate on abstract rather 
than existing uses. The objective should be to minimize the difference between the 
component's selected and ideal degrees of abstraction. The smaller the variance from the ideal 
level of abstraction, the more frequently a component will be reused. 
 
There are other important factors which designers of reusable components must consider, they 
must not only anticipate future design contexts and future reuses. They must consider: 
• What users need and do not need to know about a reusable design, or how to emphasize 

relevant information and conceal that which is irrelevant.  
• What is expected from potential users, and what are their expectations about the 

reusable design. 
• That it is desirable, though difficult, to implement binary components, to allow users to 

instantiate only relevant parts of components. For example, if a user wants to use only 
some of the available ports of a component, then only the relevant parts should be 
instantiated.  

 
No designer can actually anticipate all future design contexts, when and in which 
environment the component will be reused. This means that a reusable component should 
depend as little as possible on its environment and be able to perform sufficient self-checking. 
In other words, it should be as independent as possible. Frequency of reuse and utility 
increase with independence. Thus independence should be another main area of concern when 
designing reusable components.   
 
An interesting observation about efficient reuse of real-time components, made by engineers 
at Siemens [15] is that, as a rule of thumb, the overhead cost of developing a reusable 
component, including design plus documentation, is recovered after the fifth reuse. Similar 
experience at ABB [16] shows that reusable components are exposed to changes more often 
than non-reusable parts of software at the beginning of their lives, until they reach a stable 
state.  
 
Designing reusable components for embedded real-time systems is even more complicated 
due to memory and execution time restrictions. Furthermore, real-time components must be 
much more carefully tested because of their safety-critical nature. 
These examples show that it is not easy to achieve efficient reuse, and that the development of 
reusable components requires a systematic approach in design planning, extensive 
development and support of a more complex maintenance process. 

5.1 Online Upgrades of Components 

A method for online upgrades of software in safety-critical real-time systems has been 
presented in [17]. It can also be applied to component-based systems when replacing 
components.  
 
Replacing a component in a safety critical system can result in catastrophic consequences if 
the new component is faulty. Complete testing of new components is often not economically 
feasible or even possible, e.g., shutting down a process plant with high demands on 
availability can result in big financial losses. It is often not sufficient to simulate the behavior 
of the system including the new component. The real target must be used for this purpose. 
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However, testing in the real system means that it must be shut down, and there is also a 
potential risk that the new component could endanger human life or vital systems.  
To overcome these problems it is proposed in [17] that the new component should be 
monitored to check that its output is within valid ranges. If it is not, then the original 
component will resume  control of the system. It is assumed that the old component is 
reliable, but not as effective as the new component in some respect e.g., the new provides 
much improved control performance. This technology has been shown to be useful for control 
applications. 
 
A similar approach can be found in [18] where a component wrapper invokes a specific 
component version depending on the input values. The timing constraints related to the 
wrapper execution time must be taken into consideration, and such a system must support 
version management of components. 
 
In this development model we assume that a static schedule is used at run-time to dispatch the 
tasks, and since the schedule is static the flexibility is restricted. However, in some cases it is 
possible to perform online upgrades.   
 
Online upgrade of the system requires that the WCET of the new component is less or equal 
to the time-budget of the component it replaces. It is also required that it has the same 
interface and temporal properties, e.g., period and deadline. If this is not feasible, a new 
schedule must be generated and we must close down the system to upgrade it.  Using the 
fault-tolerance method above, we can still do this safely with a short downtime. 

6 Summary 

In this paper we presented certain issues related to the use of component technology in the 
development of real-time systems. We pointed out the challenges introduced by using real-
time components, such as guaranteeing the temporal behavior not only of the real-time 
components but also the entire composed system. 
  
When designing real-time systems with components, the design process must be changed to 
include timing analysis and especially to permit high-level analysis on an architectural design 
level. We presented a method for the development of reliable real-time systems using the 
component-based approach. The method emphasizes the temporal constraints which are 
estimated in the early design phase of the systems and are matched with the characteristics of 
existing real-time components.  We outlined the information needed when reusing binary 
components, saved in a real-time component library.  
 
Furthermore, we proposed a method for composing components and how the resulting 
compositions could be handled when designing real-time systems. We also provided 
guidelines about what one should be aware of when reusing and online updating real-time 
components. 
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