
Coyote Project: Documentation
www.mrtc.mdh.se/projects/wcet/Coyote

Nerina Bermudo, Xavier Vera∗

Institutionen för Datateknik

Mälardalens Högskola

Väster̊as, Sweden

1 Introduction

Data caches are a key component of current microprocessors in order to reduce the memory
latency. The effectiveness of a cache memory depends not only on the hardware structure,
but also on the code generated by the compiler. Optimizing compilers can significantly
improve the performance of the memory system by means of several program transforma-
tions/optimizations such as prefetching, blocking, padding and data layout. However, this
type of techniques require some knowledge of the behavior of the program.

The process of obtaining information of the locality characteristics of a given program
is known as data locality analysis. This analysis has been performed traditionally either at
compile-time using heuristics or at run-time by means of simulators. The problem is that
simulators are very slow whereas heuristics can be very imprecise. Analytical methods model
the cache behavior in such a way that information about the causes of the misses can be
obtained. Unfortunately, they can have huge computation times, lack of accuracy and only
suit for perfectly nested loops without conditionals.

Cache Miss Equations (CMEs) [3] is another method that accurately describes the cache
behavior by means of a set of equations. These diophantine equations constitute an ana-
lytical model of the cache memory that allows us to use mathematical techniques to gather
information about the cache behavior. Unfortunately, a direct solution of the CMEs is com-
putationally intractable. Even though the computation cost of generating CMEs is a linear
function of the number of references, to solve them is a NP-Hard problem and thus trying
to study a whole program may be unfeasible.

Like the CMEs, the analytical method described in this paper describes the cache be-
havior by means of a set of equations. These equations describe accurately the relationship
among loop indices, array sizes, base addresses and the cache parameters for a loop nest.
Some statistics-based methods has been reported to reduce the execution time of solving the
equations. We have followed the ideas presented by Vera et al. [2, 6]. Their method is based
on two facts. Firstly, the equations describe convex bounded polyhedra. The integer points
inside of them represent the iteration points where a potential miss occurs. By exploiting

∗emails:{nerina.bermudo, xavier.vera}@mdh.se

1

some intrinsic properties of the particular types of polyhedra generated by the equations,
they reduce the complexity of the algorithm. On the other hand, one of the advantages of
using equations towards simulators is that they allow studying each reference in a particular
iteration point independently of all other memory references. They estimate the miss ratio
by means of sampling techniques.

1.1 Goals and Philosophy

We present an implementation of analytical method to analyze the performance of the mem-
ory hierarchy. It is based on the Cache Miss Equations (CMEs) [3]. Like them, we set
up a collection of equations that describe the cache behavior. As we mentioned before, we
apply some statistics-based and polyhedra techniques to reduce the execution time needed
to obtain the miss ratio [2, 6].

Unfortunately, the current method is limited to special forms of perfectly nested loops.
For example, they must be free of IF statements and they can not contain parallel loop nests.
Since one of our future research aim is to overcome this problem, our goal was to make an
implementation in such a way so that it could be easily extended and could analyze both
C and FORTRAN codes. Besides, it needed to be as efficient and accurate as possible. We
need sometimes to obtain safe approximations of the cache miss ratio, so the whole iteration
space is likely to be analyzed (efficiency) and we are interested in obtaining the most accurate
approximation (accuracy).

We have chosen C++ as the language to implement it. It gives us the required data-
abstraction mechanism and we can use all the low level tricks available from C, so we can
obtain an efficient implementation.

2 Generating the Equations

The analysis of complete iteration spaces showed that the locality analysis that was provided
by the reuse vectors introduced by Lam [7] is not sufficient in some cases and in others the
equations did not take profit of all the information. Specific reuse vectors to the shape of the
iteration space and the cache parameters (the very information ignored by Wolf and Lam’s
framework) should be provided.

Section 2.1 describes how we handle the standard reuse vectors [7] in order to use them
afterwards to generate the equations. Section 2.2 presents the different reuse extensions that
have been developed in order to obtain tighter results. Finally, section 2.3 gives some details
about the equations that are generated.

2.1 Basic Reuse Vectors

For each reference, we compute the reuse vectors that describe the potential data reuse
applying Wolf and Lam’s framework reuse. This reuse vectors determine the distance and
direction of reuse between pairs of uniformly generated references. Non-affine references
which yields little reuse [7] are ignored.

2

Given a reference RA, we compute four different types of general reuse vectors which
correspond to the kinds of reuse that may exist: self spatial, self temporal, group spatial and
group temporal. In the case of group reuse vectors, we call RA the trailing, and the reference
from which it reuses RB is called the leader.

Once the reuse vectors are computed, they should be modified in order to be used to
generate the equations. The following rules are applied:

• If we obtain two identical reuse vectors that only differ in its type (temporal or spatial),
we always keep the temporal reuse vector and remove the spatial one, since the temporal
reuse vector is the more restrictive one.

• All self reuse vectors are normalized, since the reuse distance is not relevant, and this
helps to remove redundant vectors.

• Since negative reuse vectors model forward reuse and a reference can not reuse from an
iteration that has not been executed yet, whenever a negative reuse vector is computed,
we change its orientation and interchange leader and trailing references, since the
former trailing will be the one that will actually reuse data from the former leader.

• If a group reuse vector is zero and the leader is executed after the trailing in each
iteration, we change this vector by (0, . . . , 0, 1) (assuming that innermost component
carries the reuse). The fact that the reuse vector is zero means that the trailing
reference reuses from the leader in the same iteration, but if the leader reference has
not been executed yet, this reuse cannot exist. At most, that reuse will be realized in
the following iteration of the loop nest that carries the reuse, which corresponds to the
reuse vector (0, . . . , 0, 1).

In order to obtain the number of misses, we study the reuse vectors in lexicographical
ascendent order [4]. In case we have more than one reuse vector with the same distance, the
following order applies: group temporal, group spatial, self temporal, self spatial.

2.2 Reuse Extensions

One of the flaws of Wolf and Lam’s framework is that they do not take in account the shape
of the iteration space and the configuration of the cache. In order to achieve a more accurate
description of the reuse in the loop and get exact information of the cache behavior, several
extensions of those reuse vectors have been developed.

Let dim be the dimension of the iteration space of the loop, which is also the dimension
of the reuse vectors. Let ubi and lbi be the upper and lower bounds of the i− th dimension
of the iteration space.

The reuse extensions included in this implementation are the following:

1. If we have a reuse vector of the form (0, . . . , 0, n), no matter what type of vector it is,
we add the following new spatial reuse vectors:

(0, . . . , 1, n− ubdim)
(0, . . . , 0, 1, 1− ubk, . . . , 1− ubdim−1, n− ubdim), k = dim− 1, . . . , 1

3

a(511,1) a(1,2)a(512,1) a(2,2)

Figure 1: Reuse between different columns.

This reuse vectors do not describe a new reuse that was not given by the general ones,
but they describe it for some special cases in a different way in order to be able to deal
with CMEs.

Let us consider a loop of the form

do j = 1, 511
do i = 1, 511

a(i, j)
...
a(i + 1, j)

enddo
enddo

In this case, we would obtain a group temporal reuse vector (0, 1) which shows that
reference R1 = a(i, j) reuses data from the reference R2 = a(i + 1, j) one iteration of
the inner loop later. For example, reference R1 in iteration (1, 2) accesses the same
data that reference R2 has accessed in the iteration (1, 1).

The original equations do not get the reuse that is realized when changing the iteration
of the outer loop, although reference R1 reuses from the ”previous” iteration of the
whole loop from reference R2 (see Figure 1). Our extended reuse vectors are built in
order to express this reuse in such a way that the equations can detect it.

2. Let us assume we have a reuse vector of the form (0, . . . , 0, j1, . . . , jk)

Then, we create a new reuse vector that has the form

(0, . . . , 0, 0, (j1) ∗ colsize− Cl/sizeofelem + 1 + j2, j3, . . . , jk)

where colsize is the size of the column of the variable, Cl is the size of the cache line
and sizeofelem is the size of the elements of the array.

3. Let us consider an original reuse vector as above. If this reuse vector is temporal, then
we create several new reuse vectors in the following way:

(0, . . . , 0, j1, j2 − s, . . . , jk), s = 1, . . . , nelems

In order to explain the kind of reuse that express these reuse vectors, we consider the
following loop:

4

RARB

Figure 2: Reuse between two different references that are not evicted from the cache.

do j
do i

h(i, j)
...
h(i, j + 1)

enddo
enddo

Let be RA = h(i, j + 1) and RB = h(i, j) be the two references in the loop. Let
us assume that the columns h(·, j) and h(·, j + 1) are stored in the same memory
line. Figure 2 illustrates the situation that occurs. Reference RA starts accessing the
memory at a position that reference RB will access in the following iteration of the
outer loop. The new reuse vectors are added in order to describe the reuse that exists
due to the fact that the columns of the matrix are in the same memory line.

2.3 Equations

There are two types of situations where a miss arises: cold misses and replacement misses.
Given a reference R and an iteration point ~ı, R suffers a cold miss at ~ı when the memory
line accessed is touched for the first time. A replacement miss occurs if the line was accessed
before and flushed out later, so that it is not in the cache anymore.

When computing the cold miss equations that describe the reuse that is not realized when
a new cache line is accessed, the original CMEs framework assumes that all the columns are
aligned. In our model, we use the exact position of all the columns of the arrays for the sake
of accuracy. Furthermore, we can generate the equations in two different ways:

• Polyhedral way: we build a polyhedron that describes all the iteration points where
the reuse is not realized

• Mapping function: we keep the function that allows us to compute the cache line where
the references are mapped. This way we can add some extra reuse vectors between
non-uniformly generated references.

5

3 Coyote Environment

Currently our tool works fine on the following platforms:

- Windows environment (NT, 2000 and 98), compiler: Visual Studio 6.0

- Solaris, compiler: gcc 2.8.1 and gcc 2.95

- OSF (on alpha machines): gcc 2.8.1 and gcc 2.95

- Linux: egcs 2.90 and gcc 2.95

- Cygwin (it is a Unix environment under NT): gcc 2.95

We have evaluated our tool through the SPECfp95 programs for a 32KB cache and different
cache architectures: direct-mapped, 2, 4 and 8-way set associative caches. In all cases, we
obtain exactly the same number of misses as the simulator.

In order to test our analyzer, we have written a program that generates all the compile
time information needed to generate our equations. This program has been written for
Fortran codes by means of the Polaris Compiler [5]. We have used the Ictineo library [1]
to obtain the relative access order of the references from a RIS low-level optimized code.
Information such as the base addresses of the variables are obtained from the native compiler.
The same information has been fed to the simulator.

3.1 Performance Evaluation

We report our experimental results for a range of programs from SPECfp95. We present the
estimation of the cache misses for three different architectures: direct-mapped cache, 2-way
and 4-way set associative caches.

The problem sizes used for all the examples are those of the reference input files. We
assume a cache of 32KB and 32B per cache line.

All results have been obtained using a PentiumIII, 950MHz with 512MB memory running
SUNOs 5.6. All the simulation results are obtained using a trace-driven simulator.

Basic Reuse Vectors Table 3.1 shows the total number of misses for different loops of
Swim, Tomcatv and Hydro2D. First two columns identify the loop nest, giving the name of
the program and the function where it is. Column 4 gives the number of misses obtained
running the simulator, whereas column 5 shows the number of misses estimated by means
of Coyote. In the last column we present the relative error. As it can be seen, in all the
cases but one the reuse vectors are not enough, and therefore we overestimate the number
of misses. In some case this overestimation is rather large (fct12, artdif8 or main5).

Extensions We have analyzed exactly the same codes using the extensions explained in
section 2.2. In all the case we obtain the same number of misses for all the cache configura-
tions. Table 3.1 shows the time needed to analyze the whole iteration space. Although the

6

#Cache Misses
Program Function Cache Sim. Coyote E.

direct 98562 99776 1.2
Initial4 2-way 98562 99776 1.2

4-way 98562 99776 1.2
direct 197382 200070 1.3

Initial8 2-way 197382 200070 1.3
4-way 197382 200070 1.3
direct 262789 266050 1.2

Calc1 2-way 230021 232899 1.2
4-way 230021 232899 1.2
direct 361355 365827 1.2

Swim

Calc2 2-way 328586 332804 1.2
4-way 328586 333187 1.4
direct 296073 300105 1.3

Calc3z 2-way 296073 300105 1.3
4-way 328969 332937 1.2
direct 296073 298944 0.9

Calc3 2-way 328327 331648 1.0
4-way 361159 364352 0.8
direct 2622730 2632945 0.3

Main2 2-way 2622730 2632945 0.3
4-way 2622730 2634220 0.4
direct 664282 666837 0.3

Main3 2-way 655364 656640 0.2
4-way 655364 656640 0.2
direct 1637760 1640950 0.2

Tomcatv Main5 2-way 1637760 1640950 0.2
4-way 1637760 1967350 20
direct 1311985 1311985 0.0

Main7 2-way 1311985 1311985 0.0
4-way 1311985 1311985 0.0
direct 1310720 1313265 0.2

Main8 2-way 1310720 1313265 0.2
4-way 1310720 1313265 0.2

#Cache Misses
Program Function Cache Sim. Coyote E.

direct 50174 55963 11
artdif4 2-way 48529 51409 5.9

4-way 48502 48682 0.3
direct 48322 48480 0.3

artdif6 2-way 50202 50360 0.3
4-way 48322 48480 0.3
direct 80522 80960 0.5

fct2 2-way 80522 80960 0.5
4-way 80522 80960 0.5
direct 95981 96455 0.4

fct4 2-way 95981 96455 0.5
4-way 80102 80497 0.5
direct 60211 67009 11

fct10 2-way 48689 49169 1
4-way 48485 48864 0.8
direct 69306 82023 18

Hydro2D

fct12 2-way 64544 70367 9.0
4-way 64503 65104 0.9
direct 32161 32320 0.5

filter2 2-way 32161 32320 0.5
4-way 32161 32320 0.5
direct 32161 32319 0.5

filter7 2-way 32161 32319 0.5
4-way 32161 32319 0.5
direct 64322 64720 0.6

filter10 2-way 64322 64720 0.6
4-way 64322 64720 0.6
direct 63918 64236 0.5

filter17 2-way 63918 64236 0.5
4-way 63918 64236 0.5

Table 1: Cache miss ratios for caches with C=32KB and L=32B.

7

Program Function Cache Time

direct 1.2
Initial4 2-way 1.2

4-way 1.2
direct 1.3

Initial8 2-way 1.3
4-way 1.3
direct 1.2

Calc1 2-way 1.2
4-way 1.2
direct 1.2

Swim

Calc2 2-way 1.2
4-way 1.4
direct 1.3

Calc3z 2-way 1.3
4-way 1.2
direct 0.9

Calc3 2-way 1.0
4-way 0.8
direct 0.3

Main2 2-way 0.3
4-way 0.4
direct 0.3

Main3 2-way 0.2
4-way 0.2
direct 0.2

Tomcatv Main5 2-way 0.2
4-way 20
direct 0.0

Main7 2-way 0.0
4-way 0.0
direct 0.2

Main8 2-way 0.2
4-way 0.2

Program Function Cache Time

direct 11
artdif4 2-way 5.9

4-way 0.3
direct 0.3

artdif6 2-way 0.3
4-way 0.3
direct 0.5

fct2 2-way 0.5
4-way 0.5
direct 0.4

fct4 2-way 0.5
4-way 0.5
direct 11

fct10 2-way 1
4-way 0.8
direct 18

Hydro2D

fct12 2-way 9.0
4-way 0.9
direct 0.5

filter2 2-way 0.5
4-way 0.5
direct 0.5

filter7 2-way 0.5
4-way 0.5
direct 0.6

filter10 2-way 0.6
4-way 0.6
direct 0.5

filter17 2-way 0.5
4-way 0.5

Table 2: Execution time (in seconds).

8

execution time needed is not very large, it is unfeasible for large problems, and the use of
sampling techniques is recommended.

4 Coyote Internal Representation

The internal representation is the main basis of our tool. All future software based in this
implementation up to the obtention of the number of misses is related to this representation.

The current internal representation is made upon a set of classes, which describe the
program we want to analyze, as well as its locality and cache behavior. In order to do that,
several modules have been developed:

Base Classes. This module contains all the classes that any piece of this implementation
can be expected to handle. We can find classes that describes a program and the
different classes that help us to create the equations.

Generator Module. This module contains a set of functions that allows us to compute the
locality of a program (i.e the reuse vectors) and generate the set of equations. Those
functions belong to different base classes.

Solver Module. We can find in it a set of routines that solves the equations. Besides, it
contains some classes where we can store detailed information about the cache memory
behavior of the program.

Statistic Module. It contains all the routines that deal with the statistical part of this
implementation.

The different modules but the statistical one are described in the following sections. The
next subsection gives an overview of support classes.

4.1 Support Classes

In order to provide a full support to the internal representation, we have created an infras-
tructure of classes, types and functions that are used very often by the other classes.

The infrastructure includes a List class hierarchy (which contains ListElem objects).
Actually, most of the classes used in our representation derives from the ListElem class
and they are stored in different lists. An example of the use of this lists can be seen in the
representation of a function of the program we are analyzing. A function contains a list of all
the variables that are declared within it and another list of all the loops we plan to analyze.

We can insert in different places of the List, access a concrete element of it or we can
iterate the List using the in-built iterator. List has also a method that allows us to sort it
using the compare function from the ListElem object.

Serialization All lists, as well as all the ListElem and the other objects that are within
the internal representation can be serialized from and to a stream. All the objects have an

9

overloaded operator << and >>. These operators can be used to keep track of the different
sessions that have been executed. If we want a pretty output that helps us in the debugging
stuff, all the objects have a print() method which gives much more readable information to
the user.

4.2 Writing a pass

Now, we explain how we can create a main program that takes a description of the program
we want to analyze and gives us its cache behavior for a given cache architecture.

The generator of the CMEs needs certain information about the program we want to
analyze as well as the architecture that will be considered. Currently, this information has
to be provided via an input stream, using the serialization methods described above. The
stream should be like this:

Information on the cache

cache line, cache size, associativity of the cache

Information on the variables

number of variables

(For each variable)

length of the name of the variable, name of the variable

base address, size of the element

dimensions of the array

bounds of every dimension

Information on the loops

(For each loop)

Number of references in the loop

(For each reference)

variable

dimensions of the matrix H

matrix H (in rows) and vector C

number of reuse vectors (This field has to be set to zero.)

About the iteration space

dimension

bounds of each dimension

10

program test
parameter (n=1000)
real A(n,n), B(n,n), C(n,n)
do i = 1,n

do j = 1,n
do k = 1,n

A(i,j)=A(i,j) + B(i,k) * C(k,j)
enddo

enddo
enddo
end

Figure 3: Matrix Multiply Algorithm

Figure 4 shows an example of input stream for the matrix multiply program (see Figure 3).

In this example we have one loop, three 2-dimensional variables (A,B and C) and four
references. Note that the variables are labelled from 0 to 2 and are referred like that when
expressing to which variable each reference is associated.

Not that since this format corresponds to the internal structure of the equations, the
number of reuse vectors has to be entered.

In order to use the functions to generate and solve the equations, a main program is
needed that fulfils following properties.

Files to be included:

- CFunction.h

- CVariable.h

- CSample.h

- CMLoop.h

- FSolver.h

Figure 5 shows an example of how to analyze a function. In this example, we assume a
direct mapped cache and the sample of the iteration space is generated in order to obtain
an accuracy of 95% confidence and a 0.05 interval length. For every loop in the function
(in this case we have only one), the reuse vectors of the current loop are computed in the
instruction

function.loops().current().Compute Locality(function.Cl(), function.variables());.

The computed reuse vectors are directly added to the internal structure that contains all
the information about the program. Then the equations are generated calling

function.loops().current().Generate Equations(function.variables(), function.Cl(),
function.Cs());.

11

32 32768 1 cache conf i gur at i on

3 3 var i abl es

1 A
155384 4
2
1 1000 1 1000
1 B
4155392 4
2
1 1000 1 1000
1 C
8155400 4
2
1 1000 1 1000
1 1 l oop

4 4 r ef er ences

0
2 3
1 0 0 0 1 0 0 0
0
1
2 3
1 0 0 0 0 1 0 0
0
2
2 3
0 0 1 0 1 0 0 0
0
0
2 3
1 0 0 0 1 0 0 0
0
3
1 1000 1 1000 1 1000

about t he f i r s t var i abl e

about t he second var i abl e

about t he t hi r d var i abl e

about t he f i r s t r ef er ence

about t he second r ef er ence

about t he t hi r d r ef er ence

about t he f our t h r ef er ence

3- di mensi onal i t er at i on
space

Figure 4: Example of input file (matrix multiply).

12

/ / Base i ncl udes
#i ncl ude " CFunct i on. h"
#i ncl ude " CVar i abl e. h"

/ / Sol vi ng i ncl udes
#i ncl ude " CSampl e. h"
#i ncl ude " CMLoop. h"
#i ncl ude " FSol ver . h"

/ / St andar d i ncl udes
#i ncl ude " i ost r eam. h"
#i ncl ude " f st r eam. h"

i nt mai n (voi d)
{

char name[80] ;
ci n>>name;
i f st r eam f i l e (name) ;
of st r eam out put (" out put . sol ") ;

CFunct i on f unct i on;
f i l e>>f unct i on;

f unct i on. l oops() . r eset () ;

CSampl e sampl e(0. 95, 0. 05, f unct i on. l oops() . cur r ent () . i space()) ;

i nt nl oops=f unct i on. l oops() . ent r i es() ;

f or (i nt i =0; i <nl oops; i ++)
{

f unct i on. l oops() . cur r ent () . Comput e_Local i t y(f unct i on. Cl () ,
f unct i on. var i abl es()) ;

f unct i on. l oops() . cur r ent () . Gener at e_Equat i ons(f unct i on. var i abl es() ,
f unct i on. Cl () , f unct i on. Cs()) ;

CMLoop * sol =Number _Mi sses_CM(f unct i on. l oops() . cur r ent () , sampl e) ;
sol - >Comput e_I nt er val (0. 05) ;
sol - >pr i nt (out put) ;
del et e sol ;

}
r et ur n 0;

}

Figure 5: Example of main program.

13

Loop mi sses
===========

Tot al number of mi sses: 1159
Tot al number of accesses: 4328
Mi ss Rat i o: 0. 267791

Compul sor y mi sses: 0
Repl acement mi sses: 1159
Spat i al Repl . mi sses: 9
Tempor al Repl . mi sses: 1150
- -

Ref er ence 1
Tot al number of mi sses: 0
Tot al number of accesses: 1082
Mi ss Rat i o: 0
[0, 0. 0687786]
Compul sor y mi sses: 0
Repl acement mi sses: 0

Spat i al : 0
Tempor al : 0

Ref er ence 2
Tot al number of mi sses: 1082
Tot al number of accesses: 1082
Mi ss Rat i o: 100
[99. 9312, 100]
Compul sor y mi sses: 0
Repl acement mi sses: 1082

Spat i al : 2
Tempor al : 1080

Ref er ence 3
Tot al number of mi sses: 72
Tot al number of accesses: 1082
Mi ss Rat i o: 6. 65434
[6. 57425, 6. 7617]
Compul sor y mi sses: 0
Repl acement mi sses: 72

Spat i al : 7
Tempor al : 65

Ref er ence 4
Tot al number of mi sses: 5
Tot al number of accesses: 1082
Mi ss Rat i o: 0. 462107
[0. 419259, 0. 537693]
Compul sor y mi sses: 0
Repl acement mi sses: 5

Spat i al : 0
Tempor al : 5

Figure 6: Output

14

There are different functions for solving the equations, depending on the cache configu-
ration and the way we want to obtain the information (see section 5.2.2).

In the example we are considering (see Figure 5), we use the last one of these functions.
The CMLoop sol is returned. We dump the information contained in it to an output file
called output.sol (see Figure 6). Note that we get the total number of misses and misses of
each type as well as the miss ratio and the confidence interval for each reference in the loop.

Note that different samples can be generated for different references in order to obtain
more independent results.

5 Classes

In this section we introduce the different classes that build the CMEs library.

5.1 Base Classes

1. Class CFunction

CFunction represents the function we want to analyze. A function is represented by a
list of variables that appear in it and a list of loops. Besides, this class contains the
information on the cache configuration.

Constructors:

- CFunction (void)

- CFunction (unsigned int CS, unsigned int CL, unsigned int K=1)
where

- CS stands for the size of the cache.

- CL stands for the size of the cache line.

- K represents the associativity of the cache.

Clone:

- virtual CListElem *clone (void)

Destructors:

- CFunction (void)

Member access:

- unsigned int Cs (void) const
Returns the cache size.

- unsigned int Cs (unsigned int CS)
Sets the cache size to the value CS.

- unsigned int Cl (void) const
Returns the size of the cache line.

- unsigned int k way (void) const
Returns the associativity of the cache.

15

- unsigned int k way (unsigned int K)
Sets the associativity of the cache to the value K.

- CLlista<CVariable> & variables (void) const
Returns the symbol table of the function.

- CLlista<CLoop> & loops (void) const
Returns the list of loops.

CVariable & operator() (unsigned int i) const;
Returns the i-th variable in the function.

2. Class CVariable

This class contains all the information about the variables in the function. For each
variable we store its base address in the memory as well as the size of the variable and
the number of elements. We are also interested in its dimension (note that a scalar
is said to have dimension 0 and a vector has dimension 1) and the bounds of each
dimension.

Constructors:

- CVariable (void)

- CVariable (char *NAME, unsigned int DIMS, int *VDIMS, unsigned
long ADDRESS, unsigned int SIZE)
where

- NAME is the name of the variable.

- DIMS is the dimension of the array. (Note that scalars are considered to
have dimension 0).

- VDIMS contains the lower and upper bounds of each of the dimensions
of the variable.

- ADDRESS is the base address of the variable in the main memory.

- SIZE gives the size of the elements of the array.

Clone:

- virtual CListElem *clone (void)

Destructors:

- CVariable (void)

Member access:

- char *name (void) const
Returns the name of the variable.

- unsigned int dimensions (void) const
Returns the dimension of the array.

- int &dim lbound (unsigned int i) const
Returns the lower bound of the i-th dimension of the array.

- int &dim lbound (unsigned int i)
Assigns the desired value to the lower bound of the i-th dimension of the
variable i.

- int &dim ubound (unsigned int i) const
Returns the upper bound of the i-th dimension of the array.

16

- int &dim ubound (unsigned int i)
Assigns the desired value to the lower bound of the i-th dimension of the
variable i.

- unsigned long address (void) const
Returns the base address of the variable.

- unsigned long address (unsigned long NEW)
Sets the base address of the variable to NEW.

- unsigned int size (void) const
Returns the size of the elements of the array.

- unsigned int elements (void) const
Returns the number of elements of the variable.

Functions:

- void Compute Size (void)
Computes the number of elements in the array.

3. Class CLoop

This class contains all the information about the loop. A loop consists on the iteration
space and the references that appear in the loop.

Constructors:

- CLoop (void)

- CLoop (unsigned int REFERENCES)
where

- REFERENCES is the number of references in the loop.

- CLoop (unsigned int references, CISpace *ISPACE)
where

- REFERENCES is the number of references in the loop.

- ISPACE is a pointer to the iteration space of the loop.

Destructors:

- CLoop (void)

Clone:

- virtual CListElem *clone (void)

Members access:

- unsigned int references (void) const
Returns the number of references in the loop.

- CRef & operator () (unsigned int i) const
Accesses the i-th reference in the loop.

- CRef &add (unsigned int i, CRef *NEW)
Sets the reference NEW as the i-th reference in the loop.

- CISpace &ispace (void) const
Returns the iteration space of the loop.

Functions:

17

- void Compute Locality (unsigned int L, CLlista<CVariable> &VARS)
where

- L is the size of the cache line.

- VARS is the list of variables in the function that we are analyzing.

This function computes the reuse vectors for all the references in the loop.
The reuse vectors are directly stored in the corresponding reference.

- int **EqualHs (void) const
This function returns a matrix of dimensions nxn, where n is the number of
references in the loop defined by:

H[i][i] = −1

H[i][j] = 1, if the i-th reference accesses the same variable as the j-th refer-
ence and both have the same access matrix.

H[i][j] = 0, otherwise

- void Generate Equations (CLlista<CVariable>& VARS, unsigned int
CL, unsigned int CS, unsigned int K=1, unsigned int delete=1)
where

- VARS is the list of variables in the function.

- CL is the size of the cache line.

- CS is the cache size.

- K is the associativity of the cache.

- delete is set to 0 if the equations have to be removed from the list in case
they are found to be empty.

- void ReGenerate Equations (CLlista<CVariable> &VARS)
This function generates the CMEs for different base addresses of the variables.

4. Class ISpace

Given a loop, this class represents its iteration space, which is defined by the bounds
of the induction variables.

Constructors:

- CISpace (void);

- CISpace (unsigned int LOOP);

- CISpace (unsigned int LOOP, int *LB, int *UB);
where

- LOOP is the depth of the loopnest.

- LB is a vector that contains the lower bounds of the induction variables
in the loop.

- UB is a vector that contains the upper bounds of the induction variables
in the loop.

Destructor:

- CISpace (void);

Member access:

- int &lower (unsigned int i) const
Returns the lower bound of the i-th induction variable.

18

- int &upper (unsigned int i) const
Returns the upper bound of the i-th induction variable.

- int &lower (unsigned int i)
Assigns the desired value to the lower bound of the i-th induction variable.

- int &upper (unsigned int i)
Assigns the desired value to the upper bound of the i-th induction variable.

- unsigned int loopnest (void) const
Returns the depth of the loopnest.

- unsigned int iteration points (void) const
Returns the number of points in the iteration space.

Clone:

- virtual CListElem * clone (void)

5. Class CRef

It represents a single reference in the loop. A reference is given by the variable which
it accesses and the access function. In our case this access function is a linear function
of the induction variables, which is given by a matrix H and a vector of constants C.

Constructor:

- CRef (void)

Destructor:

- CRef (void)

Clone:

- CRef *clone (void) const

Member access:

- CLlista<CReuseVector> &reusevectors (void) const
Returns a list of the reuse vectors, from which the actual reference is the
trailing.

- CLlista<CReuseVector> &reusevectors (CLlista<CReuseVector> *NEW)
Sets the list of reuse vectors NEW as the list of reuse vectors of the actual
reference.

- unsigned int variable (void) const
Returns the position of the variable in the list of variables.

- unsigned int variable (unsigned int NEW)
Associates the actual reference to the variable that has the position NEW in
the list of variables in the loop.

- unsigned int rows (void) const
Returns the dimension of the reference.

- unsigned int loopnest (void) const
Returns the number of induction variables of the loop to which the reference
belongs.

- int & H (unsigned int i, unsigned int j) const
Returns H(i,j).

19

- int & H (unsigned int i, unsigned int j)
Accesses to H(i,j) to set it to the desired value.

- int & C (unsigned int i) const
Returns C(i).

- int & C (unsigned int i)
Accesses to C(i) to set it to the desired value.

- void new matrix (unsigned int i, unsigned int j)
Creates a new matrix H.

- void copy matrix (int *M)
Copies the matrix H to the matrix M.

Functions:

- void Compute Reuse Vectors (unsigned int L, CRef **REFS, int AC-
TUAL, int NREFS, int **EqualHs, CISpace &ISPACE, ARRAY LAYOUT
LAYOUT)
where

- L is the size of the cache line.

- REFS is the list of references in the loop.

- ACTUAL is the position of the actual reference in the list.

- NREFS is the number of references.

- EqualHs is the H matrix of the actual reference.

- ISPACE is the iteration space of the loop.

- LAYOUT is the considered array layout.

This function computes the general reuse vectors for the reference.

- void Extend Reuse Vectors (CISpace &ISPACE, unsigned int CL,
CLlista<CVariable> &VARS)
where

- ISPACE is the iteration space of the loop.

- CL is the size of the cache line.

- VARS is the list of variables.

This function computes the additional reuse vectors for the actual reference.

- void Compute Equations (CISpace &ISPACE, CRef **REFS, CLlista<CVariable>
&VARS, unsigned int CL, unsigned int CS, unsigned int K, unsigned
int idRef, unsigned int to delete)
where

- ISPACE is the iteration space of the loop.

- REFS is the list of references in the loop.

- VARS is the list of variables.

- CL is the size of the cache line.

- CS is the cache size.

- K is the associativity of the cache.

- idRef is the position of the actual reference in the list of references.

- to delete is set to 0 if the equations have to be removed from the list in
case they are found to be empty. Otherwise, to delete=1, which is its
default value.

20

Generation of the Cache Miss Equations.

- void ReGenerate Equations (CISpace &ISPACE, CRef **REFS, CLlista<CVariable>
&PARAMETERS)
where

- ISPACE is the iteration space of the loop.

- REFS is the list of references in the loop.

- PARAMETERS

This function regenerates the Cache Miss Equations for the given parameters.
Note that it does not create a new structure, it just replaces the existing one.

6. Class ReuseVector

Apart from the vector components there are several other parts that characterize a
reuse vector: its reuse and locality type and the references involved in the reuse.
Besides, the Cache Miss Equations are associated to the reuse vectors, so that each
reuse vector has a list of Cold, Cold Miss Bounds and Replacement Equations.

Constructor:

- CReuseVector (void)

- CReuseVector (unsigned int NREFS)
where

- NREFS is the number of references in the loop.

- CReuseVector (int *VEC, unsigned int DIM, REUSE TYPE TIPUS,
LOCALITY TYPE LOCAL, unsigned int NREFS, int LEADER, un-
signed int TRAILING)
where

- VEC contains the reuse vector.

- DIM is the dimension of the loopnest.

- TIPUS determines the type of reuse (temporal or spatial).

- LOCAL determines whether the reuse vector is group or self.

- NREFS is the number of references in the loop.

- LEADER indicates which is the reference that is reusing.

- TRAILING indicates the reference from which the LEADER reuses.

Clone:

- virtual CListElem *clone (void)

Destructor:

- CReuseVector (void)

Member access:

- unsigned int references (void) const
Returns the number of references in the loop.

- unsigned int dim (void) const
Returns the dimension of the loopnest.

- int &operator() (unsigned int i) const
Returns the i-th position of the reuse vector.

21

- int &operator() (unsigned int i)
Accesses the i-th position of the reuse vector, which can be set to the desired
value.

- REUSE TYPE type (void) const
Returns the reuse type of the reuse vector.

- LOCALITY TYPE local (void) const
Returns the locality type of the reuse vector.

- LOCALITY TYPE local (LOCALITY TYPE NEW)
Sets the locality type to NEW.

- int leader (void) const
Returns the leader reference.

- int leader (int NEW)
Sets the leader reference to NEW.

- unsigned int trailing (void) const
Returns the trailing reference.

- unsigned int trailing (unsigned int NEW)
Sets the trailing reference to NEW.

- CLlista<CEquation CMB> &compulsory g (void) const
Returns the list of Cold Miss Bounds equations.

- CLlista<CEquation CMB> & compulsory g (CLlista<CEquation CMB>
*NEW)
Sets the list NEW as the list of Cold Miss Bounds equations associated to the
reuse vector.

- CLlista<CEquation C> & compulsory (void) const
Returns the list of Cold Miss equations.

- CLlista<CEquation C> & compulsory (CLlista<CEquation C> *NEW)
Sets the list NEW as the list of Cold Miss equations associated to the reuse
vector.

- CLlista<CEquation R> & replacement (unsigned int i)
Returns the list of Replacement equations.

- CLlista<CEquation R> & replacement (unsigned int i, CLlista<CEquation R>
*NEW)
Sets the list NEW as the list of Replacement equations associated to the reuse
vector.

- bool & c generated (void)
Returns whether the compulsory equations have already been generated for the
actual reuse vector.

- bool & r generated (void)
Returns whether the replacement equations have already been generated for
the actual reuse vector.

Functions:

- unsigned int no null (void)
Returns which is the first non-null component of the vector.

- bool null (void)
Checks whether the vector is null. If it is, it returns true, otherwise, it returns
false.

22

- int compare (CReuseVector & OTHER)
Checks whether the actual reuse vector is equal to the reuse vector OTHER.

- void normalize (void)
This function normalizes the reuse vector.

Generating CMEs:

- void Generate C (CISpace & ISPACE)
where

- ISPACE is the iteration space of the loop.

This function generates the Cold Miss Equations.

- void Generate CMB (CRef &REF, CVariable &VAR, CISpace &IS-
PACE, unsigned int CL, unsigned int delete=1)
where

- REF is the actual reference.

- VAR is the variable associated to the reference.

- ISPACE is the iteration space of the loop.

- CL is the size of the cache line.

- delete is set to 0 if the equations have to be removed from the list in case
they are found to be empty.

This function generates the Cold Miss Bounds equations when considering a
self spatial reuse vector.

- void Generate CMB (CRef &REF, CVariable &VAR, CISpace &IS-
PACE, CRef &OTHER, unsigned int CL, unsigned int delete=1) where

- REF is the actual reference.

- VAR is the variable associated to the reference.

- ISPACE is the iteration space of the loop.

- OTHER

- CL is the size of the cache line.

- delete is set to 0 if the equations have to be removed from the list in case
they are found to be empty.

This function generates the Cold Miss Bounds equations when considering a
group spatial reuse vector.

- void Generate R (CRef &REF, CVariable &VAR, CRef **REFS, CLlista<CVariable>
&VARS, CISpace &ISPACE, unsigned int CL, unsigned int CS, un-
signed int K, unsigned int idRA, unsigned int delete)
where

- REF is the reference for which the Replacement Equations will be gener-
ated.

- VAR is the variable associated to the reference.

- VARS is the list of variables in the loop.

- REFS is the list of references in the loop.

- ISPACE is the iteration space.

- CL is the size of the cache line.

- CS is the cache size.

23

- K is the associativity of the cache.

- idRA is the position of the reference REF in the list of references REFS.

- delete is set to 0 if the equations have to be removed from the list in case
they are found to be empty. Otherwise delete=1, which is its default
value.

This function generates the Replacement Equations.

Regenerating CMEs:

- void ReGenerate CMB (CRef &REF, CVariable &PARAMETER, CIS-
pace &ISPACE) where

- REF is the reference for which the Equations will be generated.

- PARAMETER contains the new information of the variable.

- ISPACE is the iteration space.

This function generates the Cold Miss Bounds Equations for a given variable
when considering a self spatial reuse vector.

- void ReGenerate CMB (CRef &TRAILING, CVariable &VAR TRAILING,
CISpace &ISPACE, CRef &LEADER) where

- TRAILING is the reference for which the Equations will be generated.

- VAR TRAILING contains the new information of the variable.

- ISPACE is the iteration space.

- LEADER is the reference that reuses from the TRAILING along the given
reuse vector.

This function generates the Cold Miss Bounds Equations for a given variable
when considering a group spatial reuse vector.

- void ReGenerate R (CRef &REF, CVariable &VAR, CRef **REFS,
CLlista<CVariable> &VARS) where

- REF is the reference for which the Replacement Equations will be gener-
ated.

- VAR is the variable associated to the reference.

- REFS is the list of references in the loop.

- VARS is the list of variables in the loop.

This function generates the Replacement Equations for the new configuration
of the variable.

7. Class CEquation C

The Cold Miss Equations.

Constructors:

- CEquation C (void):CListElem()

- CEquation C (unsigned int i, int coef i, int rhs)
where

- i is the induction variable restricted by the equation.

- coef i is the sign of the variable in the equation.

- rhs is the right hand side of the equation.

24

Member Access:

- unsigned int i (void) const
Returns the induction variable that’s involved in the equation.

- unsigned int i (unsigned int NEW)
The new variable restricted by the equation is the variable NEW.

- int coef i (void) const
Returns the coefficient of the induction variable in the equation.

- int coef i (int NEW)
Sets the coefficient of the induction variable in the equation to the value NEW.

- int rhs (void) const
Returns the right hand side of the equation.

- int rhs (int NEW)
Sets the right hand side of the equation to the value NEW.

Clone:

- virtual CListElem *clone (void)

Functions:

- bool Emptiness (CIPoint &IPOINT) const where

- IPOINT is the iteration point that is being studied.

This function checks whether the iteration point IPOINT is not a solution to
the equation.

8. Class CEquation CMB

The Cold Miss Bounds Equations.

Constructors:

- CEquation CMB (void)

- CEquation CMB (unsigned int NEST)
where

- NEST is the depth of the loop nest.

Clone:

- virtual CListElem *clone (void)

Destructor:

- CEquation CMB (void)

Member access:

- Value lb (void) const
Returns the lower bound of the expression in the equation.

- Value lb (Value NEW)
Sets the lower bound of the expression to the value NEW.

- Value ub (void) const
Returns the upper bound of the expression in the equation.

- Value ub (Value NEW)
Sets the upper bound of the expression to the value NEW.

25

- unsigned int nest (void) const
Returns the depth of the loop nest.

- Value & z (void) const
Returns the coefficient of the variable z.

- Value & z (void)
Allows to change the value of the coefficient of the variable z.

- Value & i (unsigned int k) const
Returns the coefficient of the k-th induction variable.

- Value & i (unsigned int k)
Allows to change the value of the coefficient of the k-th induction variable.

- unsigned int empty (void) const
Returns whether the polyhedron that defines the equation is empty.

- unsigned int empty (unsigned int NEW)
This function allows to set change the parameter of the equation which says
whether the equation has integer solutions or not.

Empty Criteria:

- bool CMB Empty (CISpace &ISPACE)
Checks whether polyhedron defined by the equations is empty.

- bool Emptiness (CIPoint &IPOINT) const
Checks the emptiness of the convex region.

9. Class CEquation R

The Replacement Equations.

Constructors:

- CEquation R (void)

- CEquation R (unsigned int NEST, unsigned int NJ, CISpace &IS-
PACE) where

- NEST is the depth of the loop nest.

- NJ is the number of j variables involved in the equations.

- ISPACE is the iteration space.

Clone:

- virtual CListElem *clone (void)

Destructor:

- CEquation R (void)

Member access:

- unsigned int nest (void) const
Returns the depth of the loop nest.

- unsigned int nest (unsigned int NEW)
Sets the depth of the loop nest to the value NEW.

- unsigned int nj (void) const
Returns the number of variables j in the equations.

26

- unsigned int nj (unsigned int NEW)
Sets the number of variables j involved in the equations to NEW.

- SIGN sig n (void) const;
Returns the valid sign of the variable n.

- SIGN sig n (SIGN NEW)
Sets the sign of the variable n to SIGN NEW

- unsigned int empty (void) const
Returns whether the polyhedron that defines the equation is empty.

- unsigned int empty (unsigned int NEW)
This function allows to set change the parameter of the equation which says
whether the equation has integer solutions or not.

- Value history (unsigned int k) const
When in the convex regions we find the case j = i− r, the variable j is fixed
([2]). This function returns the value r corresponding to the k-th variable j.

- CLlista<CPseudoConvexRegion> &convex regions (CLlista<CPseudoConvexRegion>
*NEW)
This function sets the convex regions of the equation to a given one (NEW).

- CLlista<CPseudoConvexRegion> &convex regions (void) const
Returns the convex regions of the Replacement Equation.

Member access:

- Value &i (unsigned int eq, unsigned int k) const where

- eq gives the equation form the Replacement we refer to.

- k gives the induction variable.

This function returns the coefficient of the k-th induction variable in the equa-
tion eq from the Replacement Equations.

- Value &i (unsigned int eq, unsigned int k)
This function allows to change the coefficient of the k-th induction variable
in the eq-th equation from the Replacement Equations.

- Value &j (unsigned int k) const
Returns the coefficient of the k-th variable j in the equations.

- Value &j (unsigned int k)
This function allows to change the coefficient of the k-th variable j in the
equations.

- Value &ub (unsigned int eq) const
Returns the upper bound of the eq-th equation from the Replacement.

- Value &ub (unsigned int eq)
Allows to change the upper bound of the eq-th equation from the Replacement.

- Value &lb (unsigned int eq) const
Returns the lower bound of the eq-th equation from the Replacement.

- Value &lb (unsigned int eq)
Allows to change the lower bound of the eq-th equation from the Replacement.

- Value &z (void) const
Returns the coefficient from the variable z.

- Value &n (void) const
Returns the coefficient from the variable z.

27

- Value &n (void)
Function for changing the coefficient of the variable n.

- CISpace &ispace (void) const
Returns the iteration space.

Computation of the convex regions:

- CEquation R* Fix j (unsigned int k, int POSITION, CReuseVector
&REUSE VECTOR, int extra)
This function creates another equation from a replacement equation, where
all the possible variables j are fixed. This is done as follows: Variables
j1, . . . , jk−1 are fixed using the identity js = is. Variables jk, . . . , jPOSITION

are fixed using the identity js = is − rs, where r is the reuse vector given
by REUSE VECTOR. Finally, the parameter extra is used in order to create
open or closed intervals for the domains of the different variables j.

- void Compute Convex Regions (CReuseVector &REUSE VECTOR,
unsigned int Ref, INTERVAL TYPE left, INTERVAL TYPE right,
unsigned int delete) where

- REUSE VECTOR is the reuse vector we are considering when building
the Replacement Equation.

- Ref is the position of the actual Replacement in the list of Replacement
Equations from the reuse vector.

- left tells us whether the interval is open or closed on the left side.

- right tells us whether the interval is open or closed on the right side.

- delete is set to 0 if the replacement equations that correspond to the
actual convex regions have to be removed from the list in case they are
found to be empty. Otherwise delete=1, which is its default value.

This function computes the convex regions of a Replacement Equation.

Empty Criteria:

- bool CR Empty (unsigned int k, unsigned int UI, unsigned int LI, int
LB, int UB, CISpace &ISPACE)
where

- k gives the variable j for which the convex region is being computed.

- UI is the coefficient of the variable ik in the equation of the convex region
that gives the upper bound of the expression jk − ik.

- LI is the coefficient of the variable ik in the equation of the convex region
that gives the lower bound of the expression jk − ik.

- LB is the lower bound of jk − ik

- UB is the upper bound of jk − ik

This function checks whether the convex regions are empty.

- Functions for detecting Replacement Equations with no integer solutions.

- bool Set n Sign (CVariable &A, CVariable &B)
where A and B are the variables of the references whose interferences are
modelled by the actual Replacement Equation.
This function restricts the variable n to the possible sign it can have, so
that the equation is not empty.

28

- bool P Empty (void)

- bool N Empty (void)

5.2 Solver Module

In this module we find different classes and functions needed for solving the CMEs. We have
divided them in three parts: the implementation of the sampling techniques, the functions
for actually solving the CMEs and finally different classes to store the information obtained
when calling the previous functions.

5.2.1 Sampling

1. Class CIPoint

The iteration points that are studied to solve the CMEs.

Constructors:

- CIPoint (void)

- CIPoint (unsigned int DIM, int *VECTOR) where

- DIM is the dimension of the point, which is the same as the depth of the
loop nest.

- VECTOR gives the components of the point in the iteration space.

Clone:

- virtual CListElem *clone (void)

Destructors:

- CIPoint (void)

Member access:

- unsigned int dim (void) const
Returns the dimension of the point.

– int &operator () (unsigned int k) const
Returns the k-th component of the point.

- int &operator () (unsigned int k)
This function allows to change the k-th component of the iteration point.

Functions:

- int compare (CIPoint &OTHER)
Compares the actual iteration point with the iteration point OTHER.

2. Class CSample

The sample of iteration points that is created in order to avoid studying all the iteration
space when solving the equations.

Constructors:

- CSample (void)

29

- CSample (double CONFIDENCE, double I WIDTH, CISpace &ISPACE)
where ISPACE is the iteration space.
This function generates a sample of iteration points for the chosen confidence
(CONFIDENCE) and interval width (I WIDTH).

- CSample (CISpace &ISPACE)
This function is used when the whole iteration space must be studied.

Destructors:

- CSample (void)

Members Access:

- unsigned int elements (void) const
Return the number of points in the sample.

- unsigned int elements (unsigned int NEW)
Sets the number of points in the sample to the value NEW.

- unsigned int entries (void) const
Returns the number of iteration points that are studied for the current reuse
vector.

- double confidence (void) const
Returns the confidence that has been chosen.

- unsigned int to do (void) const
Returns the number od iteration points that will be studied when considering
the next reuse vector.

- CIPoint &operator () (unsigned int k)
Returns the k-th point of the sample.

- void add current (void)
Adds the current point to the sample.

- void delete current (void)
Removes the current point from the sample.

- void next vector (void)
Changes the set of points to be studied to the set of points that have not been
determined by the previous reuse vector.

- void reset sample (void)
Resets the sample to its original form.

5.2.2 Solver

We have developed different functions for solving CMEs depending on the information we
want to obtain as well as the performance requirements of the user.

• unsigned int Number Misses (CLoop &loop, CSample &sample);

This function returns the total number of misses for the given loop when considering
a direct mapped cache.

• unsigned int Number Misses (CLoop &loop, CSample &sample, unsigned
int k way);

30

This is the associative version of the previous function. The motivation for having
two different functions for the different types of cache configuration is that the way
of solving the equations is different in both cases. We separate them for efficiency
reasons.

• unsigned int Number Misses (CLoop &loop, CSample &sample, ostream
&o, unsigned int k way);

This function writes in the given output stream all kind of information about the
number of equations per reference and reuse vector, as well as the misses per reference
and per loop. It works for all kinds of cache configurations. In this case, as well as
in the following one, we have not distinguished between direct and associative caches,
since the efficiency is already seriously decreased by all the serializing work.

• CMLoop* Number Misses CM (CLoop &loop, CSample &sample, unsigned
int k way);

This function creates a CMLoop structure that contains all the information about the
misses in the loop.

5.2.3 Misses storage

1. Class CMRef

This class contains information on the misses per reference: the number of compulsory
misses, replacement misses, spatial and temporal misses as well as the total number of
misses and accesses. Besides, it contains the confidence interval.

Constructor:

- CMRef (void)

Destructor:

- CMRef (void)

Member access:

- unsigned int &compulsory (void)
Returns the number of compulsory misses.

- unsigned int &replacement (void)
Returns the number of replacement misses.

- unsigned int &spatial (void)
Returns the number of spatial misses.

- unsigned int &temporal (void)
Returns the number of spatial misses.

- unsigned int &total (void)
Returns the total number of misses for the current reference.

- unsigned int &accesses (void)
Returns the number of accesses of the reference, which is needed in order to
compute the miss ratio.

Functions:

31

- void compute interval (double ALPHA)
where ALPHA is 1-CONFIDENCE, being CONFIDENCE the desired confi-
dence.
This function computes the confidence interval.

2. Class CMLoop

This class contains the same information about the misses as CMRef, but when con-
sidering the whole loop.

Constructors:

- CMLoop (void)

- CMLoop (unsigned int REFERENCES)
where REFERENCES is the number of references in the loop.

Destructor:

- CMLoop (void)

Member access:

- unsigned int &compulsory (void)
Returns the number of compulsory misses.

- unsigned int &replacement (void)
Returns the number of replacement misses.

- unsigned int &spatial (void)
Returns the number of spatial misses.

- unsigned int &temporal (void)
Returns the number of temporal misses.

- unsigned int &total (void)
Returns the total number of misses for the current loop.

- unsigned int &accesses (void)
Returns the total number of accesses of the references in the loop, which is
needed in order to compute the miss ratio.

- unsigned int references (void) const
Returns the number of references in the loop.

- CMRef &operator() (unsigned int k) const
Access to the k-th reference in the loop.

Functions:

- void Compute Interval (double ALPHA)
where ALPHA = 1.0−CONFIDENCE, being CONFIDENCE the desired
confidence.

References

[1] Eduard Ayguadé et al. A uniform internal representation for high-level and instruction-
level transformations. UPC, 1995.

32

[2] Nerina Bermudo, Xavier Vera, Antonio González, and Josep Llosa. An efficient solver
for cache miss equations. In IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS’00), 2000.

[3] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss equations: an
analytical representation of cache misses. In International Conference on Supercomputing
(ICS’97), 1997.

[4] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Precise miss analysis for pro-
gram transformations with caches of arbitrary associativity. In International Confer-
ence on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS’98), 1998.

[5] David Padua et al. Polaris developer’s document, 1994.

[6] Xavier Vera, Josep Llosa, Antonio González, and Nerina Bermudo. A fast and accu-
rate approach to analyze cache memory behavior. In European Conference on Parallel
Computing (Europar’00), 2000.

[7] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In ACM
SIGPLAN91, 1991.

33

