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Abstract—ALARP is an important concept in many safety
standards. It helps in making a decision about how tolerable
a risk is. A tolerable risk should be reduced to a point that
is As Low As Reasonably Practicable (ALARP) which implies
further risk-reduction is grossly inappropriate compared to the
benefit attained. To date work has considered the process, safety
arguments, and influencing factors of how to make an ALARP
decision but not shown how to make a quantified judgement
for it. In this paper a method for making an ALARP judgement
decision is proposed in the context of testing the worst-case timing
properties of systems. The method is based around a convergence
algorithm that informs the tester when it is believed that testing
for longer will not reveal sufficiently important new findings, i.e.
any significant increase in observed worst-case timing needs a
disproportionate amount of testing time.

I. INTRODUCTION

Growing technology, continuous environmental change and
public safety concerns make safety analysis of safety-critical
systems an important necessary activity. According to the
As Low As Reasonably Practicable (ALARP) principle, risk-
tolerability depends on practicability of further risk-reduction
which is a cost-benefit argument. The latter means if the
cost of the risk-reduction outweighs the gains to be achieved,
there is no need to undertake it provided that the risk is
reduced until a tolerable point. The principle of ALARP
is an underpinning concept in most safety standards. The
first definition of ALARP is “Provision and maintenance of
plant and systems of work that are, so far as is reasonably
practicable, safe and without risks to health” from the Health
and Safety at Work Act in the UK [1] which contained the
definition to give safety a legal basis to the concept. Work
associated with ALARP has been carried out to define suitable
processes [2] and safety arguments [3]. As part of these work,
definitions have been produced for what it means for evidence
to conform to ALARP, specifically how to make a decision to
stop testing a system.

To the best of our knowledge, no previous work has pro-
posed methods that make this decision in a quantified way.
This gap in knowledge is addressed in this paper for the
important problem of the worst-case timing characteristics of
Real-Time Systems (RTS) [4]. Currently there are two princi-
pal techniques for understanding these characteristics, static
analysis and measurement-based approaches. Measurement-
based techniques tend to be used most as static analysis relies
on Worst-Case Execution Times (WCET) which are expensive
to apply if the pessimism is to be reduced to an appropriate
level [5]; and Worst-Case Response Time (WCRT) analysis

is difficult to apply for systems with overheads and complex
behaviours, e.g. inter-task dependencies [6].

The principal challenge addressed in this paper is knowing
when to stop testing the RTS as no significant new infor-
mation will be determined without clairvoyance. There is a
Measurement-Based Probabilistic Timing Analysis (MBPTA)
approach proposed in [7] and [8] to find a tight upper bound
for WCET. It collects test data of running an application on
target platform, then continuously checks data distributions for
convergence to derive probabilities for execution times based
on Extreme Value Theory (EVT) [9]. The contributions of this
paper are similar to them but have a different basis as follows:
• A convergence algorithm is presented that combines

multiple sources of information
• The algorithm has been designed and evaluated with a

specific focus on ALARP
• The work has been evaluated in comparison with a ground

truth to show conformance with ALARP as well as the
needs of RTS

In this context, reliable is defined as the algorithm provides
valid ALARP decisions across a wide range of task sets. The
algorithm makes no assumption concerning the subsequent
analysis that the testing information gained is used for. The
two main techniques such testing information is used for
are High Watermark (HWM), i.e. the Maximum Observed
Response Time (MORT), or statistical techniques [10], [11].
The paper contains two contributions. Firstly, the convergence
algorithm which has two principal components: whether the
MORT is increasing at a sufficiently fast rate, and whether the
distribution of response times being measured is indicating if
new behaviours are being observed. The intuition behind the
algorithm is if the MORT is not increasing and the nature
of the response times is not changing, then this implies more
testing is not going to reveal further useful information. This is
then balanced with the principle of ALARP through the use of
appropriate timescales. A separate issue, not covered here, is
whether a different testing method would discover new areas of
the software and therefore whether the work needs to be com-
bined with suitable coverage metrics. Secondly, an evaluation
showing that it reliably decides when sufficient measurements
have been made in compliance with the principle of ALARP.

To evaluate the approach, a task set simulator is used. The
reason this approach is taken is it allows a ground truth
to be established and it allows careful control of the task
set characteristics, including complexity. Two ground truths
are available for comparison: static analysis which in this



particular situation gives an exact safe result [4], and a HWM
but with significantly longer simulation. Longer simulation is
possible due to the nature of the simulator used, however such
increased testing would be prohibitively expensive in a real
system.

The structure of the paper is as follows: Section II describes
the background and motivation of the work. In Section III the
proposed convergence algorithm is presented and Section IV
shows the results and evaluates the algorithm. The conclusion
is expressed in Section V.

II. BACKGROUND AND MOTIVATION
A. System Model

The system model comprises a set of applications Θ,
indexed by ζΘ running on execution platform. An application
Θi ∈ Θ (i ∈ ζΘ) is modeled as a directed acyclic graph
(Ai, Bi), where nodes Ai, indexed by ζi, show the system tasks
and graph edges Bi ⊂ Ai × Ai represent data dependencies
between tasks. The set AΘ =

⋃
i∈ζΘ Ai represents all the

applications’ tasks. Each application Θi ∈ Θ has a release
period hi. A job of each task in the application is released for
execution at time (q − 1)hi. Job q of task τij is denoted by
τ qij . It is released for execution at time (q − 1)hi.

The tasks are executed based on the Deadline Monotonic
Scheduling Theory (DMST) [12] that implies the shorter the
task deadline, the higher priority is assigned to the associated
jobs to that task. The executing job can be preempted at any
time. By preemption, tasks can interrupt one another so the
highest priority task is always the one being executed which
means the executing task is halted until the higher priority task
runs until completion. Then the halted task resumes execution.
Time difference between completion and release time of a job
is called its response time. If job τ qij finishes at time t, then
its response time is rqij = t− (q − 1)hi.

B. Typical Approaches for WCET Estimation and WCRT Anal-
ysis

Response-Time Analysis (RTA) techniques are traditionally
based on simplified assumptions of systems. They compute an
absolute WCRT provided that the load on system is bounded
and known and exact WCET of each task is determined to
judge about system’s timing requirements. Such a determinis-
tic RTA does not apply to a real system with complex behavior
in which not only the tasks possess complex control flow
behaviour e.g. due to dynamic calls and dynamic jumps [13]
but also have explicit and implicit dependencies, e.g. complex
transactions in an engine control systems [14] and global state
shared variables in robots’ control system [15] respectively.

Moreover, the execution time of individual instructions may
significantly change by several orders of magnitude depending
on the state of the processor in which they are executed
[13]. This causes the execution time of one task heavily
depend on the execution state produced by another task. Such
complicated temporal and execution dependencies between
tasks are difficult to be addressed, making an exact WCET
of RTA a difficult task.

Furthermore, the stochastic nature of fault tolerant systems,
algorithms with various computation times and modern proces-
sors with pipeline, cache and branch-prediction features have
lead to researchers investigating probabilistic techniques [16].
Consequently, a RTA framework that is not based on abstract
system model and exact WCET estimation seems essential to
be developed. Therefore Lu et al. have developed a statistical
RTA technique that does not rely on exact estimates of system
parameters such as WCET [17].

Due to the effect of false WCET assumptions on WCRT cal-
culation, developers compensate for such wrong assumptions
like what is done in [18] and [19] to compensate for cache-
related timing effects from preemption and caches shared
between cores. They also propose an optimistic estimate
WCET and a pessimistic upper bound.

As stated above, determining the exact WCET is not gener-
ally feasible for complex problems and real systems. Typically,
WCRT of a task set is calculated based on WCET of each
task that finally reveals if all the tasks in system meet their
deadlines.

There are two main approaches Dynamic (measurement-
based) and static to determine WCET of a real-time system
[20].

1) Static Analysis Approaches: Static approach tries to
determine the longest path of the program. Static analysis
may result in an unacceptable level of pessimism as the
processor architecture gets complex to be predicted due to
some advanced features like cache, branch prediction and
pipelines. Static analysis is also based on an abstract model
of processor timing and may fail to capture effects inhabited
in a real system.

2) Measurement-Based Approaches: As an alternative to
static analysis, dynamic analysis approach is proposed to
record the longest execution time by running the code un-
der exhaustive test conditions. Although, dynamic analysis
approaches deal with the real system, it may fail to produce
test cases that lead to worst case.

An ideal approach would satisfy two criteria. First, the prob-
ability of WCET underestimation has to be sufficiently small
resulting to sufficient confidence when claiming that a system
meets timing requirements. A noticeable underestimation may
incorrectly conform that the system has met deadlines. Second,
grossly overestimation should be prohibited due to wasting
processors’ resources.

Most of the dynamic analysis approaches underestimate the
WCET with an unknown probability. They are split into two
categories as follows: HWM and probabilistic.
• HWM uses the longest execution time observed in testing

to estimate the WCET. It is not feasible to determine
either the degree or likelihood of underestimation.

• Probabilistic where a distribution of each task’s observed
execution times is formed. Hybrid versions of this anal-
ysis benefit from both dynamic and static approaches.
Here, the code is divided into blocks and the execution
times of each block are observed running a real system
rather than a processor model. However, the worst-case



effect that is observed locally is combined using static
analysis.

C. Measurement-Based Approaches Related to ALARP

There is no other work on methods that make ALARP
decision in a quantified way which is addressed in this paper
for the worst-case timing characteristics of RTS. However, we
notice a similar work on MBPTA to find a tight upper bound
for WCET that is proposed in [7]. Basically, MBPTA collects
observations of end-to-end runs of an application executed on
target platform to derive probabilities for execution times.

There are some efforts based on EVT for WCET estimation
that are based on simplified scenarios rather than realistic
assumptions of statistical properties of the hardware [21], so
not being applicable by industry. Conversely, Cucu-Grosjean et
al. propose a MBPTA technique based on a sound application
of EVT for multi-path, therefore realistic programs. The results
show the estimated probabilistic WCET (pWCET) by MBPTA
based on EVT in their proposed approach provides less
than 15% pessimism compared to static Probabilistic Timing
Analysis (PTA). The latter indicates tightest pWCET estimates
by PTA with feasibly low observations (650 runs) for all the
benchmarks. The authors of [7] also introduced the notion of
correct application of EVT by two hypotheses: independence
and identical distribution. The former means two random
variables X and Y describe two events such that the occurrence
of one event does not have any affect of the occurrence of
the other and the latter indicates each random variable in a
sequence has the equal probability distribution to the others.
The main steps of their approach is as follows:
• Collecting execution time observations by running the

program under analysis. In each round, Ndelta further
observations are gathered to be included in the next step
analysis in case of necessity. In each round, it is also
checked whether the data is independent and identically
distributed (i.i.d tests) as a prerequisite to EVT by the
run-test [22] and the two-sample Kolmogorov-Smirnov
(KS) test [23] respectively. The thresholds (values of α)
that are needed for the tests to be passed are tuned based
on previous experience of these tests.

• Grouping that is based on the previously collected obser-
vations. It picks HWM values within randomly formed
block of data since MBPTA uses EVT to upper-bound the
probability of occurrence of the longest execution times.

• Fitting finds out if the maximum of execution times
resulted by grouping matches one of the EVT distribu-
tions: Gumdel, Frechet or Weibull. Among them, Gumdel
has shown to fit well the problem of WCET estimation.
For this, authors use the Exponential Tail (ET) test [24]
that needs to fall in an expected range. Otherwise the
hypothesis that the data matches a Gumbel distribution is
rejected.

• Convergence compares the two successive distributions
from current and previous rounds by looking into Contin-
ues Rank Probability Score (CRPS) metric. CRPS below
a given threshold indicates the current EVT distribution

converges to the real WCET distribution. This means no
more observation is needed.

• Tail extension computes the WCET estimate associated
to any exceedance probability threshold by the resulting
EVT distribution.

The work in [8] also constructs the basis for safety ar-
gumentation towards Critical Real-Time Embedded Systems
(CRTES) certification. Although this work seems similar to
ours in terms of using a convergence algorithm for WCET
estimation, there have some important differences as follows:
Here, the convergence algorithm is proposed for making a
quantified ALARP decision while in above work, they just
reason about finding an upper WCET estimation. We also use
HWM to increase scalability and reduce the cost of expensive
statistical test that is used.
D. Sufficiency of Test Data

Evidence supporting a safety goal has to be both appro-
priate and sufficient. There are three characteristics to show
the sufficiency of the evidence [3]: relevance, coverage and
independence. Relevance means the evidence to which extent
directly addresses the safety goal. It provides developers an
understanding of the role the Software Safety Evidence (SSE)
plays. SSE can be the result of WCET analysis that is the
most relevant direct evidence implying a Software Safety
Requirement (SSR) is met. Coverage points out to which scale
the evidence addresses the safety goal that is often used with
respect to testing. This indicates the higher the test coverage,
the greater the confidence in the achieved results. For instance,
availability of resources e.g. input-output buffers and device
registers could be a SSR. If a software component depends
on availability of four resources and some analysis techniques
provide evidence for availability of two resources, the coverage
of SSE is 50%. Finally, independence implies to which extent
it follows various approaches fulfilling evidence requirements.
It is feasible to demonstrate what the evidence shows and
which level of confidence is attained by the evidence.
E. Motivational Example

While testing the RTS to conclude evidence for system
safety, we are interested in perceiving if any significant new
information will be achieved by proceeding with further tests.
However, due to the high cost of testing, we would prefer to
assess the history of test data to predict future behaviour of
the system. This means if it turns that test data has recently
showed getting stabilized for a specific period of time, it is
anticipated to show similar behaviour further which implies
gain of more testing disproportionates huge testing cost. In
the context of the system model explained in section II-A, the
ideal stopping point can be found by continually examining the
history of task’s Response Times (RT). We propose HWM and
statistics for data analysis and here exemplify how these two
help to examine the history of data for an ALARP decision.

At each point in simulation time, HWM shows current
MORT and statistics test examines if test data is significantly
changing by looking into probability distributions of response
times over two consecutive time intervals. Our statistics test



is based on Kullback-Leibler DIVergence (KL DIV) test [25],
[26] that is a non-symmetric measure of difference between
two probability distributions P and Q where P presents “true”
distribution of data and Q is typically a theory, model or ap-
proximation of P. While traditional inferential statistics show
if there is a significant difference between two distributions
of data, KL DIV is capable of showing the presence of
such a difference either if it is significant or inconsiderable.
Consequently, in such a case the null hypothesis is a default
proposition presenting the absence of difference between two
distributions or if the distributions are identical, i.e. KL DIV
= 0 . So, the smaller KL DIV value, the closer the test gets
to the null hypothesis.

Figure 1 shows the timing behavior of an arbitrary task
examined by HWM and KL DIV tests over the simulation
time. The horizontal axis shows the number of tests over
time (called testing time) while the vertical axis presents KL
DIV values at left and MORT at right. In order to run the
tests, the simulator periodically outputs response times and two
successive of such outputs undergo the tests in each analysis
round. Figure 1 (a) zoomed in the dashed gray area in the
main plot where testing time is in range [0 1200] and KL
DIV in [0 8*10−6]. It can be seen that KL DIV converges
within the first 1200 testing time with MORT equal to 38185.
The simulation shows there is in fact one further increase in
the MORT, however the increase in MORT is less than 1% and
the increase occurs after a lot more testing (150 times more
testing). Therefore based on the principle of ALARP, testing
could be halted after 1200 testing time units.
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Fig. 1. MORT and KL-DIV versus amount of testing time

The above example shows HWM and KL DIV tests can
help for an ALARP decision. However, these tests do not
guarantee “no further increase in MORT”. But they claim that
such an increase will occur far enough in time. So, there is
no significant gain compared to the cost that should be spent
on further testing. Figure 2 shows the overall scheme of an
algorithm based on HWM and KL DIV tests that is described

in the next section.
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Fig. 2. The Overall Scheme of The Convergence Algorithm

III. CONVERGENCE ALGORITHM

The proposed convergence algorithm is based on HWM
and KL DIV tests as described earlier. The tests provide the
algorithm the necessary information to decide continuation
or termination. Algorithm 1 shows how the convergence
algorithm works.

The algorithm inputs test data from the simulator that is run
for time SimulationTime. The simulator buckets the test data
varying between [MinimumObservedResponseTime, MORT]
in bins every t time, generating SimulationTime/t output files
for each task. The binning idea helps to save more memory
space compared to output every single response time. The
resulted histograms contain the number of occurrence for each
observed response time since BinSize is set to 1.

While in the algorithm, there is a second binning to prepare
data undergo KL DIV test. The data is collected into a number
of equally sized of bins depicted by λ in the algorithm,
each with size BinSize counts the number of response times
in range [p, p + ∆]. This avoids any slight difference in
data distributions has disproportionate effect on results e.g.
a large observed response time that rarely occurs does not
significantly affect the test result. X and Y in the algorithm
represent index of each output file that currently undergo the
tests.

The idea of comparing histograms of Probability Distribu-
tions (PD) X and Y defined as above is to gradually investigate
test data for convergence. So, it avoids further effort as soon
as the desired convergence is recognized. The next step is sub-
sequently conducting HWM and KL DIV tests for each task
within the generated task set. HWM is a cheap test compared
to KL DIV that comes first in analysis. If for i successive anal-
ysis HWM records no increase (HWMCounter >= i), the
information undergo KL DIV test. Otherwise, HWMCounter
is set to zero and later histograms in time are chosen for next
round analysis. Once the HWM test is passed, the KL DIV
is executed and if this second test result is smaller than a
predefined threshold δ, the point at which the current task
fulfills tests criteria is kept. The algorithm then processes the
next task in the task set.



The tasks in the task set are prioritized based on their
deadlines which means the shorter the deadline, the higher
priority the task receives. So, when running the simulator for
specific duration, the higher priority tasks tend to converge
sooner than the lower priority tasks. Due to the late con-
vergence of lower priority tasks, the algorithm keeps track
of every individual task’s Stopping Point (SP) depicted as
Task(CurrentTime, CurrentMORT) to find out which task is the
latest to converge. The algorithm is terminated returning each
task MORT at time when the latest task shows convergence.

The convergence algorithm has five parameters λ, α, β, i
and δ that affect the analysis results. In the next section, their
tuning approach is described.

Algorithm 1: The Convergence Algorithm
Input: ResponseT imes
Output: AlgorithmStoppingPoint

1 foreach Task ∈ {TaskSet} do
2 BinSize← (MaxObservedResponseT imeTask −

MinObservedResponseT imeTask)/λ;
3 X = 1;
4 Y = 1;
5 while Y <= SimulationT ime/t do
6 Y ← α ∗X + β;
7 if (CurrentMORT > OldMORT ) then
8 HWMCounter ← 0;
9 end

10 else if (CurrentMORT <= OldMORT ) then
11 HWMCounter ← HWMCounter + 1;
12 if (HWMCounter >= i) then
13 run KL DIV test;
14 if (KLDIV <= δ) then
15 save current task stopping point coordinates:

Task(CurrentTime, CurrentMORT);
16 break;
17 end
18 end
19 end
20 else
21 HWMCounter ← 0;
22 end
23 X ← X + 1;
24 OldMORT ← CurrentMORT ;
25 end
26 end
27 foreach Point ∈ {TaskSet(CurrentTime, CurrentMORT)} do
28 LatestConvergence←Maximum(CurrentT ime);
29 Return Task(Maximum(CurrentTime ), MORT);
30 end

IV. EVALUATION
A. Criteria

The convergence algorithm proposes a SP where the
ALARP principle is satisfied in terms of sufficient testing for
RTS. Two criteria are defined to evaluate the algorithm that
are described as follows:
• Closeness of the algorithm SP, SPMORT to the Last

MORT (LM) seen during simulation assuming that vir-
tually infinite test data resources are available. In other
words, the simulator is capable of running for ages. So,
it is feasible to achieve LM quite close to real worst-
case values. Since, the simulator outputs static WCRT,
the criterion can be also replaced by closeness of SP to
static analysis WCRT. Such a criterion can be expressed

as follows:
LM − SPMORT <= ε (1)

where ε is preferred to be as low as possible and can
be tuned according to system requirements. To be more
precise, this criterion examines if the algorithm results in
an acceptable MORT when stops compared to LM. The
algorithm fulfills this criterion if there is a reasonable
difference between MORT at SP and LM.

• Closeness of SP to a quantified MORT called ALARP
MORT (AM) in this paper. Ideal is that the algorithm
stops later than AM but not far from it. Otherwise, the
algorithm fails to fulfill the ALARP principle i.e. by stop-
ping too soon before AM, it misses important information
regarding MORT and by stopping too late after AM, it
wastes effort without gaining significant new information
as we are already within ξ % of the LM at AM. Parameter
ξ is tuned based on the problem requirements. In this
paper, it is tuned to 5 %. In other words, this criterion
avoids the algorithm continues convergence towards LM
while ignoring the benefit gained compared to the cost
spent. AM is defined as follows:

AM <= LM − ξ% ∗ LM (2)

The criterion is as follows:

SPMORT −AM <= ε (3)

where ε should be as low as possible.
These criteria and the algorithm SP are illustrated later in

Section IV-E.
B. Method

The analysis is based on a simulation environment. The
simulation environment executes a set of randomly generated
tasks for a given duration with no system overhead. The
tasks are generated with a Best-Case Execution Time (BCET),
WCET, a random period and a deadline equal to the period.
Tasks’s offset and jitter are ignored. The tasks are prioritized
based on Deadline Monotonic Priority Ordering (DMPO) i.e.
for each task the shortest the deadline, the highest priority
it takes. Each task is assigned a random execution time in a
range [BCET, WCET] as the simulation starts. The scheduler
monitors each task’s status: delayed, in run queue or executed
and performs preemptive scheduling based on tasks’ fixed
priorities. The simulator is also capable of generating each
tasks’s WCRT by static analysis.
C. Experimental Setup

The analysis is based on observed response times generated
by the simulator. The simulator initial setup is as follows:
• Choice of simulator set up i.e. SimulationDuration that

indicates how long the simulator has to run such that
MORT for each task becomes close to realistic worst-case
values. For this, MORT achieved by the simulator can be
compared to WCRT by static analysis. However, practi-
cally, it is not possible to run the simulator for ages due
to time issue compared to MORT achieved. For instance,



TABLE I
MORT VS. STATIC ANALYSIS WCRT

Task MORT (109) MORT (1012) MORT (1014) MORT (1015) WCRT (static analysis)
1 3493 3494 3494 3494 3494
2 4897 4906 4907 4907 4908
3 7913 8030 8039 8040 8043
4 12145 12397 12501 12527 12534
5 12976 13892 13995 14082 14102
6 13565 14433 14743 14827 14941
7 14556 15699 16147 16215 16376
8 15433 16744 17189 17294 17619
9 16582 17811 18295 18545 18976
10 18391 19725 23377 25065 26257
11 24289 25748 26742 27227 29031
12 24683 26450 27345 27991 29832
13 26392 31894 33980 34253 37118
14 29033 32884 33625 34448 37544
15 29479 33366 34061 34885 38035
16 29623 33559 34284 35129 38302
17 32235 35867 36890 37669 55581
18 32581 36227 37015 38255 56183
19 32419 37357 39333 39839 58674
20 32904 37990 41685 47785 59621

table I shows MORT versus WCRT static results for 20
tasks with different simulation durations. As it can be
seen in this table, column two corresponds to Simulation-
Duration equal to 109 that takes a couple of minutes to be
completed. However, comparing these results with longer
simulation durations indicates that significant improved
MORT can be gained by spending a feasible simulation
time. For instance, the fourth column shows MORT when
SimulationDuration is equal to 1014 that takes a couple
of hours to be completed. The fifth column presents the
results when the simulation is run 10 times longer which
approximately takes one week to completion. However,
specifically for lower priority tasks, we have not gained
highly improved MORT in terms of closeness to static
analysis results (shown in sixth column) compared to the
cost we spent (time in this case). The reason for this
difference is that due to the way the task set is generated
(i.e. the ranges for [BCET,WCET] and task periods span
five orders of magnitude), then the worst-case situation is
extremely unlikely to be seen in practice. Consequently,
the SimulationDuration is set to the longest practical
value according to our experiments (1014). The simulator
outputs 10000 files of response times for each task with
period SimulationDuration/10000.

• Task set generation is based on the following character-
istics of type integer for each task:
– WCET the longest execution time,
– BCET the shortest execution time,
– Period time interval in which a job of a task is released,
– Deadline time by which a job of a task has to be

completed,
– Offset determines the precedence of tasks’ execution

for tasks with the same period,
– Jitter time deviation from predefined periodic task’s

release time
and takes place according to the Algorithm 2. Rand
function in the algorithm is initialized by a random
seed and returns a random value in range [MinValue,
MaxValue] with coefficient ValueStep in which Value can
stand for period, BCET or WCET. DMST function returns

Algorithm 2: The Task Set Generation Algorithm
Input: NumberOfTasks,MinPeriod,MaxPeriod, PeriodStep,
MaxBCET,BCETStep,MaxWCET,WCETStep

Output: TaskSetCharacteristics
1 NumberOfTasks = 20;
2 foreach Task ∈ {TaskSet} do
3 TaskPeriod←

Rand(MinPeriod,MaxPeriod, PeriodStep);
4 TaskDeadline← TaskPeriod;
5 TaskBCET ← Rand(1,MaxBCET,BCETStep);
6 TaskWCET ← Rand(BCET,MaxWCET,WCETStep);
7 TaskOffset = 0;
8 TaskJitter = 0;
9 TaskPriority ← DMST (TaskSet);

10 end

each task priority based on DMPO.
All task sets have a utilisation in the range 80% to 100%
and the ones that are schedulable with static analysis
are only used in experiments. The task set also has one
transaction of 3 tasks.

D. Tuning of Parameters

As per the convergence algorithm, there are five parameters
influencing the analysis results. They are experimentally tuned
as follows:
• λ - For tuning λ, three random variables are selected

that lead to relatively small, middle and large BinSize.
Consequently, λ is tuned to the value that causes mean-
ingful KL DIV results. As an example, Figure 3 (a) shows
the zoomed KL DIV test result of a task for λ = 63
while (b) shows KL DIV of the same task for λ = 250.
Looking at KL DIV test results, (a) with a big BinSize
does not lead to any helpful test results while KL DIV
in (b) has step change convergence that complies MORT
gradual increase over time and causes a better decision for
stopping the analysis. The quick convergence in (a) due
to the large bins misses differences in PD compared to
the smaller bin size in (b). Based on the achieved results,
λ is tuned to 250. However, optimizing the parameters
may lead to better results. Future work will look at how
to optimise the parameters.

• α, β - For tuning these two parameters we try two
alternatives: α = 2, β = 0 and α = 1 and β = p+ q − 1
where p and q are incremented by 1 in each round
of analysis. The results of the latter tuning lead into
shorter number of analysis with sharp increase in KL DIV
compared to the former. This does not allow observing
slight KL DIV changes over time which is not suitable
for making a stopping decision. Therefore, we tuned
these two parameters to the former values. However, there
might be more promising values that could be achieved
by optimization.

• i - Tuning i to larger values than 100 e.g. 200 and
observing the algorithm behaviour shows no improved
results but wasting testing effort as KL DIV has already
converged to the threshold. So, we tuned i to 100 in all
experiments.



• δ - We observe lower priority tasks with complex timing
behaviour need a very small threshold ( δ = 0.000003).
Tuning δ to bigger values e.g. 0.0005 causes the algo-
rithm stops too soon compared to MORT for tasks with
complex timing behaviour.
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Fig. 3. MORT and KL-DIV versus amount of testing time

E. Results

Results are based on the analysis of the simulator’s outputs.
We run 20 experiments. Then, analyze the outputs to exam-
ine the convergence algorithm performance. The convergence
algorithm is scripted in MATLAB.

Figures 4 and 5 present the convergence algorithm perfor-
mance for two arbitrary experiments. In both figures, (a) and
(b) show the algorithm SP versus LM, AM and HWM test
that are denoted by SP, LM, AM and HWM respectively.
The horizontal axis shows the number of tests over time
while the vertical axis presents MORT during the simulation.
For simplicity, the analysis is presented as soon as LM is
encountered. In both figures, the algorithm behaviour is shown
for (a) a high priority task and (b) a low priority task. In
Figure 4 (a), SP occurs at point (432, 19697) where the first
coordinates stands for testing time and the second one shows
the corresponding MORT. MORT at SP is within 101 time
units to LM (7318, 19798) and 506 time units from AM (2,
19191).

We intentionally select a rare case that is shown in (b) where
the algorithm stops earlier compared to AM. The task has a
low priority in the task set with complex RT behaviour such
that RT gets significant increased late in testing time. This
causes AM (3112, 46491) occurs late close to LM (3874,
48204). Such an AM does not fulfill ALARP principle due to
significant testing time. So, the algorithm SP seems reasonable
compared to the late AM. Based on the ALARP principle,
MORT at SP (432, 44210) is acceptable in terms of effort
compared to LM (3874, 48204).

In this figure, (c) and (d) present histograms of the following
data achieved by the convergence algorithm:

• Algorithm Achievement (AA) defined as follows:

AA = (SPMORT/LM) ∗N (4)

for which the larger the value, the better indication of
algorithm success. Since it is desired that the algorithm
stops relatively close to LM that results in larger value
of fraction above.

• Algorithm Effort (AE) presented as follows:

AE = (TestingT imeatSP/TestingT imeatLM) ∗N
(5)

for which the smaller the value, the more successful the
algorithm as the algorithm is expected to stop within an
acceptable distance from the LM while considering the
spent effort at the same time (ALARP).
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Fig. 4. The Convergence algorithm performance
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Fig. 5. The Convergence algorithm performance

The histograms are normalized by N = 100. In this exper-
iment, mean value for normalized AA and AE is 98.42 and
76.36 respectively. It can be seen in (c) that AA mean value



in the range of bins [91, 100] is relatively large indicating
that most of the tasks’ SP occurs within an acceptable range
to MORT according to Equation 1 while (d) shows average
testing time spent to reach SP (AE mean = 76.36) for the task
set is small compared to the bin ranges [0, 500] according to
Equation 2. From (c) and (d) in Figure 4, it can be concluded
that the algorithm performs as desired in this experiment i.e.
a fair trade-off between achieved MORT versus testing time
(the ALARP principle).

Figure 5 shows the same graphs as Figure 4 for another
experiment. In (a), the highest priority task timing behaviour
is depicted for which the algorithm stops even passing LM at
point (378, 3862). This is due to the late convergence of a
lower priority task within the task set. AM and LM occur at
points (2, 3861) and (210, 3862) respectively. The (b) graph
presents SP for a lower priority task with AM (194, 36259),
SP (378, 36259) and LM (4774, 37087). HWM occurs at point
(110, 33602) that shows how the KL DIV test can improve
the algorithm performance after HWM test is passed. The
histogram presented in (c) has AA mean value equal to 99.95
which is close to the upper bound in range [96, 100]. In (d),
AE mean is equal to 1011 which is relatively small in range
[0, 20000]. The overall results show the algorithm fulfills the
ALARP principle i.e. acceptable MORT within a reasonable
testing time.

V. CONCLUSIONS

This paper has explained the importance of quantified deci-
sions of when sufficient testing has been performed according
to the principle ALARP. A novel convergence algorithm has
been proposed that decides when sufficient testing has been
performed. An evaluation is performed of how well the algo-
rithm decides when the testing is sufficient compared against a
ground truth. The work shows that the convergence algorithm
performs well. That is, testing is stopped after the point at
which a human with clairvoyance would stop the testing,
ensuring a safe WCRT estimate is obtained, but the amount
of unneeded testing is reasonable. Future work will perform
more trials of the algorithm, including on real software, and
investigate how the algorithms can be tuned for more robust
performance, i.e. so the parameters hold across many task sets.
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