
 1

Using Prediction Enabled Technologies for Embedded
Product Line Architectures

Magnus Larsson
ABB Automation

Technology Products
mlo@mdh.se

 Anders Wall
Mälardalen University

Department of
Computer Engineering

awl@mdh.se

 Christer Norström
Mälardalen University

Department of
Computer Engineering

cen@mdh.se

Ivica Crnkovic
Mälardalen University

Department of
Computer Engineering

icc@mdh.se

Abstract
Predicting the behavior of a product before it is built has been a
long time struggle, especially for software based systems. For
building software systems there are few methods that comply with
the engineering methods established from physics where
properties of construction can be determined before the actual
assembly of a product. By taking the predictable assembly from
certifiable components (PACC) approach our intention is define
methods to predict certain properties. We conclude that product
line architectures that build on top of a component technology can
be build in a much more controlled way if the component
technology is prediction enabled. The aim of this position paper is
to investigate how embedded product line architectures can utilize
a prediction enabled component technology to build products with
known properties. We present a framework where we can reason
about extra-functional properties in a uniformed way. We
illustrate our approach by an example including several different
extra-functional properties.

Keywords:
Real-time systems, Component-based development, Product-line
architectures.

1 INTRODUCTION
Applying the concept of product-line architectures (PLAs) is one
way to achieve component reuse and benefits from component-
based development. A PLA from a software system’s perspective
is a common architecture, a set of common strategies, tools, and
methods that are shared among several different products within a
particular domain [1-4]. Thus, not only components are reused,
but also the architecture and the design strategies that initially
were chosen. Examples of such strategies are strategies for adding
new features to an existing PLA and strategies for providing
variability. A product line contains many products that in turn
may have many different features. Typically, features realize a set
of functional, and extra-functional requirement (e.g. quality of
services, temporal constraints, etc.). Variations in features may be
obtained in different ways; by applying variations in flexible
software architecture, parameterization of existing components, or
by using different implementations of components. In a PLA it is
more likely that the software architecture is a constant, while
flexibility is achieved through component variations. New
functional, or extra-functional features will be implemented by
adding new components or by using different variants of
components. From the predictability point of view, obtaining new
functional features of the products is straightforward as they come
directly from the functional properties of components. On the
opposite, the extra-functional properties of the products are almost
unpredictable; for example components with new functional
features can degrade quality of services. Also, a PL strategy can
be focused on product families with the same functional

properties, but different extra-functional properties, e.g.,
scalability, flexibility, and safety. For this reason, the ability to
derive extra-functional properties from the properties of the
components plays a significant role for PLA. Even more, as PLA
identifies the variable parts and core (repeatable) parts, the
findings from existing product versions can be taken as input to
methods of the predictability technologies which results may be
more accurate and provided in a simpler in way.

In this position paper we present our current project that will
design a prediction-enabled component technology (PECT) for
product line architectures in the real-time systems domain. The
goal of this work is to provide a framework in which extra
functional properties can be added via analytical interfaces to a
component such that interesting properties of the composed
systems can be expressed and analyzed in relation to properties of
built in components. In this paper we shell demonstrate analytical
interfaces by several examples that apply to the properties we
analyze. However, the intention of this work is to provide a
framework in which analytical interfaces can be added to the
model such that any interesting property of an assembly can be
expressed and analyzed. The complete set of defined analytical
interfaces constitutes a component’s analytical model.

We illustrate our approach by presenting a component model for
embedded real-time system and using that model for illustrating
how three completely different non-functional properties can be
analyzed by using the same framework.

The remainder of the paper is the following. Section 2 gives a
short overview of PLA model used for predictability technology.
Section 3 introduces the definitions and terms based on the
approach defined in [5-7]. Section 4 elaborates on the different
properties of assemblies and the paper is concluded in section 5.

2 PRODUCT LINE ARCHITECTURE AND
COMPONENT-BASED DEVELOPMENT

In this paper we assume a product line architecture to be based on
a component technology. There are however different approaches
of how products are assembled from components for a chosen set
of features. Figure 1, shows, in a simplified manner, how concepts
and vocabulary used in this paper relate. A product line consists of
different products that are distinguished by different features but
they also share a set of common features. In a component based
context features are implemented by components whose attributes
are specified by component credentials. Examples of such
attributes are different temporal attributes such as frequencies.
Another examples is component version dependency on other
components. Credentials are introduced by Shaw [8] and represent
a property, value and credibility. In this paper we do not utilize
the complete concept of credentials as we leave out the statistical
confidence for how certain properties were obtained.

 2

The flexibility in the PLA is accomplished through variation
points that define the strategies for varying the systems behavior
between products. Examples of variation points in a component
based software systems are variations of components (either by
adding new components, providing new component versions, or
by parameterization of components’ interfaces).

Product

Feature

*

*

Component Version

Credential

*
*

*

*

3 Implements

Product Line

1

*

Component

1

*

1

*

Figure 1. A UML model of the software contents of a product

The flexibility is not only achieved by functional properties but
also by extra-functional properties. For instance, in the real-time
systems domain we are interested in the temporal behavior of a
system as it is considered correct only if it performs correct
function at correct time, i.e. temporal correctness. Consequently,
by adding the temporal domain we must not only manage
functional flexibility but also temporal flexibility. For instance,
the frequency with which a particular component executes may
vary between a high -end product and a low-end product due
different demands from the controlled process.

One of the main problems in constructing and maintaining a PLA
is to express and verify product properties derived from the
component properties. To be able to predict the product properties
form the component properties, we define a prediction-enabled
component technology (PECT) similar to the one proposed in [6].
In a PECT constructive interface is separated from analytic
interfaces. While a constructive interface deals with operational
(functional) properties, analytical interface describes extra-
functional properties. An analytical property is very much the
same as a credential by means of having extra information about a
component.

3 COMPONENTS AND ASSEMBLIES
To be able to analyze properties of component-based products, we
must first be able to specify the properties of the components and
identify the communication between them. Different component
models specify this to different extent. Most of them do not treat
extra-functional properties. Our component model is based on the
port-based object approach in which component s are connected to
each other by data ports that constitutes a components data
interface [9]. This component model extends the expressiveness
of port -based objects and is presented in a simplified manner
hereinafter. For a more detailed description we refer to [10].

In Figure 2, our component meta-model is depicted in UML-

fashion. Components have in and out ports which resembles the
data interface. Also, a component encapsulates services, which
provide the actual functional behavior. Besides having data
interfaces, defined by their ports, components in the framework
have two additional interfaces, control interface, and
parameterization interface. The execution of, and synchronization
among components is controlled through its control interface by
associating a task to the interface. A task provides a thread of
execution that is defined and restricted by a set of attributes, e.g.
priority, frequency. A task in our framework can be based on any
task model defined in by the used real-time operating system
(RTOS). A task is a runtime mechanism and hence, it is a
constructive part of a component. However, note that some of the
attributes of a task are required when, together with some
analytical properties, analyzing temporal properties of an
assembly. The parameterization interface defines the points of
variation of a component’s behavior.

«constructive»
Component

+execute()
-componentName : String

«constructive»
Port

-portName : String
-dataType : String

1..n

«constructive»
service

-service : functionPtr
-input : Port[]
-output : Port

0..n

«constructive»
Parameter

-parameterName : String
-parameterType : String

0..n

«analytic»
Property

-propertyName : String
-propertyType : String

«constructive»
Task

-precedes : Task
-mutex : Task

«constructive»
PeriodicTask

-periodTime : Time
-priority : Integer

0..n

Figure 2. The component model

The property class that is stereotyped as analytic provides the
information needed by the different analyses we are interested in
performing on an assembly. An analytical component property
usually does not have a correspondence in a component instance.
A typical example of such a property would be the execution time
of a service of a component. The execution time is derived from
the source code, or by measurements, for the purpose of modeling
and analysis of a system and has no correspondence as such in the
runtime.

For further discussions we need definitions of certain terms in our
component model. In this model we shall emphasize the real-time
properties. Formally we define the constructive part of the
component model depicted in Figure 2 as:

Definition 1 A component c is a tuple 〈f, P, I, O, C, sc〉 , where f is
the service encapsulated by c, P is the set of parameters, I is the
set of in-ports, O is the set of out-ports, C is the control interface
and sc is the state of component c. ÿ

A component’s state is updated by the service within a component
and remains in between consecutive executions of a component.

 An assembly is a specific configuration of a set of components
that also defines the components interconnections. The union of
all its component’s states gives the state of an assembly. Formally

 3

we define an assembly as:

Definition 2 An assembly A is a tuple 〈C(A), R*〉 , where C(A) ⊆ C
is the set of components in A, and R* is the set of relations valid
between C(A) in A, and C is a set of all components encapsulated
in the product ÿ

Note that an assembly does not necessary corresponds to a
product. While in some cases we are interested in properties of the
product, in some cases we may want to analyze properties of a
sub-part of the complete product. I both cases we will refer to an
assembly. An assembly is only a conceptual- and analytical view
of a complete product that exists for the analysis of a particular
property, and has not necessarily a constructive correspondence.

In order to construct an assembly, we must be able to connect
components with each other via some relation. In our definition
of an assembly we have three kinds or relations among
components that belongs to the set R, precedence, mutual
exclusion (mutex), and data-flow connections.

Precedence and mutual exclusion specify the synchronization
among tasks that controls the execution of components. Formally
we define precedence and mutual exclusion as:

Definition 3 A precedence relation, →, is a binary, transitive
relation among a pair of tasks 〈τi, τj〉 ∈ Τ×Τ , such that if τi → τj,
then τj may start its execution earliest at the end of τi’s execution
and i ≠ j. ÿ

Definition 4 A mutual exclusion relation, ⊗, is a binary,
symmetric relation among pair of tasks 〈τi, τj〉 ∈ Τ×Τ, such that if
τi ⊗ τj, then neither τi nor τj is permitted to execute while the
corresponding party, or a transitively related party is executing
and i ≠ j. ÿ

Besides synchronization, we can also specify data-flow relations
among components in an assembly. Data-flow connections
specify the data that are exchanged between components in an
assembly through their ports. We define the data-flow relation as:

Definition 5 A data flow connection =, is a binary, anti-symmetric
relation among pair of ports on components, 〈ci.ix cj.oy〉 ∈
C.I×C.O, such that if ci.ix = cj.oy then ci’s in port ix is connected to
cj’s out port ox. ÿ

In next section we will describe how to predict properties of an
assembled real-time system product from a PLA perspective.

4 PROPERTIES OF AN ASSEMBLY IN A
PRODUCT LINE PERSPECTIVE

The intention of our work is to provide a framework in which new
properties of an assembly could be taken into consideration and
predicted. The general idea is that if the model has to be extended
with a new predictable property, new analytic properties can be
defined and new property theories be developed. For instance, if
we require an assembly to be type correct, i.e. the types of
connected data ports are correct, we must add a method for
checking this property and doing so require an analytical property
on data ports which carries the type information. Furthermore, we
are using the prediction technologies in a product line perspective,
i.e. we will discuss properties that are important when developing
and maintaining product line architectures. There is usually a
component technology associated with a product line.

Components in such a PLA conform to a particular component
model. We strive to make the supporting component technology
prediction enabled and hence simplify the way products are
assembled from components residing in a defined repository. By
having a PECT as a base for product line architectures we can
predict certain properties of the products before deploying them.

There are several realistic scenarios describing activities that a
product line may undergo during its lifetime. We have not
identified all possible scenarios but highlighting some relevant
cases and propose examples of properties that are interesting from
their perspective.

Scenario 1: New features will eventually be added to a product
line or a specific product within the product line. This new feature
might be implemented by a set of new components as well as new
versions of old components already existing as part of the reusable
assets in the product line. Doing this, there is a potential risk that
components could end up being incompatible with components
already used in the product, both with respect to version and
variants. This scenario is also related to maintenance of a product
that may alter the characteristics of a particular component. This
change of characteristics is possibly acceptable for one particular
product, but what are the consequences in the rest of the product
line?

Scenario 2: As we operate in the real-time systems domain, we
are also interested in predicting the temporal behavior of an
assembly. Adding component to-, or changing components in a
product or product line, may violate the temporal constraints in
the system. The reason for violating the temporal constraints
could be an over-utilization of the available resources in the
system architecture. A big share of existing real-time systems are
embedded systems, thus resources are usually restricted.

The scenarios discussed above also apply to the assembly of a
new product, based on pre-existing reusable components. We
have to make sure that the product is feasible both with respect to
the functional behavior and the temporal behavior.

We will refer to the analysis of relevant properties of assemblies
in a product line prospective as impact analysis. Thus, we want to
analyze the impact of an change, e.g. installing new features in a
product, maintaining existing components, construct a completely
new product based on reusable assets within the product line.

2.1 Assembly properties

To illustrate predictability of assemblies for the specified
component model, we shell discuss two concrete examples of
assembly’s properties from a real-time product line’s point of
view: consistent, and end-to-end deadlines .

The consistent property, A.consistent, is related to a capability to
predict consistency of an assembly. An assembly is considered
consistent if the versions of each component are correct according
to the specification of a product in the product line. The specified
features of a product determine which components, and in
particular which components version should be included in a
product. To be able to guarantee consistency we need to specify
what versions of components a product depends on. Thus, two
analytic properties need to be added to the analytic model, a
version identifier and a depends_on. The depends_on property
includes a list of version pairs stating what components and what
versions are needed to make it work.

 4

This idea of having version dependencies is very similar to how
.NET assemblies use meta-data to describe dependencies to other
assemblies [11]. Dependencies can be expressed and assured
using OCL constraints for the components. A new constraint has
been added to all components that state how the dependencies
shall be evaluated and regarded analyzing the assembly.

The second example of properties is related to temporal
constraints. The temporal correctness is of vital importance in the
real-time systems domain. Moreover, the temporal requirements
on a real-time system are seldom presented in terms of the
temporal attributes provided by the RTOS or as simple deadlines
for individual components. Typically they are considered on a
higher level; for instance jitter constraints for the control
performance, end-to-end deadlines, response times, etc. Designing
a real-time system is partly a matter of transforming such high-
level temporal requirements to the attributes available in the task
model at run-time, typically considering priorities and
frequencies. In our approach the high-level temporal requirements
are specified as properties on an assembly, e.g. end-to-end
deadline, and the implementation of those requirements, e.g.
frequencies, priorities, execution times, are specified as analytical
properties on components.

A concrete example of a temporal property is end-to-end deadline.
An end-to-end deadline, A.e2e, specifies a temporal requirement
on a set of components. It defines the maximum distance between
start of the execution of the first component and the completion of
the last component. Typically, the end-to-end property
requirements in hard real-time systems must be meet, while in soft
real-time systems a particular confidence of meeting the
requirement may be sufficient. Statistical verification of a
prediction theory can be performed to show how reliable the
prediction actually is, e.g the confidence in the estimated worst-
case execution time.

Verifying that a temporal property of the assembly is feasible, we
verify that our temporal implementation is correct. However, this
verification is correct under the assumption that all prerequisites
are correct (For example, the execution time of a component,
which is a component property). Consequently, the correctness of
a property of an assembly depends on the confidence we have in
analytical properties. The concept of credentials as presented in
[8] includes a notion of confidence associated with a component
property. The execution time can be statically analyzed given the
source code, or empirically measured in runtime [12]. Empirical
validation of the prediction theory is also needed to prove the
soundness of the theory.

The properties introduces above are of completely different
nature. Consistent are typically a property of a complete product.
End-to-end deadline only concerns a subset of components in a
complete product assembly. Moreover, there can be several end-
to-end deadline requirements within the same assembly with
respect to a subset of components from the full assembly.

2.2 The end-to-end temporal property

Figure 3 shows an example where four components have been
instantiated from the model presented in Figure 2. The
infrastructure in which those components will execute (the RTOS)
has a scheduling policy based on fixed priorities. The task model
consequently specifies the level of priority and the frequency of
each task. When defining an assembly we also must specify how
the assembly is build. There are not only the properties of the

components that determine the properties of an assembly, but also
the assembly architecture; we must define how the assembly is
built. For example, in a pipe-filter architecture the dataflow
between components (i.e. the precedence relations) must be
specified. In this example we define the precedence property and
ports connections. We also add an analytical property that
specifies how many times components are supposed to be
executed.

inports = {}
outports = {O0}
periodTime : Time = 50

«constructive»
C0 : Component

inports = {I1}
outports = {O1}
periodTime : Time = 100

«constructive»
C1 : Component

inports = {I2}
outports = {O2}
periodTime : Time = 20

«constructive»
C2 : Component

«precondition»
{C1.n_executed > C2.n_executed}

inports = {I3}
outports = {O3}
periodTime : Time = 30

«constructive»
C3 : Component

«precondition»
{C1.O1=C2.I2}

«precondition»
{C1.O1=C3.I3}

«precondition»
{C0.O0 = C1.I1}

«precondition»
{C0.n_executed > C1.n_executed}

Figure 3. Four components with precedence and connection
relations specified using constraints

Component c1 has two preconditions, the first one express the
precedence relation and the second the connection of ports.

The figure shows four components where c1 reads the out ports of
c0 and c2, c3 reads the out ports of c1. c0 precedes c1 and c1
precedes c2, while c3 can execute independently (i.e. c0 → c1 and
c1 → c2). Below is the components described according to
definition 1:

c0 = 〈 f, P0, Ø, {o1}, f(Ø, {o1}) , τ0, s0〉

c1 = 〈g, P1, {i1}, {o2, o3}, g({i1}, {o2, o3}) , τ1, s1〉 (1)

c2 = 〈h, P2, {i2}, {o4}, h({i2}, {o4}) , τ2, s2〉

c3 = 〈x, P3, {i3}, {o5}, x({i3}, {o5}) , τ3, s3〉

There are many views of one assembly depending on the relations
of components. In our example we have two views, one is for
precedence of components and another that shows how the
components are connected through ports. The assembly in our
example according to definition 2 is

A = 〈 {c0, c1, c2, c3},
 {Rprecedence = {c0→c1, c1→c2},
 {RConnection= {(o1, i1), (o1, i2), (o2, i3)}}〉 . (2)

 5

One view of the assembly is the one

APrecedence = 〈 {c0, c1, c2, c3}, RPrecedence 〉 . (3)

The other view is

 AConnection = 〈 {c0, c1, c2, c3}, RConnection 〉 . (4)

We shell analyzed a high -level requirement of the assembly,
namely end-to-end deadline, A.e2e.

An end to end deadline constraint can be defined as a property on
the assembly A.e2e which can be calculated as

A.e2e = Max(ResponseTime(c2), ResponseTime (c3)) –
 StartTime(c0). (5)

 An end-to end deadline is consequently constraining the
maximum time interval between start of the first component in an
assembly and the finish of the last component in the assembly.

Calculating the response time of components based on the
attributes provided in a fixed-priority based RTOS is done with
response time analysis [13]. However, different methods must be
utilized if a different scheduling policy is provided by the RTOS,
e.g. earliest-deadline-first. Thus, the definition of a particular
property may vary due to mechanisms provided by the
infrastructure in which the system will execute.

In our particular example we are using fixed priority scheduling in
which we calculate the response time of component ci, R(ci), as:

ec
Tc
cR

cBeccR j
chpc j

i
n

iii
n

ij

.
.

)(
)(.)(

)(

1 ∑
∈∀

+

++= (6)

where B is the blocking time and hp(ei) is the set of components
having tasks with higher priority than component i.

The end-to-end property is a typical example of a property that
may be defined on only part of a complete product. In Figure 3 it
can be seen that c0, c1 and c2 are connected with the precedence
relation but c3 can execute anytime when in the ready queue. It is
of importance to be able to calculate the e2e property for c0, c1
and c2 only. Our proposal is that the property shall be defined for
parts of the assembly with respect to a relation. In our example we
can say that c3 is independent from the other components with
respect to precedence. Hence A.e2e over {c0, c1, c2} can be
calculated with the response time of c2. By having this notation it
is possible to define properties that reflects parts of the assembly.

2.3 The version consistency property

We illustrate the problem of adding a new component to a product
line by continuing the previous example. We introduce a new
component c4 which is dependent on the execution of c3 and the
output from c3 and c2. Such a component is presented in Figure 4.
The component c4 also express its version relation. The
component c4 express that it is dependent on a version of c3 by
having a set of dependencies called depends_on. The runtime can
use a precondition to verify that the correct version of c3 is in c4’s
list depends_on. Verification can be performed in runtime or for
prediction of consistency in the product line before an assembly is
deployed.

inports = {I4, I5}
outports = {}
periodTime : Time = 40

«constructive»
C4 : Component «precondition»

{C3.O3 = C4.I4,
C2.O2 = C4,I5 }

«precondition»
{C3.n_executed > C4.n_executed}

«precondition»
{C4.depends_on.includes(C3.version)}

Figure 4. A new component c4 is added to represent a new
feature of a product

Before the new component is added we want to see what impact it
has to the system. For instance we want to calculate A.consistent
and A.e2e over {c0, c1, c2} and {c3, c4}.

The consistency of all versions in an assembly can be calculated
with the following formula. The property consistent is of type
Boolean.

A.consistent iff ∀ c.consistent ∧ c ∈ A
c.consitent iff c.depends_on.IsEmpty ∨
∀ ci ∈ c.depends_on : ci ∈ A (7)

That is, the assembly is consistent if all components in the
assembly are consistent. A component is consistent if it has no
dependencies or if all dependants exist in the assembly. The
formula holds also if the component model supports side-by-side
execution of different versions of a component.

5 CONCLUSION
In this paper we have proposed the use of a prediction-enabled
component technology for developing and maintaining component
based product line architecture in the real-time system’s domain.
We have extended an existing component model with analytical
interfaces that specifies the properties needed for predicting the
different properties of a component assembly. As examples of
properties that are interesting from a real-time product line
architecture’s point of view, we define the end-to-end deadline
property and the type consistent property.

We have introduced the concept of impact analysis. In the impact
analysis the effect of introducing new components in a product
line architecture is predicted. The new components could be due
to the introduction of new features in the product line or
maintenance of existing components that potentially alter the
characteristics of a component.

The ideas are presented in the paper as concrete examples of two
properties on assemblies. However, the presented methodology is
supposed to be the base to a general framework in which new
assembly properties could be included as the need for them
emerges. As a consequence of introducing a new assembly
property, new analytical properties on the components may be
needed.

As future work we will develop the property theories presented in
this paper further as well as the framework concept. As the base

 6

for this work we will implement the component model and
provide a tool for specifying and analyzing systems based in the
component model. Such a tool should support the framework
ideas. Thus, it must provide means for extending the component
model with required analytical properties and to express
properties on assembled products.

6 REFERENCES
 [1] Bosch J., "Component Evolution in Product-Line

Architectures", In Proceedings of International
Workshop on Component Based Software
Engineering, 1999.

 [2] Bosch J., Design & Use of Software Architectures,
Addison-Wesley, 2000.

 [3] Clements P. and Northrop L., Software Product
Lines: Practices and Patterns, Addison-Wesley,
2001.

 [4] Dashofy E. M. and van der Hoek A., "Representing
Product Family Architectures in an Extensible
Architecture Description Language", In Proceedings
of The International Workshop on Product Family
Engineering (PFE-4), Bilbao, Spain , 2001.

 [5] Crnkovic, I., Schmidt, H., Stafford, J., and Wallnau,
K. C., Anatomy of a Research Project in Predictable
Assembly, 2002.

 [6] Hissam, S. A., Moreno, G. A., Stafford, J., and
Wallnau, K. C., Packaging Predictable Assembly
with Prediction-Enabled Component Technology,
report Technical report CMU/SEI-2001-TR-024
ESC-TR-2001-024, 2001.

 [7] Wallnau K. C. and Stafford J., "Ensembles:
Abstractions for A New Class of Design Problem",
In Proceedings of 27th Euromicro Conference,
2001.

 [8] Shaw M., "Truth vs Knowledge: The Difference
Between What a Component Does and What We
Know It Does", In Proceedings of 8th International
Workshop on Software Specification and Design,
1996.

 [9] Stewart D.B., Volpe R.A., and Khosla P.K., Design
of Dynamically Reconfigurable Real-Time Software
Using Port-Based Objects , IEEE Transaction on
Software Engineering, volume 23, issue 12, 1997.

 [10] Wall A. and Norström C., "A Component Model for
Embedded Real-Time Software product-Lines", In
Proceedings of 4th IFAC conference on Fieldbus
Systems and their Applications, 2001.

 [11] Thai T. and Lam H., .NET Framework, O´Reilly,
2001.

 [12] Lim S.S., Bae Y. H., Jang C. T., Rhee B. D., Min S.
L., Park C. Y., Shin H., Park K., and Ki C. S., An
Accurate Worst-Case Timing Analysis for RISK
Processors, IEEE Transaction on Software
Engineering, volume 21, issue 7, 1995.

 [13] Audsley N.C., Burns A., Richardson M. F., Tindell
K., and Wellings A. J., Applying New Scheduling
Theory to Static Priority Preemptive Scheduling,
Software Engineering Journal, volume 5, issue 8,
1993.

