
On the Technological and Methodological Concepts

of Federated Embedded Systems

Avenir Kobetski

Swedish Institute of Computer Science (SICS)

Kista, Sweden

avenir.kobetski@sics.se

Jakob Axelsson

Swedish Institute of Computer Science (SICS)

Kista, Sweden

jakob.axelsson@sics.se

Abstract — Traditionally embedded systems are developed

with a specific control task in mind, and are able to affect only a

limited set of actuators, based on measurements from a limited

set of sensors. With the arrival of cheap and efficient

communication technology, this traditional picture is starting to

change. It is our belief that future embedded systems will interact

with each other, forming federations to provide new emergent

services to their users. With this in mind, a pre-study was

performed to discern the main concepts of such federations and

the related challenges that need to be addressed. This has led to

two parallel research directions, presented in this paper. One is

focusing on the enabling technology that is needed for dynamic

creation of new types of federations, while the other deals with

the methodological concepts for creation of ecosystems in which

federations of embedded systems can be dynamically formed.

Keywords — federated embedded systems, reconfigurable

software, software ecosystems

I. INTRODUCTION

The invention of Internet revolutionized knowledge sharing
between people. The invention of smartphones revolutionized
the mobile phone industry while data sharing took another leap,
both with respect to the used technology and the sheer scale of
exchanged data. It is quite safe to predict that the next large
leap in this direction will come when embedded systems (ES)
start to interact by exchanging data and collaborating towards
common goals.

While today most ESs are developed for a particular
application and operate on limited sets of sensor and actuator
signals, interacting ESs will have a much wider choice of
signals to use, offering vast opportunities for new emergent
services. An example of such a service is a traffic intersection
management system that collects data from the approaching
vehicles and transforms that data into control signals for the
vehicle speed, achieving a smooth traffic flow through the
intersection. Numerous other examples of emergent services,
either real or imagined, can be found in many different
application domains, such as automotive, transportation,
construction, healthcare, manufacturing, energy, etc. [1, 2, 3,
4]. This has spawned several interesting and somewhat related
research directions, such as cyber-physical systems, internet of
things, systems of systems, ubiquitous systems, etc., each
focusing on slightly different aspects of the concept. For a
more detailed literature review, see [5].

In our work, we use the term federated embedded systems
(FES) to emphasize the focus on embedded systems and the
concepts that are needed in order for ESs to be able to interact
with each other in a meaningful way. The interactions are
modeled as federations of systems, both embedded and
traditional, where each system in some way benefits from
participation in the federation. The FESs may either be static or
evolve dynamically, both with respect to their functionality and
composition. In many ways, the term FES is related to the field
of cyber-physical systems, but is more focused on the concepts
needed for the creation and operation of federations.

To reach the FES vision, significant advances in several
research directions are needed. This includes mechanisms to
dynamically join, operate in, and leave federations, as well as
methods for handling security, software and hardware faults,
conflicting requirements, information modeling, software
architecture, privacy issues, embedded systems technology,
and others. While the emergent FES functionality should bring
some benefits to all participating ESs, the individual ES
functionality, especially the safety critical one, must be
maintained. Also, the concepts need to prepare for the FESs
being open, both in the sense of openness towards new FES
members and in terms of open innovation, with third party
developers providing software to the ESs that would enable
them to participate in a specific federation. Thus, new business
models will be needed that support new types of software
ecosystems.

Obviously, the challenges are numerous. To get a better
understanding of the FES concepts and challenges, we
conducted a pre-study on the FES subject, based on a series of
workshops together with several industrial partners [3]. A
portfolio of applications from different application domains
was collected and used as the basis for the discussions. It
became evident that in order to reach the FES vision, both
technological and methodological advances are needed.

The main point of this paper is to summarize the concepts
of our pre-study, and to present concrete work towards the FES
vision that followed. In Section II, some high level concepts of
FES are presented. Section III describes a software component
concept that enables dynamic software reconfiguration during
runtime in vehicle applications. Section IV presents our work
within software ecosystem methodology, Section V reviews
some related work, while Section VI concludes the paper.

II. HIGH LEVEL CONCEPTS

In this section, main FES-related concepts that were put
forward during our prestudy [3] are summarized. Basically, the
concepts were partitioned into four groups, divided by two
conceptual axes, technology vs. methodology and system-level
vs federation-level concepts. In the following subsections,
these concepts are shortly presented.

A. System-level Technology Concepts

On the level of individual systems, some basic

technologies are needed in order for the ESs to be able to

participate in federations with other systems. First of all, in

order for the federations to form and for the ESs to contribute

to and benefit from the FESs, the systems must be able to

communicate with each other. Thus, technology for external

communication is needed.

Secondly, federations and the services that they provide

will often be evolvable and unforeseen at the design time of

individual ESs. For this to happen, it should be possible to

dynamically add and update software to the ESs at runtime. In

consequence, if safety-critical functionality is allowed to be

affected in such a way, there should be fault handling

mechanisms that monitor how the new software complies with

the system requirements, both functional and non-functional,

and resort to inbuilt fall-back functionality if needed. Also,

faults can be caused by the newly added software containing

conflicts with other parts of installed software. Thus, logical

software conflicts should be detected and handled.

In a recent work, a conceptual model for dynamically

updatable embedded software was proposed [6]. It builds upon

AUTOSAR [7], an architecture standard being widely used in

the automotive sector. Currently, the concept is being further

developed, in parallel with the development of tools and a

demonstrator to show different FES application scenarios. The

model is highlighted in Section III.

B. Federation-level Technology Concepts

At the federation level, the technology needs are more

intricate. Standardized protocols are needed in order for

different kinds of ESs to cooperate. Such protocols should

describe the communication details and the rules to which

participating ESs will have to abide while functioning within a

certain federation. In most federations, different types of ESs

will play different roles, thus following different sets of rules.

New fault handling mechanisms are needed to handle the

emergent behavior. On one hand, faults that would never exist

in separated ESs may occur due to interactions. On the other

hand, ESs may assist each other to overcome or to reduce the

effects of faults. Again, faults can be caused by conflicting

functionality. However, this time the level of abstraction is

higher and the conflicts are expected to occur between ESs

and their differering requirements. Related topics of

importance are trust and uncertainty management in the scope

of a federation.

C. System-level Methodology Concepts

In order for the FES to become a reality, methodology

related concepts must not be neglected. Today, an ES is

generally produced by one original equipment manufacturer

(OEM), as part of a larger product. It often contains parts, both

hardware and software, from different suppliers, while the

OEM is responsible for integration.

With the idea of dynamic software, the number of

participating software producers will be even higher, and since

third-party developers will be able to add software without the

involvement of the OEM, roles and responsibilities change

between the parties. This, in turn, will change information

flows during development and affect tools. A successful ES

will no longer be one that only provides a certain function, but

one that serves as a useful platform for adding new

functionality on top of it

D. Federation-level Methodology Concepts

While interactions between different actors that contribute

to ES development may be complex, they become even more

entangled at the federation level. To pave the ground for

evolving and persistent federations, well defined business

models are crucial. On the one hand, such models should

provide opportunities for different parties to benefit from the

emergent functionality, encouraging them to participate in the

operation and development of the federation. On the other

hand, the responsibility for the federation should be clearly

defined. In other words, all aspects of the emergent

functionality should be owned and maintained by some

stakeholder.

The distribution of responsibilities and benefits between

stakeholders is a challenging question. Even more challenging

is how to do this dynamically in order to keep up with the

changing nature of FES. The solution should include

possibilities to allow new parties to take part in the federation

operation, to let existing parties to take on new roles if needed,

and to adapt responsibilities to the evolving FES functionality.

It seems clear that the technological development in itself

is not sufficient for the creation and evolution of lasting FESs.

The methodological aspects of federation operation should be

carefully investigated. In Section IV, our initial work on this

subject is presented.

III. DYNAMIC SOFTWARE RECONFIGURATION IN

EMBEDDED SYSTEMS

In this Section, a component model that allows dynamically
adding and removing parts of ES software is presented. This
model is a concrete example of a system level enabling
technology that opens up for third party developers to add new
services to ESs, ultimately creating opportunities for FES
formation. The model is primarily tailored for automotive
applications and builds on the AUTomotive Open System
ARchitecture (AUTOSAR) standard [7]. However, the
standard is not limited to the automotive world. In fact, it is
suitable to all ES applications where the basic software (e.g.
task scheduler, device drivers, hardware abstractions, etc.) is
common to several control units and can be standardized.

In the following subsections, the AUTOSAR architecture is
briefly introduced, followed by our extensions to the concept
together with a few implementation details. Finally, some
safety and security related remarks are collected.

A. The AUTOSAR Concept

AUTOSAR is structured around a layered software
architecture that decouples the basic software (BSW) from the
application software (ASW). This is accomplished by means of
a component model, and a middleware called the runtime
environment (RTE). Using AUTOSAR, ASW is modeled as a
collection of software components (SW-C), which are in many
ways similar to established component models like Koala [8],
that communicate with each other and the rest of the system
(e.g. standardized BSW) through so called ports. The internal
functionality of the component only accesses its ports.

The actual communication between the ASW components,
as well as their access to the lower layers, is taken care of by
the RTE by interconnecting appropriate ports. This eases reuse
of parts of the ASW, while RTE adds flexibility and scalability
to the AUTOSAR architecture, allowing application SW-Cs to
be easily redistributed between different control units simply
by reconfiguring the RTE.

 However, AUTOSAR has been designed to execute with
limited resources and hence configuration of the system, such
as allocation of SW-Cs to control units, and connection
between SW-C ports, is done at design time with no structural
dynamics during execution. The configuration is described in
xml-files separate form the source code. These description files
are used before deployment to generate C code that links ASW
to BSW. Any changes in configuration require the software to
be rebuilt and the control unit to be reprogrammed.

B. Dynamic Software Components

In [6], initial work on a conceptual model that extends the
AUTOSAR architecture to allow software update at runtime
was proposed. The key is to extend the set of ordinary appli-
cation SW-Cs with dedicated SW-Cs for running additional
software, hereafter called plug-in software, which is installed
after the vehicle has left the factory. In this work, only plug-in
enabling concepts are presented, while the internal plug-in
functionality, which actually defines the rules for how the ES
may act on the federation level, see Section II.B, is not
considered at this point, but will be addressed in the future.

Figure 1 gives an overview of how the plug-in concept
relates to the underlying AUTOSAR based software. In the
figure, dotted lines are used to show the plug-ins and their
connections, whereas solid lines are used for the AUTOSAR
SW-Cs and their links. For the concept to work, the OEM must
provide plug-in enabled SW-Cs, which to start with only
contain a Java virtual machine (VM) and an API that will be
available to the plug-ins in the form of input and output ports,
connected to the rest of the system through AUTOSAR RTE.

Also, one external communication manager (ECM) SW-C
is needed, capable of communicating with a pre-defined
external trusted server so that plug-ins can be installed,
updated, and uninstalled at runtime. Furthermore, ECM serves
as a gateway for plug-ins to communicate externally, which
allows transferring information to and from off-board services,
and participating in FESs. Finally, the AUTOSAR RTE must
be configured so that ECM is connected to the plug-in SW-Cs.

C. Internal communication

Inside the plug-in SW-Cs, AUTOSAR concepts are
replicated as far as possible. Plug-in components communicate
with the rest of the system through ports, while the connection
details are configured in the plug-in runtime environment
(PIRTE). Differently from the AUTOSAR RTE, the PIRTE
contains both a static and a dynamic part. The static PIRTE
part interfaces with SW-C ports and maps them into Java API
signals. The dynamic part, updated each time any plug-in SW-
C is updated, handles plug-in ports and their connections.

Plug-in ports can either access built-in functionality
through the API provided by PIRTE, or they can be connected
to ports on other plug-ins, again mediated by PIRTE. This is
done even if the plug-ins are part of the same application,
allowing dynamic reallocation of plug-ins between control
units if needed. For example, if plug-in B in Figure 1 were
reallocated, PIRTE would pass the connection to the
AUTOSAR RTE that in its turn would forward it through the
databus to the correct control unit.

Since it is not practically possible for the OEM to provide
(and connect) SW-C ports for all imaginable future plug-in
ports, the communication between plug-ins on different control
units is done through dedicated SW-C ports (one pair of ports
per control unit), which are fully connected to each other in
AUTOSAR RTE. As a result, PIRTE needs to provide the
address of the receiving control unit, the receiving plug-in, and
the receiving port in that plug-in with the message that is
passed to the data bus. Note that all these communication
details only affect PIRTE and are transparent to the plug-ins.

D. Safety & Security

To provide a basic level of security, plugin software is
sandboxed in as far as possible. First of all, plug-ins can only
access the underlying system through the ports of the plug-in
SW-C. It is up to the ECU developers to decide which ports to
provide and how data received from these ports should be
handled. If that data is used to control the underlying system, it
is important that (non-reconfigurable) fallback mechanisms,
with the authority to override plug-in actions, are in place.
Secondly, Java VM executes in its own thread and with its own
memory areas and network messages. This avoids competition
for resources with the built-in functionality. Plug-ins are thus
executed under a best effort scheme, whereas built-in software
has predictable behavior.

AUTOSAR basic software

AUTOSAR runtime environment

Hardware

Plug-in SW-C

Java VM

Plug-in

component A

Plug-in runtime environment

Plug-in

component B

External communication manager SW-C

Ordinary SW-C

Ordinary SW-C

Figure 1. The structure of a dynamic software component model.

A potential security threat is the installation of plug-ins. In
this concept, it is only allowed to install plug-ins from a trusted
server at a pre-defined address. In this way, much of the
firewall issues are moved from the resource-constrained
embedded system to a server. To change the trusted server
address requires reprogramming of the ECU’s built-in
software, which has its own security mechanisms.

IV. ECOSYSTEMS OF EMBEDDED SYSTEMS

In order to create a successful concept for FES, it is not
sufficient to only look at the technical implementation, but one
must also study how to organize development of the systems
and to achieve sustainable business models, as described in
Section II.D. The key concepts of FES actually provide
several opportunities from a business perspective:

 The plug-in components can be used by an OEM to
add new functionality very rapidly, thereby being
more responsive to market trends or to requirements
from niche users.

 Third-parties can develop plug-in components to
extend the functionality beyond what the OEMs
conceived, similarly to how app developers extend the
functionality of mobile phones.

 Systems can be integrated into systems-of-systems,
whose functions are realized by distributed software.
The integration in this case is handled by a separate
organization.

This means that many stakeholders have an interest in the
development and use of a FES, and the interrelations between
them become crucial. In traditional development of ES, there
is an OEM who is responsible for the end product, and who
integrates subsystems from different suppliers. The suppliers
develop their parts based on detailed specifications from the
OEM.

In the FES setting, the OEM instead delivers an extensible
product, whose success is partly a result of how well it
supports the independent development of add-on solutions,
and not only how well it meets the basic requirements. Based
on this platform, a thriving business ecosystem [9] can be
created, where third-party actors can practice open innovation
and thereby extend the value of the base product.

However, this also leads to new challenges that need to be
addressed when it comes to system development. For instance,
ways of sharing information between different parties must be
found, so that a plug-in developer can develop and test its
software without full access to the overall product. Quality
assurance in general is an issue, and the base product has to be
tested with respect to all possible plug-ins that can be added to
it. The distribution of rights and responsibilities between the
parties are also crucial. Who is liable in a situation where an
incident occurs? How should the streams of income be set up
and divided among the parties?

Clearly, the business side and the technical side of FES are
not separate. They meet in, for instance, the product
architecture, that must support in a good way the development
of both base products and plug-ins, and continue to do so over
the time that the system evolves.

To investigate these issues, we are currently conducting an

empirical research project, where we, based on case studies

and interviews, try to identify the primary interfaces between

stakeholders in the ecosystem. This will be used to create a

reference model that explains what flows of information,

money, etc. exist between them, and can be used to provide

guidance on how to organize the ecosystem efficiently [10].

V. RELATED WORK

Several studies on the subject of cooperating systems have
been published. In [11], more than 40 different definitions of
the term systems of systems were reviewed and classified,
while the notion of federations of systems was coined in [12].
In [2], recent research advances within the internet of things
field, together with a number of application scenarios, are
presented. In the field of cyber-physical systems, a lot of work
has been done to present both the research challenges and
possible applications, e.g. [1, 13, 14, 15]. A more extensive
litterature review can be found in [5].

While all the above research directions are interrelated,
they focus on somewhat different questions, even though they
seem to be starting to merge. For example, the IoT field has
sprung out of the desire to be able to uniquely identify any
physical object, with a large focus on identification and
communication. The SoS research on its hand has traditionally
been focusing on the engineering management studies. The
CPS field seems to be the most related to the FES concept. In
fact, one could argue that CPS actually is a larger field
containing FES. The difference lies in the strong emphasis that
the term FES places on the use of embedded systems in
federations that are generally allowed to be dynamically
reconfigurable, both with respect to their composition and
functionality. The perceived need for a focus on open and
dynamic federations of ESs was one of the reasons for our FES
pre-study [3]. Another reason was to give the opportunity for
the Swedish industry to add its voice to the ongoing evolution
of the CPS concept, zooming in on FES related challenges.

 When it comes to dynamic reconfiguration of SW-Cs, it has
been studied in e.g. [16, 17, 18, 19]. Differently from the above
publications, this work provides a Java-based and simple to
implement concept that builds on a standardized architecture,
offering good opportunities for open software development.

 The term "ecosystem" was introduced by Iansiti and
Levien who described the notion of business ecosystems [20].
They explained the benefits of adopting the "ecosystem-
thinking" from a business perspective and discussed various
strategies organizations may utilize, depending on their role
within the ecosystem. However, the article does not explicitly
describe how to carry out product development, or what
specific characteristics products should have in order to make
the best out of such an ecosystem.

The term "software ecosystem" was introduced by
Messerschmidt and Szyperski [21] but was extended by Bosch
[9]. In particular, Bosch extended the classical "product line-
thinking" of software products, The trend towards open
platforms was started because it is too expensive for an
manufacturer to develop alone all the functionality that
customers would wish for, and because gathering the

requirements for customization could potentially be done more
efficiently through an open platform.

Hanssen and Dybå [22] described in their work a
systematic overview of software ecosystems and explained
several related challenges. Jansen, Finkelstein and
Brinkkemper [23] presented a research agenda for software
ecosystems, discussed about the main challenges involved in a
technical and business level through three dimensions: a) from
a software ecosystem level, b) software supply network level,
and c) from the software vendor level, and also mentioned
issues of formal modeling, transparency, guidelines, standards,
and actions, that are of central importance.

All in all, there is very little research that looks at
ecosystems specifically for ES, but the literature either is
looking on pure software, or general product development.

VI. CONCLUSIONS AND FUTURE WORK

This paper consists of three main parts. Firstly, high level
concepts related to FES and its constituent ESs are presented.
These concepts are further divided into those that are
connected to technology development and those that relate to
product and process development methodologies, e.g. business
models. Secondly, our work in the technological direction is
presented. This work extends the AUTOSAR architecture with
the concept of dynamic component models, thus allowing
installation of new plug-in software into vehicles at runtime,
opening up for implementing FES governing interaction rules
long after the vehicles have left factory. Although the
AUTOSAR standard is from the automotive industry, the
concepts are quite general and of value in other embedded
system domains. Thirdly, we present our initial work in the
methodology direction, aiming at defining the business models
necessary for dynamic FES ecosystems.

While our work on FES methodology is currently just
taking off, see Section IV for a discussion of future challenges,
there is more to say about the continuation in the technological
direction. More realistic tests of the concepts presented in
Section III are needed to get deeper insights about the strengths
and weaknesses of the proposed solution. Stressing the system
in order to test robustness is also important. For example, this
could help to understand what happens if power goes off
during the installation of a plug-in, or how to react to the loss
of messages between plug-ins, etc. To increase the practical
usefulness of the proposed architecture, tools that aid in
generating plug-in runtime environment will be developed.
Also, in theory the concepts should be applicable to safety
critical applications. However, for this to work, there is a need
of fault handling mechanisms, both locally at the ES level,
provided by the ES developers, and at the FES level. Trust and
conflict management mechanisms are other intricate but
interesting research questions. Once the basic concepts and the
simulation environment are in place, such more complex issues
are ready to be adressed.

ACKNOWLEDGEMENTS

The projects presented in this paper are supported by
Vinnova (grants no. 2012-02004 and 2012-03782), Volvo
Cars, and the Volvo Group.

VII. BIBLIOGRAPHY

[1] CPS Summit Report, 2008. [Online]. Available:

http://varma.ece.cmu.edu/Summit/.

[2] L. Atzori, A. Iera and G. Morabito, "The Internet of Things: a Survey,"
Computer Networks, 2010.

[3] A. Kobetski and J. Axelsson, "Federated Robust Embedded Systems:

Concepts and Challenges," Swedish Inst. of Computer Science, 2012.

[4] D. Rylander and J. Axelsson, "Using Wireless Communication to

Improve Road Safety and Quality of Service at Road Construction Work

Sites," in IEEE Vehicular Networking Conference, 2012.

[5] A. Kobetski and J. Axelsson, "Federated Embedded Systems – a review

of the literature in related fields," Swedish Inst. of Computer Science,

2012.

[6] J. Axelsson and A. Kobetski, "On the Conceptual Design of a Dynamic

Component Model for Reconfigurable AUTOSAR Systems," in

Workshop on Adaptive and Reconfigurable Embedded Systems, 2013.

[7] "AUTOSAR consortium," [Online]. Available: http://www.autosar.org/.

[8] R. van Ommering, F. van der Linden, J. Kramer and J. Magee, "The

Koala component model for consumer electronics software," IEEE
Computer, vol. 33, no. 3, pp. 78-85, 2002.

[9] J. Bosch, "From Software Product Lines to Software Ecosystems," in

Proceedings of the 13th Intl. Software Product Line Conference, 2009.

[10] E. Papatheocharous, J. Axelsson and J. Andersson, Towards an

Innovative Open Ecosystem Infrastructure for Federated Embedded

Systems Development, Submitted to the 1st Intl. Workshop on Software
Engineering for Systems-of-Systems, 2013.

[11] J. Boardman, S. Pallas, B. J. Sauser and D. Verma, "Report on System of

Systems Engineering," Stevens Institute of Technology, 2006.

[12] A. P. Sage and C. D. Cuppan, "On the Systems Engineering and

Management of Systems of Systems and Federations of Systems,"

Information-Knowledge-Systems Management, vol. 2, pp. 325-345, 2001.

[13] E. Lee, "Cyber Physical Systems: Design Challenges," in Symposium on

Object Oriented Real-Time Distributed Computing (ISORC), 2008.

[14] L. Sha, S. Gopalakrishnan, X. Liu and Q. Wang, "Cyber-Physical
Systems: A New Frontier," Machine Learning In Cyber Trust, vol. 1, pp.

pp. 3-13, 2009.

[15] R. Rajkumar, I. Lee, L. Sha and J. Stankovic, "Cyber-Physical Systems:
the Next Computing Revolution," in the 47th Design Automation

Conference, New York, NY, 2010.

[16] R. Anthony, A. Rettberg, D. Chen, I. Jahnich, G. de Boer and C. Ekelin,

"Towards a dynamically reconfigurable automotive control system

architecture," Embedded System Design: Topics, Techniques and Trends,
pp. 71-84, 2007.

[17] M. Felser, R. Kapitza, J. Kleinöder and W. Schröder-Preikschat,

"Dynamic software update of resource-constrained distributed embedded
systems," Embedded System Design: Topics, Techniques and Trends, pp.

387-400, 2007.

[18] J. Polakovic, S. Mazare, J. B. Stefani and P. C. David, "Experience with
safe dynamic reconfigurations in component-based embedded systems,"

Component-Based Software Engineering, pp. 242-257, 2007.

[19] Y. Vandewoude and Y. Berbers, "Run-time evolution for embedded
component-oriented systems," in Proc. Intl. Conf. on Software

Maintenance, 2002.

[20] M. Iansiti and R. Levien, "Strategy as ecology. , 82(3), 68-81," Harvard
business review, vol. 82, no. 3, pp. 68-81, 2004.

[21] D. G. Messerschmitt and C. Szyperski, Software ecosystem: understan-

ding an indispensable technology and industry, MIT Press, 2003.

[22] G. K. Hanssen and T. Dybå, "Theoretical foundations of software

ecosystems," in Proc. of the 4th Software Ecosystems Workshop, 2012.

[23] S. Jansen, A. Finkelstein and S. Brinkkemper, "A sense of community: A
research agenda for software ecosystems," in Proc. of the 31st

International Conference on Software Engineering, 2009.

