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Abstract — Traditionally embedded systems are developed 

with a specific control task in mind, and are able to affect only a 

limited set of actuators, based on measurements from a limited 

set of sensors. With the arrival of cheap and efficient 

communication technology, this traditional picture is starting to 

change. It is our belief that future embedded systems will interact 

with each other, forming federations to provide new emergent 

services to their users. With this in mind, a pre-study was 

performed to discern the main concepts of such federations and 

the related challenges that need to be addressed. This has led to 

two parallel research directions, presented in this paper. One is 

focusing on the enabling technology that is needed for dynamic 

creation of new types of federations, while the other deals with 

the methodological concepts for creation of ecosystems in which 

federations of embedded systems can be dynamically formed.  

Keywords — federated embedded systems, reconfigurable 

software, software ecosystems 

I. INTRODUCTION 

The invention of Internet revolutionized knowledge sharing 
between people. The invention of smartphones revolutionized 
the mobile phone industry while data sharing took another leap, 
both with respect to the used technology and the sheer scale of 
exchanged data. It is quite safe to predict that the next large 
leap in this direction will come when embedded systems (ES) 
start to interact by exchanging data and collaborating towards 
common goals.  

While today most ESs are developed for a particular 
application and operate on limited sets of sensor and actuator 
signals, interacting ESs will have a much wider choice of 
signals to use, offering vast opportunities for new emergent 
services. An example of such a service is a traffic intersection 
management system that collects data from the approaching 
vehicles and transforms that data into control signals for the 
vehicle speed, achieving a smooth traffic flow through the 
intersection. Numerous other examples of emergent services, 
either real or imagined, can be found in many different 
application domains, such as automotive, transportation, 
construction, healthcare, manufacturing, energy, etc. [1, 2, 3, 
4]. This has spawned several interesting and somewhat related 
research directions, such as cyber-physical systems, internet of 
things, systems of systems, ubiquitous systems, etc., each 
focusing on slightly different aspects of the concept. For a 
more detailed literature review, see [5]. 

In our work, we use the term federated embedded systems 
(FES) to emphasize the focus on embedded systems and the 
concepts that are needed in order for ESs to be able to interact 
with each other in a meaningful way. The interactions are 
modeled as federations of systems, both embedded and 
traditional, where each system in some way benefits from 
participation in the federation. The FESs may either be static or 
evolve dynamically, both with respect to their functionality and 
composition. In many ways, the term FES is related to the field 
of cyber-physical systems, but is more focused on the concepts 
needed for the creation and operation of federations.  

To reach the FES vision, significant advances in several 
research directions are needed. This includes mechanisms to 
dynamically join, operate in, and leave federations, as well as 
methods for handling security, software and hardware faults, 
conflicting requirements, information modeling, software 
architecture, privacy issues, embedded systems technology, 
and others. While the emergent FES functionality should bring 
some benefits to all participating ESs, the individual ES 
functionality, especially the safety critical one, must be 
maintained. Also, the concepts need to prepare for the FESs 
being open, both in the sense of openness towards new FES 
members and in terms of open innovation, with third party 
developers providing software to the ESs that would enable 
them to participate in a specific federation. Thus, new business 
models will be needed that support new types of software 
ecosystems. 

Obviously, the challenges are numerous. To get a better 
understanding of the FES concepts and challenges, we 
conducted a pre-study on the FES subject, based on a series of 
workshops together with several industrial partners [3]. A 
portfolio of applications from different application domains 
was collected and used as the basis for the discussions. It 
became evident that in order to reach the FES vision, both 
technological and methodological advances are needed.  

The main point of this paper is to summarize the concepts 
of our pre-study, and to present concrete work towards the FES 
vision that followed. In Section II, some high level concepts of 
FES are presented. Section III describes a software component 
concept that enables dynamic software reconfiguration during 
runtime in vehicle applications. Section IV presents our work 
within software ecosystem methodology, Section V reviews 
some related work, while Section VI concludes the paper. 



II. HIGH LEVEL CONCEPTS 

In this section, main FES-related concepts that were put 
forward during our prestudy [3] are summarized. Basically, the 
concepts were partitioned into four groups, divided by two 
conceptual axes, technology vs. methodology and system-level 
vs federation-level concepts. In the following subsections, 
these concepts are shortly presented. 

A. System-level Technology Concepts 

On the level of individual systems, some basic 

technologies are needed in order for the ESs to be able to 

participate in federations with other systems.  First of all, in 

order for the federations to form and for the ESs to contribute 

to and benefit from the FESs, the systems must be able to 

communicate with each other. Thus, technology for external 

communication is needed.  

Secondly, federations and the services that they provide 

will often be evolvable and unforeseen at the design time of 

individual ESs. For this to happen, it should be possible to 

dynamically add and update software to the ESs at runtime. In 

consequence, if safety-critical functionality is allowed to be 

affected in such a way, there should be fault handling 

mechanisms that monitor how the new software complies with 

the system requirements, both functional and non-functional, 

and resort to inbuilt fall-back functionality if needed. Also, 

faults can be caused by the newly added software containing 

conflicts with other parts of installed software. Thus, logical 

software conflicts should be detected and handled.  

In a recent work, a conceptual model for dynamically 

updatable embedded software was proposed [6]. It builds upon 

AUTOSAR [7], an architecture standard being widely used in 

the automotive sector. Currently, the concept is being further 

developed, in parallel with the development of tools and a 

demonstrator to show different FES application scenarios. The 

model is highlighted in Section III. 

B. Federation-level Technology Concepts 

At the federation level, the technology needs are more 

intricate. Standardized protocols are needed in order for 

different kinds of ESs to cooperate. Such protocols should 

describe the communication details and the rules to which 

participating ESs will have to abide while functioning within a 

certain federation. In most federations, different types of ESs 

will play different roles, thus following different sets of rules.  

New fault handling mechanisms are needed to handle the 

emergent behavior. On one hand, faults that would never exist 

in separated ESs may occur due to interactions. On the other 

hand, ESs may assist each other to overcome or to reduce the 

effects of faults. Again, faults can be caused by conflicting 

functionality. However, this time the level of abstraction is 

higher and the conflicts are expected to occur between ESs 

and their differering requirements. Related topics of 

importance are trust and uncertainty management in the scope 

of a federation.  

C. System-level Methodology Concepts 

In order for the FES to become a reality, methodology 

related concepts must not be neglected. Today, an ES is 

generally produced by one original equipment manufacturer 

(OEM), as part of a larger product. It often contains parts, both 

hardware and software, from different suppliers, while the 

OEM is responsible for integration.  

With the idea of dynamic software, the number of 

participating software producers will be even higher, and since 

third-party developers will be able to add software without the 

involvement of the OEM, roles and responsibilities change 

between the parties. This, in turn, will change information 

flows during development and affect tools. A successful ES 

will no longer be one that only provides a certain function, but 

one that serves as a useful platform for adding new 

functionality on top of it 

D. Federation-level Methodology Concepts 

While interactions between different actors that contribute 

to ES development may be complex, they become even more 

entangled at the federation level. To pave the ground for 

evolving and persistent federations, well defined business 

models are crucial. On the one hand, such models should 

provide opportunities for different parties to benefit from the 

emergent functionality, encouraging them to participate in the 

operation and development of the federation. On the other 

hand, the responsibility for the federation should be clearly 

defined. In other words, all aspects of the emergent 

functionality should be owned and maintained by some 

stakeholder.   

The distribution of responsibilities and benefits between 

stakeholders is a challenging question. Even more challenging 

is how to do this dynamically in order to keep up with the 

changing nature of FES. The solution should include 

possibilities to allow new parties to take part in the federation 

operation, to let existing parties to take on new roles if needed, 

and to adapt responsibilities to the evolving FES functionality. 

It seems clear that the technological development in itself 

is not sufficient for the creation and evolution of lasting FESs. 

The methodological aspects of federation operation should be 

carefully investigated. In Section IV, our initial work on this 

subject is presented.  

III. DYNAMIC SOFTWARE RECONFIGURATION IN 

EMBEDDED SYSTEMS 

In this Section, a component model that allows dynamically 
adding and removing parts of ES software is presented. This 
model is a concrete example of a system level enabling 
technology that opens up for third party developers to add new 
services to ESs, ultimately creating opportunities for FES 
formation. The model is primarily tailored for automotive 
applications and builds on the AUTomotive Open System 
ARchitecture (AUTOSAR) standard [7]. However, the 
standard is not limited to the automotive world. In fact, it is 
suitable to all ES applications where the basic software (e.g. 
task scheduler, device drivers, hardware abstractions, etc.) is 
common to several control units and can be standardized.  

In the following subsections, the AUTOSAR architecture is 
briefly introduced, followed by our extensions to the concept 
together with a few implementation details. Finally, some 
safety and security related remarks are collected. 



 

A. The AUTOSAR Concept 

AUTOSAR is structured around a layered software 
architecture that decouples the basic software (BSW) from the 
application software (ASW). This is accomplished by means of 
a component model, and a middleware called the runtime 
environment (RTE). Using AUTOSAR, ASW is modeled as a 
collection of software components (SW-C), which are in many 
ways similar to established component models like Koala [8], 
that communicate with each other and the rest of the system 
(e.g. standardized BSW) through so called ports. The internal 
functionality of the component only accesses its ports. 

The actual communication between the ASW components, 
as well as their access to the lower layers, is taken care of by 
the RTE by interconnecting appropriate ports. This eases reuse 
of parts of the ASW, while RTE adds flexibility and scalability 
to the AUTOSAR architecture, allowing application SW-Cs to 
be easily redistributed between different control units simply 
by reconfiguring the RTE.  

 However, AUTOSAR has been designed to execute with 
limited resources and hence configuration of the system, such 
as allocation of SW-Cs to control units, and connection 
between SW-C ports, is done at design time with no structural 
dynamics during execution. The configuration is described in 
xml-files separate form the source code. These description files 
are used before deployment to generate C code that links ASW 
to BSW. Any changes in configuration require the software to 
be rebuilt and the control unit to be reprogrammed. 

B. Dynamic Software Components 

In [6], initial work on a conceptual model that extends the 
AUTOSAR architecture to allow software update at runtime 
was proposed. The key is to extend the set of ordinary appli-
cation SW-Cs with dedicated SW-Cs for running additional 
software, hereafter called plug-in software, which is installed 
after the vehicle has left the factory. In this work, only plug-in 
enabling concepts are presented, while the internal plug-in 
functionality, which actually defines the rules for how the ES 
may act on the federation level, see Section II.B, is not 
considered at this point, but will be addressed in the future.  

Figure 1 gives an overview of how the plug-in concept 
relates to the underlying AUTOSAR based software. In the 
figure, dotted lines are used to show the plug-ins and their 
connections, whereas solid lines are used for the AUTOSAR 
SW-Cs and their links. For the concept to work, the OEM must 
provide plug-in enabled SW-Cs, which to start with only 
contain a Java virtual machine (VM) and an API that will be 
available to the plug-ins in the form of input and output ports, 
connected to the rest of the system through AUTOSAR RTE.  

Also, one external communication manager (ECM) SW-C 
is needed, capable of communicating with a pre-defined 
external trusted server so that plug-ins can be installed, 
updated, and uninstalled at runtime. Furthermore, ECM serves 
as a gateway for plug-ins to communicate externally, which 
allows transferring information to and from off-board services, 
and participating in FESs. Finally, the AUTOSAR RTE must 
be configured so that ECM is connected to the plug-in SW-Cs.  

 

C. Internal communication 

Inside the plug-in SW-Cs, AUTOSAR concepts are 
replicated as far as possible. Plug-in components communicate 
with the rest of the system through ports, while the connection 
details are configured in the plug-in runtime environment 
(PIRTE). Differently from the AUTOSAR RTE, the PIRTE 
contains both a static and a dynamic part. The static PIRTE 
part interfaces with SW-C ports and maps them into Java API 
signals. The dynamic part, updated each time any plug-in SW-
C is updated, handles plug-in ports and their connections.  

Plug-in ports can either access built-in functionality 
through the API provided by PIRTE, or they can be connected 
to ports on other plug-ins, again mediated by PIRTE. This is 
done even if the plug-ins are part of the same application, 
allowing dynamic reallocation of plug-ins between control 
units if needed. For example, if plug-in B in Figure 1 were 
reallocated, PIRTE would pass the connection to the 
AUTOSAR RTE that in its turn would forward it through the 
databus to the correct control unit.  

Since it is not practically possible for the OEM to provide 
(and connect) SW-C ports for all imaginable future plug-in 
ports, the communication between plug-ins on different control 
units is done through dedicated SW-C ports (one pair of ports 
per control unit), which are fully connected to each other in 
AUTOSAR RTE. As a result, PIRTE needs to provide the 
address of the receiving control unit, the receiving plug-in, and 
the receiving port in that plug-in with the message that is 
passed to the data bus. Note that all these communication 
details only affect PIRTE and are transparent to the plug-ins. 

D. Safety & Security 

To provide a basic level of security, plugin software is 
sandboxed in as far as possible. First of all, plug-ins can only 
access the underlying system through the ports of the plug-in 
SW-C. It is up to the ECU developers to decide which ports to 
provide and how data received from these ports should be 
handled. If that data is used to control the underlying system, it 
is important that (non-reconfigurable) fallback mechanisms, 
with the authority to override plug-in actions, are in place. 
Secondly, Java VM executes in its own thread and with its own 
memory areas and network messages. This avoids competition 
for resources with the built-in functionality. Plug-ins are thus 
executed under a best effort scheme, whereas built-in software 
has predictable behavior. 

AUTOSAR basic software 

AUTOSAR runtime environment 

Hardware 

Plug-in SW-C 

Java VM 

Plug-in 

component A 

Plug-in runtime environment 

Plug-in 

component B 

External communication manager SW-C 

Ordinary SW-C 

Ordinary SW-C 

Figure 1. The structure of a dynamic software component model. 



A potential security threat is the installation of plug-ins. In 
this concept, it is only allowed to install plug-ins from a trusted 
server at a pre-defined address. In this way, much of the 
firewall issues are moved from the resource-constrained 
embedded system to a server. To change the trusted server 
address requires reprogramming of the ECU’s built-in 
software, which has its own security mechanisms. 

IV. ECOSYSTEMS OF EMBEDDED SYSTEMS 

In order to create a successful concept for FES, it is not 
sufficient to only look at the technical implementation, but one 
must also study how to organize development of the systems 
and to achieve sustainable business models, as described in 
Section II.D. The key concepts of FES actually provide 
several opportunities from a business perspective: 

 The plug-in components can be used by an OEM to 
add new functionality very rapidly, thereby being 
more responsive to market trends or to requirements 
from niche users. 

 Third-parties can develop plug-in components to 
extend the functionality beyond what the OEMs 
conceived, similarly to how app developers extend the 
functionality of mobile phones. 

 Systems can be integrated into systems-of-systems, 
whose functions are realized by distributed software. 
The integration in this case is handled by a separate 
organization. 

This means that many stakeholders have an interest in the 
development and use of a FES, and the interrelations between 
them become crucial. In traditional development of ES, there 
is an OEM who is responsible for the end product, and who 
integrates subsystems from different suppliers. The suppliers 
develop their parts based on detailed specifications from the 
OEM. 

In the FES setting, the OEM instead delivers an extensible 
product, whose success is partly a result of how well it 
supports the independent development of add-on solutions, 
and not only how well it meets the basic requirements. Based 
on this platform, a thriving business ecosystem [9] can be 
created, where third-party actors can practice open innovation 
and thereby extend the value of the base product.  

However, this also leads to new challenges that need to be 
addressed when it comes to system development. For instance, 
ways of sharing information between different parties must be 
found, so that a plug-in developer can develop and test its 
software without full access to the overall product. Quality 
assurance in general is an issue, and the base product has to be 
tested with respect to all possible plug-ins that can be added to 
it. The distribution of rights and responsibilities between the 
parties are also crucial. Who is liable in a situation where an 
incident occurs? How should the streams of income be set up 
and divided among the parties? 

Clearly, the business side and the technical side of FES are 
not separate. They meet in, for instance, the product 
architecture, that must support in a good way the development 
of both base products and plug-ins, and continue to do so over 
the time that the system evolves. 

To investigate these issues, we are currently conducting an 

empirical research project, where we, based on case studies 

and interviews, try to identify the primary interfaces between 

stakeholders in the ecosystem. This will be used to create a 

reference model that explains what flows of information, 

money, etc. exist between them, and can be used to provide 

guidance on how to organize the ecosystem efficiently [10]. 

V. RELATED WORK   

Several studies on the subject of cooperating systems have 
been published. In [11], more than 40 different definitions of 
the term systems of systems were reviewed and classified, 
while the notion of federations of systems was coined in [12]. 
In [2], recent research advances within the internet of things 
field, together with a number of application scenarios, are 
presented. In the field of cyber-physical systems, a lot of work 
has been done to present both the research challenges and 
possible applications, e.g. [1, 13, 14, 15]. A more extensive 
litterature review can be found in [5].  

While all the above research directions are interrelated, 
they focus on somewhat different questions, even though they 
seem to be starting to merge. For example, the IoT field has 
sprung out of the desire to be able to uniquely identify any 
physical object, with a large focus on identification and 
communication. The SoS research on its hand has traditionally 
been focusing on the engineering management studies. The 
CPS field seems to be the most related to the FES concept. In 
fact, one could argue that CPS actually is a larger field 
containing FES. The difference lies in the strong emphasis that 
the term FES places on the use of embedded systems in 
federations that are generally allowed to be dynamically 
reconfigurable, both with respect to their composition and 
functionality. The perceived need for a focus on open and 
dynamic federations of ESs was one of the reasons for our FES 
pre-study [3]. Another reason was to give the opportunity for 
the Swedish industry to add its voice to the ongoing evolution 
of the CPS concept, zooming in on FES related challenges.  

 When it comes to dynamic reconfiguration of SW-Cs, it has 
been studied in e.g. [16, 17, 18, 19]. Differently from the above 
publications, this work provides a Java-based and simple to 
implement concept that builds on a standardized architecture, 
offering good opportunities for open software development. 

 The term "ecosystem" was introduced by Iansiti and 
Levien who described the notion of business ecosystems [20]. 
They explained the benefits of adopting the "ecosystem-
thinking" from a business perspective and discussed various 
strategies organizations may utilize, depending on their role 
within the ecosystem. However, the article does not explicitly 
describe how to carry out product development, or what 
specific characteristics products should have in order to make 
the best out of such an ecosystem.  

The term "software ecosystem" was introduced by 
Messerschmidt and Szyperski [21] but was extended by Bosch 
[9]. In particular, Bosch extended the classical "product line-
thinking" of software products, The trend towards open 
platforms was started because it is too expensive for an 
manufacturer to develop alone all the functionality that 
customers would wish for, and because gathering the 



requirements for customization could potentially be done more 
efficiently through an open platform.  

Hanssen and Dybå [22] described in their work a 
systematic overview of software ecosystems and explained 
several related challenges. Jansen, Finkelstein and 
Brinkkemper [23] presented a research agenda for software 
ecosystems, discussed about the main challenges involved in a 
technical and business level through three dimensions: a) from 
a software ecosystem level, b) software supply network level, 
and c) from the software vendor level, and also mentioned 
issues of formal modeling, transparency, guidelines, standards, 
and actions, that are of central importance.  

All in all, there is very little research that looks at 
ecosystems specifically for ES, but the literature either is 
looking on pure software, or general product development.  

VI.  CONCLUSIONS AND FUTURE WORK  

This paper consists of three main parts. Firstly, high level 
concepts related to FES and its constituent ESs are presented. 
These concepts are further divided into those that are 
connected to technology development and those that relate to 
product and process development methodologies, e.g. business 
models. Secondly, our work in the technological direction is 
presented. This work extends the AUTOSAR architecture with 
the concept of dynamic component models, thus allowing 
installation of new plug-in software into vehicles at runtime, 
opening up for implementing FES governing interaction rules 
long after the vehicles have left factory. Although the 
AUTOSAR standard is from the automotive industry, the 
concepts are quite general and of value in other embedded 
system domains. Thirdly, we present our initial work in the 
methodology direction, aiming at defining the business models 
necessary for dynamic FES ecosystems. 

While our work on FES methodology is currently just 
taking off, see Section IV for a discussion of future challenges, 
there is more to say about the continuation in the technological 
direction. More realistic tests of the concepts presented in 
Section III are needed to get deeper insights about the strengths 
and weaknesses of the proposed solution. Stressing the system 
in order to test robustness is also important. For example, this 
could help to understand what happens if power goes off 
during the installation of a plug-in, or how to react to the loss 
of messages between plug-ins, etc. To increase the practical 
usefulness of the proposed architecture, tools that aid in 
generating plug-in runtime environment will be developed. 
Also, in theory the concepts should be applicable to safety 
critical applications. However, for this to work, there is a need 
of fault handling mechanisms, both locally at the ES level, 
provided by the ES developers, and at the FES level. Trust and 
conflict management mechanisms are other intricate but 
interesting research questions. Once the basic concepts and the 
simulation environment are in place, such more complex issues 
are ready to be adressed. 
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