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Abstract 

Design and implementation of motion control 

applications includes the transition from control design to 

real-time system implementation. To make this transition 

smooth, the specification model for the real-time system 

should allow also for temporal requirements other than 

deadlines, e.g., deviation from nominal period time of an 

activity, end-to-end timing constraints, temporal 

correlation between different sampling tasks and 

constraints on temporal variations in output. Many real-

time systems in industry today are based on pre-emptive 

priority based run-time systems, and hence, the temporal 

requirements should be fulfilled by correctly assigning 

attributes such as priorities and offsets to the tasks 

executing in such systems. Assigning priorities and offsets 

in order to fulfill complex temporal requirements 

originating from control design and computer system 

design is a hard task that should be supported by 

powerful methods and tools. In this paper we propose a 

method, which by assigning priorities and offsets to tasks 

guarantees that complex timing constraints can be met. In 

addition to the complex timing constraints, the method 

supports sporadic tasks, shared resources, and varying 

execution times of tasks. We present the idea and the 

implementation, which is based on a genetic algorithm, 

and illustrate the method by an example.  

1. Introduction 

To successfully design and implement motion control 

applications, such as robots, vehicle/trucks, and mobile 

machinery, in distributed computer systems there is a 

need to make a smooth and predictable transition from the 

design of a control system to its implementation in the 

computer system. One important prerequisite to 

accomplish this for real-time systems is to appropriately 

derive and model application timing requirements [1]. 

Moreover, these requirements must be translated into 

timing constraints that are suitable for implementation, 

thereby providing means for interaction between control 

and computer engineers. The timing constraints in the 

control design cannot be directly mapped to attributes of a 

real-time system, such as priorities, period times, 

deadlines and offsets of tasks. Assigning the attributes of 

the tasks so that the complex timing constraints derived 

from the control design are fulfilled is a non-trivial 

problem. Typical complex timing constraints are 

tolerances on sampling periods, end-to-end timing 

constraints, temporal correlation between different 

sampling tasks, and constraints on temporal variations in 

output. 

The aim of this paper is to show how these complex 

timing constraints can be mapped to attributes of periodic 

tasks running on standard pre-emptive priority based 

multitasking real-time operating systems, as for example 

WxWorks provided by Windriver, in such a way that the 

timing constraints are fulfilled. In order to guarantee the 

behaviour of a control system subject to complex timing 

constraints, one must also consider that execution times of 

activities in most cases varies. Varying execution times 

will directly affect e.g., constraints on maximum 

deviation from a nominal period time.   

Bate and Burns [2], propose a related method for 

assigning offsets and priorities to a fixed priority 

preemptive task set. They define a specification model 

that allows for expressing similar constraints as defined in 

Section 2 of this paper. However, their method does not 

consider the use of shared resources between sporadic and 

periodic tasks, which would require dealing with some 



 

 

sort of semaphore mechanism. Furthermore, attribute 

assignment for dealing with constraints on period time 

variation is managed using a heuristic algorithm with 

local optimization that, according to the authors, can lead 

to unschedulable systems. For this reason it is difficult to 

extend the method to incorporate the additional 

constraints we would like to consider. Several researchers 

have approached the same problem by generating off-line 

schedules [3][4][5], and thereby do not support use of a 

standard priority-based RTOS. Furthermore, they do not 

support pre-emption, sporadic activities, and varying task 

execution times. Additionally, in [6] the authors presents 

a design methodology for real-time systems with end-to-

end timing constraints, temporal correlation between 

different sampling tasks and constraints on temporal 

variations in output. The methodology derives period 

times, deadlines, and offsets for the tasks.  However, the 

task model does not agree with a standard priority-based 

RTOS and constraints on period time variation cannot be 

expressed. The method assumes that task execution times 

are static. 

The motivation for the work provided in this paper was 

mainly achieved from our participation in a real industrial 

project where we used a specification model with support 

for periodic tasks, deadlines, precedence relationships, 

mutual exclusions, and offsets [7]. By using this model 

we could express all timing constraints required by the 

application. However, the designer had to manually 

translate the timing constraints into attributes of the used 

model and consequently the designer acted as a pre-

scheduler. This is possible for simple systems, but in 

systems with many such requirements it becomes very 

difficult to assign these attributes manually. Even if the 

designer succeeds in finding a feasible mapping, we get a 

maintenance problem [7].  

In this work we use an enhanced specification model 

that support temporal dependencies between tasks, which 

relives the designer from the task of acting as a pre-

scheduler. We will show that we can solve the problem of 

mapping a system described by this specification model to 

a run-time system model in an efficient way by using a 

genetic algorithm (GA). There are several reasons for 

using the GA approach. GA is a general optimisation 

method that has been used successfully for solving a wide 

variety of complex problems including scheduling, e.g., in 

[8][9][10][11]. It can also easily be extended to optimise 

on other attributes such as minimising the response time 

of handling an event. One of the most important 

properties of the GA is its ability to deliver a result that 

fulfils a subset of the timing constraints in cases where it 

is impossible to fulfil all constraints. This information is 

important since the designer then can get an indication of 

which constraints that can not be fulfilled and thereby 

simplify the re-modelling of the application. Although not 

all timing constraints are fulfilled, the application 

requirements may in some cases still be fulfilled since the 

robustness of the control design can tolerate deviations 

from the specification. However, this has to be verified by 

control analysis. 

Thus, the contributions of this paper are: 

- A specification model for describing systems with 

complex timing constraints. 

- A synthesis algorithm that assigns priorities and offsets 

to tasks to fulfil the timing constraints given our 

specification model. 

- An illustrative example. 

The rest of this paper is organised as follow. Section 2 

describes the used system model. The method for attribute 

assignment is covered in Section 3 followed by an 

example in Section 4. Finally we conclude the paper in 

Section 5. 

2. System model 

The system model is divided into two parts. The first 

part specifies the required behaviour of the run-time 

system and the second part is a definition of the 

specification model used to express the constraints of the 

task set. 

2.1. Run-time system model 

The basic model for the run-time system is a priority 

based, pre-emptive run-time system with shared resources 

protected by semaphores conforming to the priority 

ceiling protocol. Furthermore, the run-time system should 

provide a mechanism to enforce phasing between tasks 

i.e., offsets, and the ability to periodically release tasks 

with some predefined resolution, e.g., the operating 

system tick. These required features exist in many RTOS 

and if not, it is quite easy to construct these mechanisms 

from existing RTOS primitives.  

The run-time system may also support prioritised 

sporadic activities. 

2.2. Specification model 

The specification model defines the information that 

has to be specified for each periodic and sporadic task, as 

well as the constraints that can be expressed on a task set. 

A periodic task is defined by its worst-case execution 

time, best-case execution time, and nominal period time. 

The nominal period time is the desired rate at which the 

task should be executed.  

 

 



 

 

The following constraints can be expressed for and 

between periodic tasks: 

• Period time variation – the maximum allowed 

deviation from the nominal period time. An upper  

(Vh) and lower bound (Vl) on the time between two 

consecutive executions of a task.  

• Precedence – constraint specifying the execution order 

between two tasks 

• Relative deadline – deadline relative the actual start 

time, i.e., the instant when the task execute its first 

instruction, of an instance of the task 

• Correlation – constraint on the maximum time 

between executions of two or more parallel tasks 

• Distance – constraint of a minimum distance between 

the executions of two tasks. 

• Latency – constraint specifying a maximum allowed 

distance between the start of one task and the 

completion of another task.  

• Shared recourses – specification of the tasks that uses 

the semaphores and times for the tasks critical 

sections.  

Periodic tasks may have a varying execution time and 

phasing relative each other and hence the start time and 

completion time for a task can vary. This must be 

considered when finding an attribute assignment meeting 

the constraints for a task set. Therefore the analysis of a 

task set is performed for all instances over the least 

common multiple (lcm) of tasks period times. This is 

necessary since calculation of the worst- and best-case 

start time and completion time without considering all 

instances would be too pessimistic. As an example, 

consider the task t1 and t2 depicted in Figure 1. The tasks 

have a period time of T and only one constraint, a 

precedence constraint between t1 and t2. Assume a 

completion time of t1

 
equal to 3, and a start time of t2

 

equal to 4 in one period and a completion time of t1 equal 

to 2, and a start time of t2

 
equal to 2 in the next period. 

The latest completion of t1 relative the period is 3 and the 

earliest start relative the period for t2 is 2, i.e., the 

precedence is violated considering only the task timing 

while if the separate instances are considered one can see 

that precedence is achieved between t1 and t2.   

 t1 t2 t1 t2 

kT T+3   T+ 4 (k+1)T T+2  

Figure 1. The execution of the two tasks t1 and t2. 

Phasing of tasks and the start- and completion time 

variation is incorporated into the model by describing, for 

each instance of a task during the lcm, the earliest start 

time (est), the latest start time (lst), the earliest completion 

time (ect), and the latest completion time (lct). The 

constraints and notation are defined below, where τi 

represents task i and n

i
τ represents instance n of task i.  
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A sporadic task is specified by a worst-case execution 

time, a minimum inter-arrival time, and a deadline. Here, 

the best-case execution time is not considered, since the 

best case considering the entire task set is that the 

sporadic task is not activated at all at a given instance. 

The minimum inter-arrival time specifies the shortest 

possible time between two consecutive activations of the 

task and the deadline is relative the activation of the task. 

It is also possible for sporadic tasks to use semaphores 

that is shared with both sporadic and periodic tasks 

3. Attribute Assignment 

This section describes the algorithm for assigning 

priorities and offsets to the periodic tasks and priorities to 

sporadic tasks in order to meet the constraints specified 

for a task set. It is assumed that constraints are specified 

according to the model defined in the previous section. 

The heart of the attribute assignment is a genetic 

algorithm that assigns offsets and priorities, evaluates the 



 

 

assignments, and incrementally finds new assignments, 

thereby gradually achieving the required system 

behaviour. The general idea of a GA is to let individuals 

in a population gradually improve by the mechanisms of 

natural selection. In this case the individuals consists of 

attribute assignments for a tasks set and the environment 

to master is the constraints put on that task set. An 

overview of the structure and operation of the genetic 

algorithm used is given below. 

1. Initial Population – The algorithm initially makes a 

number of guesses about the assignment of priorities 

and offsets for the complete task set. A complete 

assignment for the entire task set is referred to as a 

genome. 

2. Apply Objective function – The objective function 

calculates a goodness value for each genome, given 

how far the genome is from meeting the requirements. 

If the objective is reached, the algorithm has found a 

solution and is terminated. 

3. Crossover – In this step parts of different genomes are 

combined to produce an offspring, i.e., a new genome 

built from two other genomes.   

4. Mutation – Randomly alters a genome by e.g., by 

reassigning a priority in the genome by a random 

number.  

5. Repeat from step 2, each iteration is referred to as a 

generation 

    An assignment of offsets and priorities for a task set 

is represented by a set of offset priority pairs for the 

periodic tasks and a priority for each sporadic task, e.g., a 

task set with periodic tasks t1 to ti and sporadic tasks st1 to 

stj is represented by the set g: {<priority1, 

offset1>,…,<priorityi, offseti>,<priority1>,…,<priorityj>}. 

The population of the genetic algorithm then consist of a 

number of such priority-offset sets G = {g1, …, gn}. 

    The objective function calculates start times and 

completion times for the task set and derive a single value 

used for sorting different genomes by their closeness to 

the optimum, where the representation of optimum is 

defined by the genetic algorithm, e.g., the higher value the 

closer to optimal. The deviations from the requirements 

for a task set, using the offsets and priorities of a given 

genome, are calculated by rearranging the formulas earlier 

described in Section 2. For example, deviation from the 

distance constraint is calculated by reformulating 

distestlct ≥− )(τ)(τ n

i

n

j  as ))(τ)(τ( n

i

n

j estlctdist −−
. The 

objective value is then expressed as a percentage of the 

allowed deviation, e.g., ))(τ)(τ( n

i

n

j estlctdist −−
 / dist. 

This value is then divided by the number of instances of 

the task during an lcm. The division by dist and the 

number of instances is done in order to normalise the 

value against other constraints so that not too strong 

emphasis is put on some constraints. The objective value 

for a genome is the sum of the normalised values 

calculated for each constraint. 

 The analysis performed to calculate the earliest and 

latest start times and completion times for the instances of 

the task set can be divided in to two cases: 1) The earliest 

start time and completion time is calculated disregarding 

the sporadic tasks, using the best-case execution times, 

and assuming that no tasks are blocked when using shared 

resources. 2) The latest start time and completion time is 

calculated considering interference from sporadic tasks, 

using the worst-case execution time and assuming 

blocking. Common for both cases is that the execution of 

the instances of the periodic tasks is analysed by time 

wise stepping through the lcm of the periodic tasks. At 

each relevant point in time it is determined which task 

instance that should execute based on priority and offset 

information. By relevant points in time we mean the 

operating system tick and the completion of task 

execution.  The analysis is safe but not always exact, this 

is the case when e.g., the earliest start time of one task 

instance can not occur when another task instance is 

experiencing its latest completion time. By necessity the 

analysis is a compromise between precision and 

calculation speed. Since an increased complexity of the 

calculation will decrease the number of calculations 

performed during a given amount of time, it will also 

decrease the number of generated and evaluated genomes 

of the GA, thereby possibly leading to less good 

assignments. The behaviour resulting from a given set of 

priority and offset pairs can be fully explored after 

delivery from the GA.   

4. Example  

In this example we assume an application for which 

constraints needed for implementation have been derived 

from a control design and expressed according to the 

specification model described in Section 2. The computer 

control system consists of 12 periodic tasks and 3 

sporadic tasks resulting in a total CPU-utilisation of 42 %. 

Furthermore, the periodic tasks have 31 temporal 

constraints that should be fulfilled by assigning 

appropriate priorities and offsets to the tasks. The period 

times of the periodic tasks result in 54 instances, during 

an lcm, that have to be considered by the analysis. The 

example is intended to give the reader a glimpse of the 

non-trivial task of assigning priorities and offsets to task 

sets with temporal dependencies between tasks, even for 

small examples.  

 



 

 

In Table 1 the periodic tasks are listed together with 

constraints on period time variation and relative deadline. 

All specified times are given in microseconds. 

Task Wcet Bcet Period 
time 

Vl Vh Relative 
Deadline 

S1 300 250 25000 24000 26000 1500 

S2 300 250 25000 24000 26000 1500 

S3 300 250 25000 24000 26000 1500 

A1 700 600 25000 23000 27000 1500 

A2 700 600 25000 23000 27000 1500 

A3 700 600 25000 23000 27000 1500 

D1 1400 900 50000 45000 55000 6500 

D2 2100 2100 50000 45000 55000 5000 

T1 370 370 10000 8000 11000 2000 

T2 120 120 25000 24000 26000 400 

DT1 300 300 10000 7000 14000 5000 

DT2 800 800 50000 45000 53000 2000 

Table 1: The example task set with constraints. 

Figure 2 depicts additional constraints on some of the 

periodic task. The constraints include latency constraints 

both between task with the same period time and between 

tasks with different period times, correlation constraints, 

and distance constraints. Furthermore, tasks S1, S2, S3, 

and DT1 share a resource protected by a semaphore, 

where the semaphore is locked for times in the range of 

20 to 90 microseconds. 

S1 A1

Latency: 4000

S2 A2

Latency: 5000

S3 A3

Latency: 4000

Correlation:

2000

Correlation:

3000

  

Distance: 28000

Latency: 2400

DT1 DT2

D1 D2

 

Figure 2. Additional constraints on the periodic tasks. 

Table 2 show the specification of the three sporadic 

tasks with minimal inter-arrival time, worst-case 

execution time and deadline relative activation for each 

task. 

Task Min Inter-arrival Time Wcet Deadline 

SP1 1000 45 500 
SP2 3000 150 2700 

SP3 50000 2000 35000 

Table 2. The sporadic tasks of the example. 

Given the specification above, the GA tries to find an 

attribute assignment in the run-time model such that the 

execution of the task set fulfils the constraints. Table 3 

illustrates the progress of priority and offset assignment 

with regard to the latency constraint between task S1 and 

A1, the correlation between S1, S2, and S3, and the 

deadline of sporadic task SP1. The numbers in the table 

reflect approximate values, for the constraints, resulting 

from the assignment of priorities and offsets for 

generations 10 to 50 at intervals of 10, the second row 

display the specified constraints. The assignment of 

priorities and offsets are listed for each generation in table 

4, at generation 50 all constraints are met. The total 

calculation time was approximately 7 seconds running on 

a 550 MHz Pentium. 

 Latency  

S1,A1 

Correlation  

S1-S3 

Deadline  

SP1 

Constraint 4000 2000 500 

Generation 10 6800 3200 2950 

Generation 20 2300 2150 7000 

Generation 30 2045 1200 345 

Generation 40 2045 1200 345 

Generation 50 2045 1200 345 

Table 3. The progress of the GA for generation 10 to 50. 

 

 Periodic Task : Offset : Priority 

Sporadic Task : Priority 

Generation 10 S1:6000:15 S2:9000:3  S3:6000:8 

A1:12000:14  A2:12000:14 A3:8000:14 

D1:13000:13  D2:47000:5 T1:7000:12 
T2:19000:2  DT1:7000:8  DT2:47000:8 

SP1:11   SP2:14   SP3: 0    
Generation 20 S1:6000:15  S2:8000:14  S3:7000:11 

A1:8000:14  A2:8000:3  A3:8000:9 

D1:13000:13 D2:47000:8  T1:1000:3 

T2:9000:10  DT1:4000:0  DT2:4000:5  

SP1:2  SP2:11  SP3:2  
Generation 30 S1:6000:15  S2:5000:10  S3:5000:8 

A1:8000:14  A2:8000:3  A3:8000:9 

D1:13000:13   D2:47000:8  T1:1000:3 

T2:9000:10  DT1:7000:5  DT2:29000:7  
SP1:15  SP2:13  SP3:0 

Generation 40 S1:6000:15 S2:5000:10  S3:5000:8 

A1:8000:14  A2:8000:3  A3:8000:14 

D1:4000:8  D2:47000:5  T1:7000:8 

T2:19000:2  DT1:7000:12 DT2:47000:8  

SP1:15  SP2:13  SP3:0 
Generation 50 S1:6000:15  S2:5000:10  S3:5000:8 

A1:8000:14  A2:8000:3  A3:7000:12 

D1:4000:8  D2:47000:5  T1:1000:3  
T2:7000:5  DT1:9000:10  DT2:29000:7  

SP1:15  SP2:13  SP3:0 

Table 4. The attributes for the tasks for each generation. 

 



 

 

5. Conclusion 

The problem of assigning priorities and offsets to tasks 

from a specification model supporting complex timing 

constraints is an important part in the implementation of 

real-time systems that consist of a number of periodic 

control activities executing with different frequencies 

while exchanging data. Such multirate control systems are 

for instance common in motion control algorithms. 

Sampled data control applications, in general, are real-

time systems that are sensitive to deviations from nominal 

deterministic timing, i.e. the timing that normally is 

assumed in control design. Since an implementation of a 

computer control system inevitably introduces time-

delays and time-variations, it is important to investigate 

the sensitivity of a control system to such “timing 

disturbances” during the control-engineering phase. 

Moreover, timing tolerances together with other timing 

requirements must be clearly communicated from the 

design phase (presumably carried out by control 

engineers) to the implementation phase (presumably 

carried out by computer engineers). Actual time-

variations and delays should be fed back to the control 

design [12]. Many motion control applications are used in 

safety critical contexts, and/or environments where high 

reliability and availability are required. This emphasises 

the need for analysis of the correctness of the computer 

control system prior to implementation. 

In earlier work we have had experiences of an 

industrial project where a more conventional specification 

model were used, supporting deadlines, precedence 

relationships, mutual exclusions, and offsets. Using this 

model the engineers had the complex and time consuming 

task of manual translation of constraints such as period 

time variation and multirate latency into attributes of the 

used model. Although this manual assignment of 

attributes is possible for smaller systems, we get a 

maintenance problem when introducing changes in the 

design. This problem can be handled by the introduction 

of more powerful means of expressing timing 

requirements for real-time control systems and by 

providing automated tools that help the engineer in 

assigning priorities and offsets. 

In this paper we propose a method for fulfilling 

complex temporal requirements by assigning priorities 

and offsets to tasks running on a standard commercial 

RTOS using a genetic algorithm. Moreover, The use of a 

genetic algorithm brings with it the additional benefit to 

find near to optimal solutions when no solution exists that 

fulfils all the requirements. This is important from an 

engineering perspective, since the result can be used as 

input for remodelling of the application. The somewhat 

non-deterministic behaviour of genetic algorithms may be 

considered a drawback. However, the algorithm has been 

tested with good result on a substantial number of task 

sets [13].  
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