

Managing Complex Temporal Requirements

in Real-Time Control Systems

Kristian Sandström and Christer Norström

Mälardalen Real-Time Research Center, Department of Computer Engineering

Mälardalen University, Västerås, Sweden

ksm@mdh.se

Abstract

Design and implementation of motion control

applications includes the transition from control design to

real-time system implementation. To make this transition

smooth, the specification model for the real-time system

should allow also for temporal requirements other than

deadlines, e.g., deviation from nominal period time of an

activity, end-to-end timing constraints, temporal

correlation between different sampling tasks and

constraints on temporal variations in output. Many real-

time systems in industry today are based on pre-emptive

priority based run-time systems, and hence, the temporal

requirements should be fulfilled by correctly assigning

attributes such as priorities and offsets to the tasks

executing in such systems. Assigning priorities and offsets

in order to fulfill complex temporal requirements

originating from control design and computer system

design is a hard task that should be supported by

powerful methods and tools. In this paper we propose a

method, which by assigning priorities and offsets to tasks

guarantees that complex timing constraints can be met. In

addition to the complex timing constraints, the method

supports sporadic tasks, shared resources, and varying

execution times of tasks. We present the idea and the

implementation, which is based on a genetic algorithm,

and illustrate the method by an example.

1. Introduction

To successfully design and implement motion control

applications, such as robots, vehicle/trucks, and mobile

machinery, in distributed computer systems there is a

need to make a smooth and predictable transition from the

design of a control system to its implementation in the

computer system. One important prerequisite to

accomplish this for real-time systems is to appropriately

derive and model application timing requirements [1].

Moreover, these requirements must be translated into

timing constraints that are suitable for implementation,

thereby providing means for interaction between control

and computer engineers. The timing constraints in the

control design cannot be directly mapped to attributes of a

real-time system, such as priorities, period times,

deadlines and offsets of tasks. Assigning the attributes of

the tasks so that the complex timing constraints derived

from the control design are fulfilled is a non-trivial

problem. Typical complex timing constraints are

tolerances on sampling periods, end-to-end timing

constraints, temporal correlation between different

sampling tasks, and constraints on temporal variations in

output.

The aim of this paper is to show how these complex

timing constraints can be mapped to attributes of periodic

tasks running on standard pre-emptive priority based

multitasking real-time operating systems, as for example

WxWorks provided by Windriver, in such a way that the

timing constraints are fulfilled. In order to guarantee the

behaviour of a control system subject to complex timing

constraints, one must also consider that execution times of

activities in most cases varies. Varying execution times

will directly affect e.g., constraints on maximum

deviation from a nominal period time.

Bate and Burns [2], propose a related method for

assigning offsets and priorities to a fixed priority

preemptive task set. They define a specification model

that allows for expressing similar constraints as defined in

Section 2 of this paper. However, their method does not

consider the use of shared resources between sporadic and

periodic tasks, which would require dealing with some

sort of semaphore mechanism. Furthermore, attribute

assignment for dealing with constraints on period time

variation is managed using a heuristic algorithm with

local optimization that, according to the authors, can lead

to unschedulable systems. For this reason it is difficult to

extend the method to incorporate the additional

constraints we would like to consider. Several researchers

have approached the same problem by generating off-line

schedules [3][4][5], and thereby do not support use of a

standard priority-based RTOS. Furthermore, they do not

support pre-emption, sporadic activities, and varying task

execution times. Additionally, in [6] the authors presents

a design methodology for real-time systems with end-to-

end timing constraints, temporal correlation between

different sampling tasks and constraints on temporal

variations in output. The methodology derives period

times, deadlines, and offsets for the tasks. However, the

task model does not agree with a standard priority-based

RTOS and constraints on period time variation cannot be

expressed. The method assumes that task execution times

are static.

The motivation for the work provided in this paper was

mainly achieved from our participation in a real industrial

project where we used a specification model with support

for periodic tasks, deadlines, precedence relationships,

mutual exclusions, and offsets [7]. By using this model

we could express all timing constraints required by the

application. However, the designer had to manually

translate the timing constraints into attributes of the used

model and consequently the designer acted as a pre-

scheduler. This is possible for simple systems, but in

systems with many such requirements it becomes very

difficult to assign these attributes manually. Even if the

designer succeeds in finding a feasible mapping, we get a

maintenance problem [7].

In this work we use an enhanced specification model

that support temporal dependencies between tasks, which

relives the designer from the task of acting as a pre-

scheduler. We will show that we can solve the problem of

mapping a system described by this specification model to

a run-time system model in an efficient way by using a

genetic algorithm (GA). There are several reasons for

using the GA approach. GA is a general optimisation

method that has been used successfully for solving a wide

variety of complex problems including scheduling, e.g., in

[8][9][10][11]. It can also easily be extended to optimise

on other attributes such as minimising the response time

of handling an event. One of the most important

properties of the GA is its ability to deliver a result that

fulfils a subset of the timing constraints in cases where it

is impossible to fulfil all constraints. This information is

important since the designer then can get an indication of

which constraints that can not be fulfilled and thereby

simplify the re-modelling of the application. Although not

all timing constraints are fulfilled, the application

requirements may in some cases still be fulfilled since the

robustness of the control design can tolerate deviations

from the specification. However, this has to be verified by

control analysis.

Thus, the contributions of this paper are:

- A specification model for describing systems with

complex timing constraints.

- A synthesis algorithm that assigns priorities and offsets

to tasks to fulfil the timing constraints given our

specification model.

- An illustrative example.

The rest of this paper is organised as follow. Section 2

describes the used system model. The method for attribute

assignment is covered in Section 3 followed by an

example in Section 4. Finally we conclude the paper in

Section 5.

2. System model

The system model is divided into two parts. The first

part specifies the required behaviour of the run-time

system and the second part is a definition of the

specification model used to express the constraints of the

task set.

2.1. Run-time system model

The basic model for the run-time system is a priority

based, pre-emptive run-time system with shared resources

protected by semaphores conforming to the priority

ceiling protocol. Furthermore, the run-time system should

provide a mechanism to enforce phasing between tasks

i.e., offsets, and the ability to periodically release tasks

with some predefined resolution, e.g., the operating

system tick. These required features exist in many RTOS

and if not, it is quite easy to construct these mechanisms

from existing RTOS primitives.

The run-time system may also support prioritised

sporadic activities.

2.2. Specification model

The specification model defines the information that

has to be specified for each periodic and sporadic task, as

well as the constraints that can be expressed on a task set.

A periodic task is defined by its worst-case execution

time, best-case execution time, and nominal period time.

The nominal period time is the desired rate at which the

task should be executed.

The following constraints can be expressed for and

between periodic tasks:

• Period time variation – the maximum allowed

deviation from the nominal period time. An upper

(Vh) and lower bound (Vl) on the time between two

consecutive executions of a task.

• Precedence – constraint specifying the execution order

between two tasks

• Relative deadline – deadline relative the actual start

time, i.e., the instant when the task execute its first

instruction, of an instance of the task

• Correlation – constraint on the maximum time

between executions of two or more parallel tasks

• Distance – constraint of a minimum distance between

the executions of two tasks.

• Latency – constraint specifying a maximum allowed

distance between the start of one task and the

completion of another task.

• Shared recourses – specification of the tasks that uses

the semaphores and times for the tasks critical

sections.

Periodic tasks may have a varying execution time and

phasing relative each other and hence the start time and

completion time for a task can vary. This must be

considered when finding an attribute assignment meeting

the constraints for a task set. Therefore the analysis of a

task set is performed for all instances over the least

common multiple (lcm) of tasks period times. This is

necessary since calculation of the worst- and best-case

start time and completion time without considering all

instances would be too pessimistic. As an example,

consider the task t1 and t2 depicted in Figure 1. The tasks

have a period time of T and only one constraint, a

precedence constraint between t1 and t2. Assume a

completion time of t1

equal to 3, and a start time of t2

equal to 4 in one period and a completion time of t1 equal

to 2, and a start time of t2

equal to 2 in the next period.

The latest completion of t1 relative the period is 3 and the

earliest start relative the period for t2 is 2, i.e., the

precedence is violated considering only the task timing

while if the separate instances are considered one can see

that precedence is achieved between t1 and t2.

 t1 t2 t1 t2

kT T+3 T+ 4 (k+1)T T+2

Figure 1. The execution of the two tasks t1 and t2.

Phasing of tasks and the start- and completion time

variation is incorporated into the model by describing, for

each instance of a task during the lcm, the earliest start

time (est), the latest start time (lst), the earliest completion

time (ect), and the latest completion time (lct). The

constraints and notation are defined below, where τi

represents task i and n

i
τ represents instance n of task i.

est(n

i
τ) - earliest start time of n

i
τ .

lst(n

i
τ) - latest start time of n

i
τ .

ect(n

i
τ) - earliest completion time of n

i
τ .

lct(n

i
τ) - latest completion time of n

i
τ .

Precedence <τi, τj> holds iff

)()(
n

j

n

i
τestτlct ≤

Distance <distance, τi, τj > holds iff

distanceτlctτest
n

i

n

j
≥−)()(

Period time variation <Vh, Vl, τi> holds iff

l

n

i

n

ih

n

i

n

i
V)lst(τ)est(τV)est(τ)lst(τ ≥−∧≤−

++ 11

Relative deadline <relativeDeadline, τi > holds iff

adlinerelativeDe)est(τ)lct(τ n

i

n

i
≤−

Latency <latency, τi, τj > holds iff

))(n(latencyest(τ)lct(τ)est(τ)τlctTT n

i

n

j

n

j

n

iji
≤−∧≤∀→=

))(:n latencyest(τ)lct(τ)est(τ)τlctmTT n

i

m

j

m

j

n

iji
≤−∧≤∃∀→>

latencyest(τ)lct(τ)est(τ)τlctmTT m

i

n

j

n

j

m

iji
≤−∧≤∃∀→<)(:n

Correlation <Correlation, τi, τi+1,…, τi+m > holds iff

nCorrelatio)est(τ)τlstm)i..(ij,k n

k

n

j ≤−+∈∀ (:

A sporadic task is specified by a worst-case execution

time, a minimum inter-arrival time, and a deadline. Here,

the best-case execution time is not considered, since the

best case considering the entire task set is that the

sporadic task is not activated at all at a given instance.

The minimum inter-arrival time specifies the shortest

possible time between two consecutive activations of the

task and the deadline is relative the activation of the task.

It is also possible for sporadic tasks to use semaphores

that is shared with both sporadic and periodic tasks

3. Attribute Assignment

This section describes the algorithm for assigning

priorities and offsets to the periodic tasks and priorities to

sporadic tasks in order to meet the constraints specified

for a task set. It is assumed that constraints are specified

according to the model defined in the previous section.

The heart of the attribute assignment is a genetic

algorithm that assigns offsets and priorities, evaluates the

assignments, and incrementally finds new assignments,

thereby gradually achieving the required system

behaviour. The general idea of a GA is to let individuals

in a population gradually improve by the mechanisms of

natural selection. In this case the individuals consists of

attribute assignments for a tasks set and the environment

to master is the constraints put on that task set. An

overview of the structure and operation of the genetic

algorithm used is given below.

1. Initial Population – The algorithm initially makes a

number of guesses about the assignment of priorities

and offsets for the complete task set. A complete

assignment for the entire task set is referred to as a

genome.

2. Apply Objective function – The objective function

calculates a goodness value for each genome, given

how far the genome is from meeting the requirements.

If the objective is reached, the algorithm has found a

solution and is terminated.

3. Crossover – In this step parts of different genomes are

combined to produce an offspring, i.e., a new genome

built from two other genomes.

4. Mutation – Randomly alters a genome by e.g., by

reassigning a priority in the genome by a random

number.

5. Repeat from step 2, each iteration is referred to as a

generation

 An assignment of offsets and priorities for a task set

is represented by a set of offset priority pairs for the

periodic tasks and a priority for each sporadic task, e.g., a

task set with periodic tasks t1 to ti and sporadic tasks st1 to

stj is represented by the set g: {<priority1,

offset1>,…,<priorityi, offseti>,<priority1>,…,<priorityj>}.

The population of the genetic algorithm then consist of a

number of such priority-offset sets G = {g1, …, gn}.

 The objective function calculates start times and

completion times for the task set and derive a single value

used for sorting different genomes by their closeness to

the optimum, where the representation of optimum is

defined by the genetic algorithm, e.g., the higher value the

closer to optimal. The deviations from the requirements

for a task set, using the offsets and priorities of a given

genome, are calculated by rearranging the formulas earlier

described in Section 2. For example, deviation from the

distance constraint is calculated by reformulating

distestlct ≥−)(τ)(τ n

i

n

j as))(τ)(τ(n

i

n

j estlctdist −−
. The

objective value is then expressed as a percentage of the

allowed deviation, e.g.,))(τ)(τ(n

i

n

j estlctdist −−
 / dist.

This value is then divided by the number of instances of

the task during an lcm. The division by dist and the

number of instances is done in order to normalise the

value against other constraints so that not too strong

emphasis is put on some constraints. The objective value

for a genome is the sum of the normalised values

calculated for each constraint.

 The analysis performed to calculate the earliest and

latest start times and completion times for the instances of

the task set can be divided in to two cases: 1) The earliest

start time and completion time is calculated disregarding

the sporadic tasks, using the best-case execution times,

and assuming that no tasks are blocked when using shared

resources. 2) The latest start time and completion time is

calculated considering interference from sporadic tasks,

using the worst-case execution time and assuming

blocking. Common for both cases is that the execution of

the instances of the periodic tasks is analysed by time

wise stepping through the lcm of the periodic tasks. At

each relevant point in time it is determined which task

instance that should execute based on priority and offset

information. By relevant points in time we mean the

operating system tick and the completion of task

execution. The analysis is safe but not always exact, this

is the case when e.g., the earliest start time of one task

instance can not occur when another task instance is

experiencing its latest completion time. By necessity the

analysis is a compromise between precision and

calculation speed. Since an increased complexity of the

calculation will decrease the number of calculations

performed during a given amount of time, it will also

decrease the number of generated and evaluated genomes

of the GA, thereby possibly leading to less good

assignments. The behaviour resulting from a given set of

priority and offset pairs can be fully explored after

delivery from the GA.

4. Example

In this example we assume an application for which

constraints needed for implementation have been derived

from a control design and expressed according to the

specification model described in Section 2. The computer

control system consists of 12 periodic tasks and 3

sporadic tasks resulting in a total CPU-utilisation of 42 %.

Furthermore, the periodic tasks have 31 temporal

constraints that should be fulfilled by assigning

appropriate priorities and offsets to the tasks. The period

times of the periodic tasks result in 54 instances, during

an lcm, that have to be considered by the analysis. The

example is intended to give the reader a glimpse of the

non-trivial task of assigning priorities and offsets to task

sets with temporal dependencies between tasks, even for

small examples.

In Table 1 the periodic tasks are listed together with

constraints on period time variation and relative deadline.

All specified times are given in microseconds.

Task Wcet Bcet Period
time

Vl Vh Relative
Deadline

S1 300 250 25000 24000 26000 1500

S2 300 250 25000 24000 26000 1500

S3 300 250 25000 24000 26000 1500

A1 700 600 25000 23000 27000 1500

A2 700 600 25000 23000 27000 1500

A3 700 600 25000 23000 27000 1500

D1 1400 900 50000 45000 55000 6500

D2 2100 2100 50000 45000 55000 5000

T1 370 370 10000 8000 11000 2000

T2 120 120 25000 24000 26000 400

DT1 300 300 10000 7000 14000 5000

DT2 800 800 50000 45000 53000 2000

Table 1: The example task set with constraints.

Figure 2 depicts additional constraints on some of the

periodic task. The constraints include latency constraints

both between task with the same period time and between

tasks with different period times, correlation constraints,

and distance constraints. Furthermore, tasks S1, S2, S3,

and DT1 share a resource protected by a semaphore,

where the semaphore is locked for times in the range of

20 to 90 microseconds.

S1 A1

Latency: 4000

S2 A2

Latency: 5000

S3 A3

Latency: 4000

Correlation:

2000

Correlation:

3000

Distance: 28000

Latency: 2400

DT1 DT2

D1 D2

Figure 2. Additional constraints on the periodic tasks.

Table 2 show the specification of the three sporadic

tasks with minimal inter-arrival time, worst-case

execution time and deadline relative activation for each

task.

Task Min Inter-arrival Time Wcet Deadline

SP1 1000 45 500
SP2 3000 150 2700

SP3 50000 2000 35000

Table 2. The sporadic tasks of the example.

Given the specification above, the GA tries to find an

attribute assignment in the run-time model such that the

execution of the task set fulfils the constraints. Table 3

illustrates the progress of priority and offset assignment

with regard to the latency constraint between task S1 and

A1, the correlation between S1, S2, and S3, and the

deadline of sporadic task SP1. The numbers in the table

reflect approximate values, for the constraints, resulting

from the assignment of priorities and offsets for

generations 10 to 50 at intervals of 10, the second row

display the specified constraints. The assignment of

priorities and offsets are listed for each generation in table

4, at generation 50 all constraints are met. The total

calculation time was approximately 7 seconds running on

a 550 MHz Pentium.

 Latency

S1,A1

Correlation

S1-S3

Deadline

SP1

Constraint 4000 2000 500

Generation 10 6800 3200 2950

Generation 20 2300 2150 7000

Generation 30 2045 1200 345

Generation 40 2045 1200 345

Generation 50 2045 1200 345

Table 3. The progress of the GA for generation 10 to 50.

 Periodic Task : Offset : Priority

Sporadic Task : Priority

Generation 10 S1:6000:15 S2:9000:3 S3:6000:8

A1:12000:14 A2:12000:14 A3:8000:14

D1:13000:13 D2:47000:5 T1:7000:12
T2:19000:2 DT1:7000:8 DT2:47000:8

SP1:11 SP2:14 SP3: 0
Generation 20 S1:6000:15 S2:8000:14 S3:7000:11

A1:8000:14 A2:8000:3 A3:8000:9

D1:13000:13 D2:47000:8 T1:1000:3

T2:9000:10 DT1:4000:0 DT2:4000:5

SP1:2 SP2:11 SP3:2
Generation 30 S1:6000:15 S2:5000:10 S3:5000:8

A1:8000:14 A2:8000:3 A3:8000:9

D1:13000:13 D2:47000:8 T1:1000:3

T2:9000:10 DT1:7000:5 DT2:29000:7
SP1:15 SP2:13 SP3:0

Generation 40 S1:6000:15 S2:5000:10 S3:5000:8

A1:8000:14 A2:8000:3 A3:8000:14

D1:4000:8 D2:47000:5 T1:7000:8

T2:19000:2 DT1:7000:12 DT2:47000:8

SP1:15 SP2:13 SP3:0
Generation 50 S1:6000:15 S2:5000:10 S3:5000:8

A1:8000:14 A2:8000:3 A3:7000:12

D1:4000:8 D2:47000:5 T1:1000:3
T2:7000:5 DT1:9000:10 DT2:29000:7

SP1:15 SP2:13 SP3:0

Table 4. The attributes for the tasks for each generation.

5. Conclusion

The problem of assigning priorities and offsets to tasks

from a specification model supporting complex timing

constraints is an important part in the implementation of

real-time systems that consist of a number of periodic

control activities executing with different frequencies

while exchanging data. Such multirate control systems are

for instance common in motion control algorithms.

Sampled data control applications, in general, are real-

time systems that are sensitive to deviations from nominal

deterministic timing, i.e. the timing that normally is

assumed in control design. Since an implementation of a

computer control system inevitably introduces time-

delays and time-variations, it is important to investigate

the sensitivity of a control system to such “timing

disturbances” during the control-engineering phase.

Moreover, timing tolerances together with other timing

requirements must be clearly communicated from the

design phase (presumably carried out by control

engineers) to the implementation phase (presumably

carried out by computer engineers). Actual time-

variations and delays should be fed back to the control

design [12]. Many motion control applications are used in

safety critical contexts, and/or environments where high

reliability and availability are required. This emphasises

the need for analysis of the correctness of the computer

control system prior to implementation.

In earlier work we have had experiences of an

industrial project where a more conventional specification

model were used, supporting deadlines, precedence

relationships, mutual exclusions, and offsets. Using this

model the engineers had the complex and time consuming

task of manual translation of constraints such as period

time variation and multirate latency into attributes of the

used model. Although this manual assignment of

attributes is possible for smaller systems, we get a

maintenance problem when introducing changes in the

design. This problem can be handled by the introduction

of more powerful means of expressing timing

requirements for real-time control systems and by

providing automated tools that help the engineer in

assigning priorities and offsets.

In this paper we propose a method for fulfilling

complex temporal requirements by assigning priorities

and offsets to tasks running on a standard commercial

RTOS using a genetic algorithm. Moreover, The use of a

genetic algorithm brings with it the additional benefit to

find near to optimal solutions when no solution exists that

fulfils all the requirements. This is important from an

engineering perspective, since the result can be used as

input for remodelling of the application. The somewhat

non-deterministic behaviour of genetic algorithms may be

considered a drawback. However, the algorithm has been

tested with good result on a substantial number of task

sets [13].

References

[1] Törngren M. Fundamentals of implementing real-time
control applications in Distributed computer systems. J. Of

Real-Time Systems, 14, 219-250, Kluwer Academic

Publishers, 1998.

[2] Bate I. and Burns A. An Approach to Task Attribute

Assignment for Uniprocessor Systems. In Proc. 11th

Euromicro Conference on Real-Time Systems (ECRTS99),
York, England, June 9-11, 1999, IEEE Computer Society.

[3] Mok A. K., Tsou D., and De Rooij R. C. M. The MSP.RTL

Real-Time Scheduler Synthesis Tool. In Proc. 17th IEEE

Real-Time Systems Symposium, pp. 118-128. IEEE

Computer Society.

[4] Würtz J. and Schild K. Scheduling of Time-Triggered Real-
Time Systems, In Constraints, pp. 335-357, Oct, 2000.

Kluwer Academic Publishers.

[5] Cheng S. T. and Agrawala A. K. Allocation and Scheduling

of Real-Time Periodic Tasks with Relative Timing

Constraints. Second International Workshop on Real-Time

Computing Systems and Applications (RTCSA'95) October
25-27, 1995

[6] Gerber R., Saksena M, and Hong S. Guaranteeing Real-Time

Requirements with Resource-Based Calibration of Periodic

Processes. IEEE Transactions on Software Engineering,

21(7), July 1995.

[7] Norström C., Gustafsson M, Sandström K., Mäki-Turja J,
Bånkestad N. Experiences from Introducing State-of-the-art

Real-Time Techniques in the Automotive Industry, In Proc.

Eigth IEEE International Conference and Workshop on the

Engineering of Compute-Based Systems Washington, US ,

April 2001. IEEE Computer Society

[8] Zomaya A. Y., Ward C., and Macey B. Genetic Scheduling

for Parallel Processor Systems: Comparative Studies and

Performance Issues. In IEEE Transaction on Parallel and

Distributed Systems, VOL. 10, NO 8, August 1999.

[9] Corrêa R. C., Ferreira A., and Rebreyend P. Scheduling

Multiprocessor Tasks with Genetic Algorithms. In IEEE
Transactions on Parallel and Distributed systems, VOL 10,

NO. 8, August 1999.

[10] Grajcar M. Genetic List Scheduling Algorithm for

Scheduling and Allocation on a Loosely Coupled

Heterogeneous Multiprocessor System. In Proc. 36th Design

Automation Conference (DAC), p. 280-285, New Orleans,
1999. ACM Press.

[11] Faucou S., Déplanche A., and Beauvais J. Heuristic

Techniques for Allocating and Scheduling Communicating

Periodic Tasks in Distributed Real-Time Systems. In 3rd

IEEE International Workshop on Factory Communication

Systems, September 6, 2000. IEEE Industrial Electronics
Society.

[12] Törngren M. Modelling and Design of Distributed

Real-time Control Applications. PhD thesis, Dept. of

Machine Design, The Royal Institute of Technology,

Stockholm, Sweden, 1995.

[13] Sandström K. Evaluation of a Genetic Algorithm for RTOS

Attribute Assignment. Technical Report, Mälardalen

University, MRTC, October 2001.

