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Abstract

The effectiveness of the memory hierarchy is critical for
the performance of current processors. The performance
of the memory hierarchy can be improved by means of pro-
gram transformations such as loop tiling, which is a code
transformation targeted to reduce capacity misses. This pa-
per presents a novel systematic approach to perform near-
optimal loop tiling based on an accurate data locality anal-
ysis (Cache Miss Equations) and a powerful technique to
search the solution space that is based on a genetic algo-
rithm. The results show that this approach can remove prac-
tically all capacity misses for all considered benchmarks.
The reduction of replacement misses results in a decrease
of the miss ratio that can be as significant as a factor of 7
for the matrix multiply kernel.

1 Introduction

Memory performance is critical for the performance of
current computers. Memory is organized hierarchically in
such a way that the upper levels are smaller and faster. The
uppermost level typically has a very short latency (e.g. 1-2
cycles) but the latency of the lower levels may be a few or-
ders of magnitude longer (e.g. main memory latency may
be around 100 cycles). Thus, techniques to keep as much
data as possible in the uppermost levels are key to perfor-
mance.

In addition to the hardware organization, it is well known
that the performance of the memory hierarchy is very sen-
sitive to the particular memory reference patterns of each
program. The reference patterns of a given program can be
changed by means of transformations that do not alter the
semantics of the program. These program transformations
can modify the order in which some computations are per-
formed or can simply change the data layout.Loop Tiling

is an example of the former family of techniques. Loop
tiling [1, 2] is a technique based on a combination of strip-
mining and loop interchange.

Loop tiling has a significant potential to remove cache
misses. Loop tiling can remove most capacity misses by re-
structuring the loop and changing the order in which state-
ments are executed. However, finding the optimal loop
tiling for a given program is a very complex task, since the
options are almost unlimited and exploring all of them is
infeasible. For very simple programs, the programmer in-
tuition may help but in general, a systematic approach that
can be integrated into a compiler and can deal with any type
of program is desirable. This systematic approach requires
the support of a locality analysis method in order to assess
the performance of different alternatives.

In this paper, we propose an automatic approach to per-
form loop tiling in numeric codes. It is based on a very
accurate technique to analyze the locality of a program that
is known as Cache Miss Equations (CMEs) and a genetic al-
gorithm in order to search the solution space. The proposed
genetic algorithm converges very fast, and although it does
not guarantee that the optimal solution is found, we show
that after loop tiling, the replacement miss ratio of the eval-
uated benchmarks is almost negligible. Therefore, for these
programs the results are near-optimal. The rest of this pa-
per is organized as follows. Section 2 overviews the locality
analysis approach. Section 3 presents the loop tiling tech-
nique and its performance is evaluated in section 4. Sec-
tion 5 outlines some related work and section 6 summarizes
the main conclusions of this work.

2 Memory Locality Analysis

To effectively transform a code in order to optimize
memory performance, an effective memory locality anal-
ysis is required in order to assess the different alternatives.
In this section, we describe the locality analysis technique



parameter (N)
REAL a(N,N), b(N,N), c(N,N)
do i = 1, N

do j = 1, N
do k = 1, N

a(i,j) = a(i,j) + b(i,k) * c(k,j)
enddo

enddo
enddo

Figure 1. Matrix multiply algorithm

used in this work to perform loop tiling.
In particular, we use Cache Miss Equations (CMEs) [3]

to represent the cache behavior. Cache Miss Equations are a
very accurate analytical model of the cache memory. They
describe the cache behavior by means of diophantine equa-
tions, which allows us to use mathematical techniques to
compute the locality of each memory reference. Unfortu-
nately a direct solution of these equations is computation-
ally intractable due to its NP nature. Statistical methods
and some techniques based on polyhedra theory have been
proposed to solve the equations in a reasonable amount of
time [4, 5].

2.1 Overview of Cache Miss Equations

Cache Miss Equations are a set of equations1 that rep-
resent all the potential cache misses for the references in
a loop nest. They describe the precise relationship among
the iteration space, array sizes, base addresses, and the
cache parameters for a loop nest. This section presents an
overview of the CMEs. For more details about CMEs see
[3, 6].

In order to generate CMEs, thereuse vectors [7] of all the
references in a loop nest must be generated.Reuse vectors
provide information about the potential reuses in the entire
iteration space. Figure 1 shows thematrix multiply kernel.
For instance,�r � ��� �� �� is a reuse vector for reference
c(k,j), because the data accessed by this reference in a given
iteration is potentially reused one iteration later (both are
potentially mapped into the same cache line). In order to
determine if these potential reuses are realized, CMEs are
generated and studied (it is not necessary to solve the equa-
tions to find realized reuses).

For every reuse vector of a reference two types of CMEs
are generated:

� Compulsory equations. Compulsory equations rep-
resent the first time a memory line is brought into the
cache.

1The term equation is loosely used to refer to a set of simultaneous
equalities and inequalities.

� Replacement equations. Given a reference, replace-
ment equations represent the interferences with any
other reference. For each pair of references (RA and
RB), the following expression gives the condition that
determines whether they are mapped onto the same
cache set:

Cache Set����RA � Cache Set����RB

�� � I

whereI represents the iteration points between�� (the
current one) and the iteration point from whichRA

reuses. This condition is expanded into a set of equa-
tions for each reuse vector.

2.2 Finding Cache Misses from CMEs

Deciding whether a reference causes a miss or a hit for
a given iteration point is equivalent to deciding whether
this iteration point belongs to the polyhedra defined by the
CMEs. The points inside each CMEs polyhedron represent
the potential cache misses (the number of points is the num-
ber of potential cache misses). This leads us to consider
several ways for computing them:

� Solver. Given a referenceR with m reuse vectors and
nk equations for thekth reuse vector, the polyhedron
that contains all the iteration points that result in a miss
is [3]:

Set Misses � �mk�� �
nk
j�� Solution Set Equationj

This approach implies counting the number of points
inside the union of convex polyhedra. This requires
counting the points (which is an NP problem for a sin-
gle polyhedron) in an exponential number of polyhe-
dra, making this problem infeasible due to its huge
computing time.

� Traversing the iteration space. Given a reference,
all the iteration points can be tested independently [6].
In order to know if an iteration point��� results in a
miss we need to know when it fulfills the CMEs. This
problem is equivalent to finding out whether, after sub-
stituting the iteration point in the CMEs, the resulting
polyhedron is non-empty. This is still an NP problem,
but only a linear number of polyhedra must be ana-
lyzed for each iteration point. However, the problem is
still infeasible except for tiny iteration spaces.

Moreover, in ak-way set associative cache, there arek
cache lines in every set, sok distinct contentions are needed
before a cache miss occur. Therefore, the first method can
only be applied to direct-mapped caches whereas the second
method works for both direct-mapped and set-associative
organizations.



2.3 A Fast and Accurate Implementation to Solve
CMEs

In this section we describe a fast and accurate approach
to estimate the solution to the CMEs. Our approach builds
upon the second method to solve the CMEs (traversing the
iteration space). A key property of CMEs is that each point
of the iteration space and each memory reference can be
studied independently of the others.

We have developed some techniques that exploit the spe-
cial characteristics of the CMEs polyhedra [4] in order to
speed-up the process of counting points in polyhedra:

� Counting Compulsory Polyhedra. When an iteration
point is substituted, Compulsory Equations result in
polyhedra with either 0 or 1 variable. A polyhedron
with 0 variables consists of a set of inequality relations
between integer values. The iteration point that has
been substituted is a potential miss if the inequalities
hold. On the other hand, since a polyhedron with 1
variable represents an interval, the iteration point��� re-
sults in a potential miss when there exist integer values
in it.

� Counting Replacement Polyhedra. Due to the par-
ticular form of these polyhedra, the number of integer
solutions can be computed in a more efficient way than
in general polyhedra. We have developed a method to
detect when they are empty that is based on counting
the number of integer points inside them [8]. In or-
der to compute it, the domains2 of the different vari-
ables involved in its definition are calculated. This can
be done by means of the vertices of the polyhedron,
but computing them is an NP problem. We have de-
veloped specific techniques for replacement polyhedra
that compute the domains of the variables in a polyno-
mial time. A detailed description of these techniques
can be found in [8].

The use of these techniques results in an average speed-
up of 20 over a method based on identifying the vertices
of the polyhedra. However, this important speed-up is still
insufficient to solve CMEs for huge iteration spaces in a
reasonable amount of time.

To further reduce the computation cost, we use sampling
techniques to study a subset of the iteration space instead
of the whole iteration space [5] [9]. The subset of points is
selected usingSimple Random Sampling [10].

We model the number of misses of each reference us-
ing a Discrete Random Variable. This random variable fol-
lows a Binomial distribution that models phenomena con-
sisting ofn different and independent experiments that fol-

2We define the real domain of a variablex in a polyhedron P as the
range of real values it takes inside P.

low a Bernoulli distribution. We can use statistical tech-
niques [11] in order to compute the parameters that describe
this random variable. The approach to obtain an approxima-
tion of the miss ratio is to evaluate the behavior of a subset
of the population (sample) obtaining the empirical value of
the parameters that describe the sample and to infer these
values to the population.

The size of the sample is set according to the required
width of the confidence interval and the desired confidence.
We found experimentally that a confidence interval of width
0.1 and a 90% confidence is enough to obtain accurate miss
ratios with a very small computing time (only 164 points
of the iteration space must be explored). In this way, the
miss ratio is computed as an interval of width 0.1 and the
actual miss ratio belongs to this interval with a probability
of 90%. The central point of this interval can be used as an
estimation of the actual miss ratio.

2.4 CME for Multiple Convex Regions

CME are defined for iteration spaces that are single con-
vex regions, but after tilingn dimensions the iteration space
is the union of�n convex regions.

Figure 2 shows how the iteration space of a one-
dimensional loop becomes a two-convex region iteration
space after tiling. The shaded regions correspond to the dif-
ferent convex regions before and after tiling.

There are different ways to solve this problem. The eas-
iest option would be to use only one convex region that
approximates the actual non-convex region. This convex
region can be the smallest parallelepiped that includes all
other convex regions (see figure 2 (c)) or alternatively, the
region which does not include the last iteration of every tiled
loop where the tile size is not a divisor of the upper bound
(see figure 2 (d)). Both options have drawbacks. The first
option includes in the convex regions points outside the iter-
ation space, while the second option does not include points
belonging to the iteration space.

Because of this, we have decided to implement a more
accurate solution. The CME implementation has been mod-
ified to deal with multiple convex regions by defining the
equations for every convex region and solving for every an-
alyzed point the equations corresponding to the convex re-
gion in which the point is contained. Letn be the number
of convex regions of a loop after tiling. Every compulsory
equation should be defined for each convex region, so the
number of compulsory equations is increased by a factor of
n. For each reuse vector, we have to generate a set of re-
placement equations for each convex region. In addition,
we have to generate a set of equations for every pair of con-
vex regions that reflect the potential reuse between different
regions. Due to this, the number of replacement equations
is increased by a factor ofn�.



d)
do ii=1,6,3
   do i=1,3
      a[i+ii-1]=0.0
   enddo
enddo

a)
do i=1,7
   a[i]=0.0
enddo

b)
do ii=1,7,3
   do i=1,min(3,7-ii+1)
      a[i+ii-1]=0.0
   enddo
enddo
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do ii=1,7,3
   do i=1,3
      a[i+ii-1]=0.0
   enddo
enddo
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Figure 2. Example of iteration space: (a) before tiling, (b) after tiling, (c) bigger region, (d) smaller
region

(a)
do i�=1,U�

do i�=1,U�

A(i�,i�) = B(i�,i�)
enddo

enddo

(b)
do ii�=1,U�, T�

do ii�=1,U�, T�
do i�=ii�, min(ii�+T�-1,U�)

do i�=ii�, min(ii�+T�-1,U�)
A(i�,i�) = B(i�,i�)

enddo
enddo

enddo
enddo

Figure 3. 2D matrix transposition: (a) before
tiling, (b) after tiling

3 Loop Tiling

In this section we present our proposal to perform loop
tiling. Tiling [12, 1] is a transformation which com-
bines strip-mining [1] with loop interchange to form small
tiles [1] of loop iterations in order to increase the data lo-
cality. In this sectionTi andUi stand for the tile size and
upper bound respectively of loopi in the original loop nest.
Figure 3 shows an example of a loop before (a) and after (b)
loop tiling.

3.1 Model

The target of our work is to obtain the values of the vari-
ablesTi that minimize the number of misses. Note that loop

tiling changes only the order in which the original itera-
tion space is traversed, so the number of compulsory misses
before and after tiling remains constant. Because of this,
our work focuses on minimizing the number of replacement
misses, which include both capacity and conflict misses.

Let f be the function that represents the number of re-
placement misses for each possible value of the tile size
variables:

f ��� �ReplacementMisses (1)

f � 	�� U�

� �z �

T�

� � � �� 	�� Uk

� �z �

Tk

�� Z

Our problem can be expressed as follows:

MIN f�T�� � � � � Tk�

� 	 Ti 	 Ui

i � � � � � k

wheref is called theobjective function.
The objective function consists of the CMEs generated

in a parameterized way, where the parameters are the tile
sizes.

Sincef is a pseudo-polynomial function [13], the rela-
tionship between loop tiling and the number of misses is
nonlinear.Ti can take only integer values, thus, our prob-
lem can be seen as a nonlinear integer optimization (NLP)
one.

Many researchers have studied NLP [14, 15]. A well
studied case is the one where the constraints are linear
(namedlinearly constrained optimization). A special case



is when the objective function is entirely linear; this is
called Linear Programming (LP). Algorithms to solve both
real (e.g simplex [16]) and integer functions (e.g branch &
bound scheme [17]) can be found in the literature.

One of the challenges in NLP is that some problems ex-
hibit local minima and search algorithms can be stuck at
them. Algorithms that propose to overcome this problem
are namedGlobal Optimization. Real functions have been
studied deeply [18, 19, 15]. Unfortunately, integer functions
are hard to optimize. There are some studies based onf0,1g
valued integer functions [20], but in general, this is a hard
and time-consuming problem. Hence, the use of heuristics
is necessary. Tabu search [21] obtains promising theoretical
results, but only partial implementations have been reported
so far. On the other hand, simulated annealing [22] and ge-
netic algorithms [23, 24] have been used for years with very
good results.

Our proposal is based on the use of a genetic algorithm
to optimize functionf .

3.2 Genetic Algorithm

Algorithms for function optimization are generally lim-
ited to convex regular functions. However, there are lots
of functions that are not continuous, non differentiable or
multi-modal. It is common to solve this problem by means
of stochastic sampling. Whereas traditional search tech-
niques use characteristics of the problem to determine the
next sampling point (e.g Gradient), stochastic methods use
non-deterministic decision rules [25].

Genetic Algorithms (GAs) are a particular type of
stochastic methods that have been used to solve hard prob-
lems with objective functions that do not meet the proper-
ties required by traditional methods [23]. These algorithms
search in the solution space of a function simulating the
Nature-based process of evolution, that is, the survival of
the fittest. Usually, the fittest individuals tend to reproduce
more than the inferior individuals, and they survive to the
next generation propagating the best genes.

GAs simulate the evolution of a population. Figure 4
shows the simplest GA. It starts from a random gener-
ated population, and it makes the population evolve by
means of basic genetic operators (selection, mutation and
crossover) [23] applied to individuals of the current popula-
tion, to produce an improved next generation.

3.3 Genetic Algorithm Parameters

The use of GAs requires the determination of the follow-
ing issues: chromosome representation, selection function,
genetic operators, the creation of the initial population and
the termination criteria.

ALGORITHM:

Supply a populationP�
i=1
while (not finish)
Pi=Selection(Pi��)
Pi=Reproduce(Pi)
i=i+1

end

Figure 4. Simple Genetic Algorithm

In our context, each individual represents a particular
tiling solution, which is identified by the particular values
of the tile size variablesTi. Individuals are made up of a
set of chromosomes, each one being associated to a tile size
variable. Each chromosome is made up of a sequence of
genes, each gene being represented by a digit of a certain
alphabet. We have experimentaly observed that using the
alphabetf00, 01, 10, 11g produces good results.

The function to transform the chromosome values into
tile sizes is not the identity function. Tile sizeTi can take
any value in the range [1. . .Ui]. On the other hand a chro-
mosome is represented by a sequence of genes encoded in
a binary representation. Thus, each chromosome will be
represented by a value in the range [0. . . 2k-1] wherek is
dlog�Uie. If k is an odd number,k is increased in 1 because
of the alphabet we have used to represent genes. Thus, there
are more values in the representation range for a chromo-
some than possible tile size values. Therefore, we need a
function to map values [0. . . 2k-1] into the range [1. . .Ui].

Let g be the function that represents the tile size for each
possible value of a chromosome:

g � 	� � � � �k � �
 �� 	� � � � Ui


where

k = dlog�Uie (+1 if odd)

x � [0� � � 2k-1]

g�x� � b
x 
 �Ui � ��

�k � �
c� � (2)

It can be deduced that every possible tile size has at least
one representation.

Example. Let us assume a two-dimensional nested loop
where the upper bounds of the loops are 10 and 100 respec-
tively. Thus,dlog���e � � anddlog����e � , so we have
k� � � andk� � � respectively. Therefore, the first chro-
mosome is represented by 2 genes, and the second one by 4
genes. For instance, the value 12 (1100) and 74 (01001010)
correspond to the tile sizes 8 (g�(12)=8) and 29 (g�(74)=29)
respectively, and are represented by the following genes:



Child 2Child 1
Crossing Site

Parent 2Parent 1

Figure 5. Schematic of simple crossover
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Genetic operators provide the basic search mechanism
by creating new solutions based on the solutions that exist.
The selection of individuals to produce successive genera-
tions plays an extremely important role. A common selec-
tion approach assigns probability of selection to each indi-
vidual depending on its fitness. Individuals with higher fit-
ness have a higher probability of contributing one or more
offsprings to the next generation. We have adopted one
of the selection schemes that gives better results, which is
known asremainder stochastic selection without replace-
ment [23]. Let us callN the size of the population (number
of individuals). This selection scheme consists in choosing
N individuals from theN individuals of the previous gen-
eration. In this selection process a given individual can be
chosen more than once. The chosen individuals are grouped
forming pairs and crossover is applied to each pair with a
given probability. In the case they do not crossover, both
individuals are added to the new population (see Figure 5).

Crossover takes two individuals and produces two new
individuals merging the genetic material in a random point
(named cross site).Mutation is applied after crossover to
each individual with a given probability. Mutation changes
one individual to produce a new one by flipping some of its
genes. Both crossover probability and mutation probability
have to be determined empirically, and are related to the
size of the population. Figure 6 shows an example of an
iteration of the genetic algorithm.

The GA must be provided with an initial population (see
Figure 4) that is created randomly. GAs moves from gen-
eration to generation, and the usual termination criterion is
the number of generations, although other criteria can be
used [23].

Our experiments show that an initial population of size
equal to 30, with crossover probability of 0.9 and a muta-
tion probability of 0.001, gives near-optimal results in most

Description Indiv. Indiv. Indiv. Indiv.

Generationi 00 00 00 01 01 01 10 10 10 11 11 11

Selection 00 00 00 11 11 11 01 01 01 00 00 00

Crossover? Yes No

Crossover 00 00 11 11 11 00 01 01 01 00 00 00

Mutation 00 00 11 1101 00 01 01 01 00 0011

Generationi� � 00 00 11 11 01 00 01 01 01 00 00 11

Figure 6. Example of a genetic algorithm iter-
ation

cases after 15 generations. In the rest of the cases, near-
optimal results are obtained after a number of generations
between 15 and 25. Figure 7 shows the algorithm to de-
cide the number of generations required before the optimal
tile search stops, whereconverge() is a function to decide
when the population is homogeneous enough. In our case
we consider that a population converges when the best indi-
vidual has a difference of replacement misses smaller than
2% with respect to the population average of its generation.
We have observed in the evaluated loops that this conver-
gence criterion is only achieved if the population is close to
the optimal.

Finally, note that CME have an exponential cost with re-
spect to the number of dimensions of the loop nest, and loop
tiling is a transformation that doubles the number of dimen-
sions of the loop nest and increases the number of equa-
tions. In spite of this, due to the efficient implementation of
CMEs, the required 450 evaluations (15 iterations of the GA
� 30 individuals) for each loop nest can still be solved in a
reasonable time. In our case, every loop nest took between
15 minutes and 4 hours on a SUN sparc Ultra-60 worksta-
tion. This compilation time can be assumed for those codes
which performance is crucial, like scientific and embedded
processor applications.

4 Performance Evaluation

This section evaluates the proposed loop tiling approach.
Examples of its use will be given, as well as its accuracy.

4.1 Experimental Framework

CMEs have been implemented for fortran codes through
the Polaris Compiler [26] and the Ictineo library [27]. These
libraries allow us to obtain all the compile-time information
needed to generate the equations.

The evaluation of CMEs has been implemented in C++
following the techniques outlined in section 2.3 and using
our own polyhedra representation [4].

Due to CMEs restrictions, only perfectly nested loops in



ALGORITHM:

finish := false
iters := 0
while (not finish)

if (iters�15)
iters = iters + 1
create next generation

else if (iters�=15 and iters�25)
if (not converge())

iters = iters + 1
create next generation

else finish := true
endif

else finish := true
endif

endwhile

Figure 7. Genetic Algorithm used to perform
loop tiling

which the array subscript expressions are affine functions of
the induction variables are analyzed [3].

The loop nests considered are some kernels from differ-
ent programs (NAS3, BIHAR4, LIVERMORE) and some
frequently used kernels (see Table 1). These loops have
been chosen because they exhibit high number of capac-
ity misses. Results for different cache architectures are re-
ported.

4.2 Examples of some Kernels

First of all we show the effectiveness of the loop tiling
technique by means of some well-known kernels (see Ta-
ble 2). We have evaluated their miss ratio for a 8KB direct-
mapped cache with 32-byte lines.

Table 2 shows the results. Column 2 shows the prob-
lem size. Columns 3 and 4 show the total and replacement
miss ratio before loop tiling respectively, whereas columns
5 and 6 show the total and replacement miss ratio after
tiling respectively. We can see that after tiling the replace-
ment miss ratio is near zero for all kernels. This indicates
that loop tiling has removed almost all replacement misses.
The remaining replacement misses probably are conflict
misses which could be removed by means of techniques like
padding.

4.3 Performance Evaluation for some Kernels

In this section we present the replacement miss ratio of
different direct-mapped caches (8KB and 32KB) before and
after applying loop tiling for all the benchmarks of the ta-
ble 1. Results are shown in Figures 8 and 9, where the

3Numerical Aerospace Simulation Facility
4Biharmonic Partial differential equations solver

Kernel Program Nested Description
loops

T2D 2 2D Matrix transposition
T3DJIK 3 3D Matrix transposition

a[k,j,i] = b[j,i,k]
T3DIKJ 3 3D Matrix transposition

a[k,j,i] = b[i,k,j]
JACOBI3D 3 Partial differential

equations solver
MATMUL 3 Matrix by vector multiplication

MM LIVER. 3 Matrix multiplication
ADI LIVER. 2 2D ADI integration
ADD NAS 4 Addition of update

to a matrix
BTRIX NAS 3 Block Tri-diagonal solver.

Backward block sweep
VPENTA1 NAS 2 Invert 3 pentadiagonals

simultaneously. Loop 1
VPENTA2 NAS 2 Invert 3 pentadiagonals

simultaneously. Loop 2
DPSSB BIHAR 3 unnormalized inverse of a

forward transform of a
complex periodic sequence

DPSSF BIHAR 3 forward transform of a
complex periodic sequence

DRADBG1 BIHAR 3 backward transform of a
real coefficient array. Loop 1

DRADBG2 BIHAR 3 backward transform of a
real coefficient array. Loop 2

DRADFG1 BIHAR 3 forward transform of a
real periodic sequence. Loop 1

DRADFG2 BIHAR 3 forward transform of a
real periodic sequence. Loop 2

Table 1. Evaluated kernels

number following the program name corresponds to the
problem size.

It can be seen that for most programs practically all
replacement misses are removed after tiling, which im-
plies that near-optimal solutions have been found for these
programs. However, for some kernels (ADD, BTRIX,
VPENTA1 and VPENTA2) the replacement miss ratio ob-
tained after tiling is still quite high for all cache sizes. For
some others (ADI1000 and ADI2000) replacement misses
after tiling are only significant for a 8KB cache. We have
analyzed these cases carefully and we have observed that
most of the remaining replacement misses are due to con-
flicts and they cannot be removed by loop tiling. For these
programs we have investigated the combination of padding
and tiling techniques. Padding parameters are obtained in a
similar way to tiling ones. They are introduced in the CMEs
and a GA is used to find near-optimal solutions. Details can
be found in [28].

Table 3 shows the replacement miss ratios obtained for
those kernels where the replacement miss ratio is still high
after loop tiling. Column 2 shows the original replacement
miss ratio; column 3 lists the replacement miss ratio after
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Figure 8. Replacement miss ratio before and after loop tiling for a 8KB cache.
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Figure 9. Replacement miss ratio before and after loop tiling for a 32KB cache.

padding; and column 4 shows the replacement miss ratio af-
ter padding and tiling are applied sequentially in this order.
In the future we plan to study the application of padding and
tiling techniques in a single step, trying to find the padding
and tiling parameters at the same time. This can in gen-
eral produce better results than optimizing each part sepa-

rately. The replacement miss ratios after padding and tiling
are practically null for all benchmarks.

Table 4 shows the percentage of kernels (not considering
those that appear in table 3), which have a replacement miss
ratio lower than 1%, 2% and 5% respectively after tiling.
For all these kernels and all cache sizes the replacement



No Tiling Tiling
Kernel Prob size

Total Repl. Total Repl.
T2D N=2000 63.3% 36.4% 27.7% 0.9%

T3DJIK N=200 63.4% 36.7% 30.2% 3.6%
T3DIKJ N=200 34.6% 7.0% 27.9% 0.3%

JACOBI3D N=200 25.6% 7.2% 19.8% 1.3%

Table 2. Miss ratio for some evaluated kernels
(8KB direct-mapped cache, 32B lines)

8KB
Kernel Original Padding Padding + tiling
ADD 60.2% 59.8% 0.5%

BTRIX 50.1% 0.2% 0.2%
VPENTA1 78.3% 52.4% 0.0%
VPENTA2 86.0% 11.9% 0.0%
ADI 1000 26.2% 12.3% 4.1%
ADI 2000 25.7% 12.4% 3.4%

32KB
Kernel Original Padding Padding + tiling
ADD 60.2% 59.8% 0.0%

BTRIX 34.1% 0.0% 0.0%
VPENTA1 78.1% 32.9% 0.0%
VPENTA2 86.0% 11.3% 0.0%

Table 3. Miss ratio for some evaluated kernels
before padding and tiling, after padding and
after padding and tiling

Replacement miss ratioCache sizes
�1% �2% �5%

8KB 56.4% 79.5% 100.0%
32KB 90.2% 97.6% 100.0%

Table 4. Replacement miss ratios after tiling
of all kernels excepting those in table 3

miss ratios are lower than 5%.
Our technique is compared against the optimal solution

(counting replacement misses) but not against other tech-
niques in the literature. Due to the different limitations of
these techniques they cannot be compared with the same
benchmarks and same platform on an equal basis.

5 Related Work

Caches are an essential part of processors for reducing
memory latency and increase memory bandwidth. Some

programs have loops which work with large working sets
that exceed the cache capacity and result in a high number
of capacity misses. These misses can be reduced by means
of computation-reordering transformations such as loop in-
terchange, loop distribution, loop skewing and loop tiling
among others [1, 2].

Loop tiling [12] is an effective optimizing transforma-
tion to reduce the number of capacity misses of programs,
especially for dense matrix computations. However, the
success of loop tiling depends on the tile size and shape
selection. Many algorithms have been provided to find suit-
able approximations for this selection.

Ghosh, Martonosi and Malik proposed the use of
CME [3] to select the tile size [29] but they did not pro-
pose a general algorithm to do it. Their technique con-
sists on maximizing the tile size for every self-interference
equation, obtaining a tile that has no replacement misses
for the given equation. They do not give details about how
to combine the different tile sizes obtained for every self-
interference equation. Their tiling algorithm is not applied
to cross-interference equations.

Coleman and McKinley presented a technique that tries
to maximize the tile size such that it fits in cache and at
the same time it reduces cross-interference misses. Their
technique to reduce cross-interference misses is based on
computing the worst case: maximum number of expected
cross-interference misses. To do this, their algorithm esti-
mates the footprints of array references [30].

Rivera and Tseng proposed a tile size selection algo-
rithm [31] for programs that compute values using neigh-
boring array elements in a fixed stencil pattern. In order
to avoid cross-interference misses they use different tech-
niques based on copying tiles, using a subset of the cache,
padding and applying the same technique as Coleman and
McKinley.

Sarkar and Megiddo presented a constant-time algorithm
to obtain near-optimal tile sizes for two-dimensional nested
loops [32] taking into account self and cross-interference
misses. The algorithm is based on an approximated memory
cost model and an analytical model to estimate the memory
cost of a loop nest. The algorithm is extended in order to
deal with three-dimensional nested loops using an iterative
search over the first tile size and applying their algorithm
over the two inner loops.

Our proposal differs and improves these previous ap-
proaches in the fact that it is a technique based on a pre-
cise model to represent cache behavior, that searches the
solution space for optimal tile sizes, for any type of refer-
ence pattern that corresponds to affine references and for
loop nests of any dimension. It always produces a tiling
scheme that reduces capacity misses and usually removes
practically all replacement misses.



6 Conclusions

Cache memory performance is critical for the efficient
execution of numerical applications. Loop tiling is a pro-
gram transformation that reduce capacity misses. In this
work, we have proposed the combination of genetic algo-
rithms and a very accurate model of the cache behavior in
order to perform near-optimal loop tiling. The cache model
is based on a very fast solver of the Cache Miss Equations.
The proposed technique can deal with any perfectly nested
loop.

The evaluation of the proposed technique shows that the
resulting tiling significantly reduces the miss ratio. For
instance, for a 8KB direct-mapped cache, we can reduce
the replacement miss ratio of the 3D matrix transpostion
(N=100) from 36.7% to 0.6% and the replacement miss ra-
tio of the Dpssb kernel from 55.5% to 1.25%. We have
shown that the proposed loop tiling technique practically
removes all capacity misses for all the loops that have been
analyzed.
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