
Component-based Software Engineering:
Building Systems form Software Components

Ivica Crnkovic

Mälardalen University, Department of Computer Engineering
PO Box 883, SE-72 123 Västerås, Sweden

ivica.crnkovic@mdh.se

1. Introduction

Component-based Software Engineering (CBSE) is
concerned with the development of systems from
software components, the development of components,
and system maintenance and improvement by means of
component replacement or customization [1].

Building systems from components and building
components for different systems requires established
methodologies and processes not only in relation to
development/maintenance phases, but also to the entire
component and system lifecycle including organizational,
marketing, legal, and other aspects. In addition to
objectives such as component specification, composition,
and component technology development that are specific
to CBSE, there are a number of software engineering
disciplines and processes that require methodologies be
specialized for application in component-based
development. Many of these methodologies are not yet
established in practice, some have not yet been
developed. Experiences from other areas, such as system
engineering can be successfully applied on component-
based development, as there are many similarities in the
basic concepts (for example, relations between systems
and components). Also, with its focus on components and
their specifications, CBSE can give better understanding
of building systems in general, and in particular of
computer-based systems whose significant part is
software.

The progress of software and system development in
the near future will depend very much on the successful
establishment of CBSE; this is recognized by both
industry and academia. The growing interest in CBSE is
reflected in the number of workshops and conferences
with CBSE tracks [2-6].

2. Building systems and building components

CBSE addresses challenges and problems similar to
those encountered elsewhere in software engineering.
There is however one difference; CBSE specifically
focuses on questions related to components and in that
sense it distinguishes the process of “component

development” from that of “system development with
components”. There is a difference in requirements and
business ideas in these two cases and different approaches
are necessary. Components are built to be used and
reused in many applications, some possibly not yet
existing, in some possibly unforeseen way. Marketing
factors play an important role, as development costs must
be recovered from future earnings, this being especially
true for COTS. System development with components is
focused on the identification of reusable entities and
relations between them, beginning from the system
requirements and from the availability of components
already existing [7].

3. Building systems – a top-down approach

A standard approach in a system development is a top-

down approach; the system design starts with
specification of system architecture. The architecture
defines the components of a software system as well as
their interactions and can be used to analyze its quality
attributes.

The system design process typically consists of three
phases, which might be passed in several iterations [8].
The first phase includes functionality-based design (i.e. a
design of the software architecture based on the
functional requirements). Although software designers
generally will not design a system without concern non-
functional requirements, these are not explicitly addressed
at this stage. Functionality-based design consists of four
steps: defining the boundaries and context of the system,
identification of archetypes, decomposition of the system
into its main components and, finally, the first validation
of the architecture by describing a number of system
instances). The second phase is the assessment of the
quality attributes of software architecture in relation to the
quality requirements. The third phase of the software
architecture design process is concerned with
transformation of design solutions to improve the quality
attributes while preserving the domain functionality
captured by the software architecture. These
transformations result in a new version of the software
architecture which in general improve one or some
quality attributes while they affect others negatively.

The final result of this stage is a system software
architecture which identifies components and interactions
between them. Up to now the design model is not specific
for component-based approach. In a “classical” approach
the next step would be to implement the components
identified by the design. In a component-based approach
the main idea is re-use already existing components, i.e.
to find the most suitable components. The implementation
effort in system development will decrease but the effort
required in dealing with components; locating them,
selecting those most appropriate, testing them, etc. will
increase.

4. Building systems from components

The types of components that a system is composed of

influence the architecture of the system. In a similar way
as the framework into which components are to be
plugged influences architecture of the system and, the
type of components selected, influences the system design
process.

Design freedom is limited to component selection and
the way the selected components are integrated. This
restricted freedom points out the importance of managing
and controlling component integration. Component
specifications in from of API do not normally provide
enough information about how the component will
behave when used in a given environment. This difficulty
raises issues related to understanding and verifying both
the functional and non-functional properties of the
components so that the unexpected mismatches among
components are avoided and overall system behavior can
be accurately predicted. The verification of component
properties is required in order for developers to have
confidence that a system will behave as its architect
predicted it would. In many cases a component property
alone cannot be used to predict the system behavior, but
clusters of components (assemblies) must be analyzed
separately.

The examples briefly mention above show that much
of activity in the design and development phase belong to
the component properties and composition issues. This
shows that a component-based design can have
difficulties in using top-down approach. Rather a mix of a
top-down and a bottom-up approach will occur.

5. Challenges of CBSE

A successes of component-based approach is still not

guaranteed and it depends which solutions will be found
on many, still open questions. Some of them are listed
here:
− Trusted components and components certification [9].
− Composition specifications and predictability [10].

− Requirements management and component selection
[11].

− Long-term management of component-based systems.
− Component configurations [12].
The question is how these challenges can be met?
Solutions can be related to a question how much
experience from system engineering and computer-based
system engineering can be utilized in CBSE? Can we use
the same or similar methods? To which extend we can
relate system components to software components?

6. References

[1] Crnkovic I., Larsson M., Building Component-based

Reliable Software Systems, Artech House, 2002
[2] Bachman, et. Al., Technical Concepts of Component-

Based Software Engineering, report CMU/SEI-2000-
TR-008, Software Engineering Institute, Carnegie
Mellon University, 2000.

[3] 4th and 5th ICSE Workshops on CBSE: Component
Certification and System Prediction, Benchmarks for
Predictable Assembly, http://www.sei.cmu.edu/pacc

[4] 27th and 28th Euromicro Conferences: CBSE track,
http://www.idt.mdh.se/ecbse

[5] First International Working Conference on
Component, http://swt.cs.tu-berlin.de/cd02/

[6] Crnkovic I., Larsson S., Stafford J., Component-
based SE workshop, Building Systems form Software
Components, Engineering Computer-based Systems
Conference, Lund, Sweden, April 2002

[7] Bass L., Clements P., and Kazman R., Software
Architecture in Practice, Addison-Wesley, 1998

[8] Bosch J., Design & Use of Software Architectures,
Addison-Wesley, 2000.

[9] Morris J., Lee G., Parker K., Bundell G., Peng Lam
C., "Software Component "Certification", IEEE
Computer, 2001, September

[10] Wallnau K. and Stafford J., Ensembles: Abstractions
for a New Class of Design Problem, 27th Euromicro
Conference 2001 Proceedings, IEEE Computer
society, 2001, pp. 48-55

[11] Kotonya G. and Rashid A., A strategy for Managing
Risks in Component-based Software Development,
27th Euromicro Conference 2001 Proceedings, IEEE
Computer society, 2001, pp. 12-21

[12] Crnkovic I., Larsson M., Küster Filipe J. K., Lau K.,
Databases and Information Systems, Fourth
International Baltic Workshop, Baltic DB&IS,
Selected papers, Kluwer Academic Publishers 2001,
pp.237-252

