
Automating Co-evolution in Model-Driven Engineering

Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, Alfonso Pierantonio
Dipartimento di Informatica

Universit̀a degli Studi di L’Aquila
I–67100 L’Aquila, Italy

Email: {cicchetti, diruscio, eramo, alfonso}@di.univaq.it

Abstract

Software development is witnessing the increasing need
of version management techniques for supporting the evo-
lution of model-based artefacts. In this respect, metamod-
els can be considered one of the basic concepts of Model-
Driven Engineering and are expected to evolve during their
life-cycle. As a consequence, models conforming to changed
metamodels have to be updated for preserving their well-
formedness.

This paper deals with the co-adaptation problems by
proposing higher-order model transformations which take
a difference model recording the metamodel evolution and
produce a model transformation able to co-evolve the in-
volved models.

1 Introduction

Model-Driven Engineering (MDE) [23] aims at rendering
business logic and intellectual property resilient to techno-
logical changes by shifting the focus of software develop-
ment from coding to modeling. In general, domains are
analysed and engineered by means of ametamodel, i.e. a
coherent set of interrelated concepts. A model is said tocon-
form to a metamodel, or in other words it is expressed by
the concepts encoded in the metamodel, constraints are ex-
pressed at the metalevel, and model transformation occurs
when a source model is modified to produce a target model.

Evolution is an inevitable aspect which affects the whole
life-cycle of software systems [16]. In general, artefactscan
be subject to many kinds of changes, which range from re-
quirements through architecture and design, to source code,
documentation and test suites. Moreover, taxonomies of
software evolution distinguish maintenance activities onthe
basis of their purpose (i.e. updative, adaptive, performance,
corrective or reductive) or technical aspects (i.e., the when,
where, what and how of software changes) [7, 18]. There-

fore, evolution management is a complex task which re-
quires specialized discipline and tool support.

Similarly to other software artefacts, metamodels can
evolve over time too [12]. Accordingly, models need to
be co-adapted1 in order to remain compliant to the meta-
model and not become eventually invalid. When manually
operated the adaptation is error-prone and can give place to
inconsistencies between the metamodel and the related arte-
facts. Such issue becomes very relevant when dealing with
enterprise applications, since in general system models en-
compass a large population of instances which need to be
appropriately adapted, hence inconsistencies can possibly
lead to irremediable information erosion [27].

This work proposes a transformational approach to
model co-evolution, i.e. how to automatically generate
well-defined adaptation steps directly from the modifica-
tions the metamodel underwent. In particular, the approach
is based on a model difference representation [10] which
is used to specify in adifferencemodel the metamodel
changes. Thus, the co-adaptation is given as a higher-order
model transformation which takes the difference model
recording the metamodel evolution and generates a model
transformation able to produce the co-evolution of mod-
els. Especially, the proposal shows how thebreaking resolv-
able andunresolvablechanges (see Sect. 2) require a spe-
cific management whenever interdependencies among them
occur.

The structure of the paper is as follows. In Sect. 2 the dif-
ferent kinds of modifications a metamodel can be subject to
are illustrated and categorized in accordance with the avail-
able literature. Moreover, it presents the typologies of co-
adaptation steps a metamodel evolution induces. Then, the
proposed approach is described: Sect. 3 introduces a model-
based representation of the metamodel evolution, whereas
Sect. 4 describes the automated co-adaptation. Finally, in
Sect. 5 and Sect. 6 related works and some conclusions are
discussed, respectively.

1The terms (co-)adaptation and (co-)evolution will be used assyn-
onyms throughout the paper.



2 Metamodel evolution and model co-
evolution

Metamodels can be considered one of the constituting con-
cepts of MDE, since they are the formal definition of well-
formed models, or in other words they constitute the lan-
guages by which a given reality can be described in some
abstract sense [4]. Metamodels are expected to evolve dur-
ing their life-cycle, thus causing possible problems to exist-
ing models which conform to the old version of the meta-
model and do not conform to the new version anymore. The
problem is due to the incompatibility between the meta-
model revisions and a possible solution is the adoption of
mechanisms of model co-evolution, i.e. models need to be
migrated in new instances according to the changes of the
corresponding metamodel.

Unfortunately, model co-evolution is not always simple
and presents intrinsic difficulties which are related to the
kind of evolution the metamodel has been subject to. Go-
ing into more details, metamodels may evolve in different
ways: some changes may be additive and independent from
the other elements, thus requiring no or little instance re-
vision. However, in other cases metamodel manipulations
introduce incompatibilities and inconsistencies which can
not be easily (and automatically) resolved.

Figure 1. Petri Net metamodel evolution

In Fig. 1 it is depicted an example of the evolution of a

(simplified) Petri Net metamodel, which takes inspiration
from the work in [27]. The initial Petri Net (MM0) con-
sists ofPlaces andTransitions; moreover, places can
have source and/or destination transitions, whereas transi-
tions must link source and destination places (src anddst
association roles, respectively). In the new metamodelMM1,
eachNet has at least onePlace and oneTransition. Be-
sides, arcs between places and transitions are made explicit
by extractingPTArc andTPArc metaclasses. This refine-
ment permits to add further properties to relationships be-
tween places and transitions. For example, the Petri Net
formalism can be extended by annotating arcs with weights.
As PTArc andTPArc both represent arcs, they can be gen-
eralized by a superclass, and a new integer metaproperty
can be added in it. Therefore, an abstract classArc encom-
passing the integer metapropertyweight has been added
in MM2 revision of the metamodel. Finally,Net has been
renamed intoPetriNet.

The metamodels in Fig. 1 will be exploited as the
running example throughout the paper. They have been
kept deliberately simple because of space limitations, even
though they are suitable to present all the insights of the
co-adaptation mechanisms as already demonstrated in [27].

The revisions illustrated so far can invalidate existing
instances; therefore, each version needs to be analysed to
comprehend the various kind of updates it has been sub-
ject to and, eventually, to elicit the necessary adaptations
of corresponding models. Metamodel manipulations can be
classified by their corrupting or not-corrupting effects on
existing instances [14]:

- non-breaking changes: changes which do not break
the conformance of models to the corresponding meta-
model;

- breaking and resolvable changes: changes which
break the conformance of models even though they can
be automatically co-adapted;

- breaking and unresolvable changes: changes which
break the conformance of models which can not auto-
matically co-evolved and user intervention is required.

In other words,non-breaking changesconsist of additions
of new elements in a metamodelMM leading toMM′ with-
out compromising models which conform toMM and thus,
in turn, conform toMM′. For instance, in the metamodel
MM2 illustrated in Fig. 1 the abstract metaclassArc has been
added as a generalization of thePTArc andTPArc meta-
classes (without considering the new attributeweight). Af-
ter such a modification, models conforming toMM1 still con-
form to MM2 and co-evolution is not necessary. Unfortu-
nately, this is not always the case since in general changes
may break models even though sometimes automatic res-
olution can be performed, i.e. when facingbreaking and
resolvable changes. For instance, the Petri Net metamodel



MM1 in Fig. 1 is enriched with the newPTArc andTPArc
metaclasses. Such a modification breaks the models that
conform toMM0 since according to the new metamodelMM1,
Place andTransition instances can not be directly re-
lated, butPTArc andTPArc elements are required. How-
ever, models can be automatically migrated by adding for
each couple ofPlace andTransition entities two addi-
tionalPTArc andTPArch instances between them.

Often manual interventions are needed to solve breaking
changes like, for instance, the addition of the new attribute
weight to the classArc of MM2 in Fig. 1 which were not
specified inMM1. The models conforming toMM1 can not be
automatically co-evolved since only a human intervention
can introduce the missing information related to the weight
of the arc being specified, or otherwise default values have
to be considered. We refer to such situations asbreaking
and unresolvable changes.

All the scenarios of model co-adaptations can be man-
aged with respect to the possible metamodel modifications
which can be distinguished intoadditive, subtractive, and
updative. In particular, with additive changes we refer to
metamodel element additions which in turn can be further
distinguished as follows:

– Add metaclass: introducing new metaclasses is a com-
mon practice in metamodel evolution which gives place
to metamodel extensions. Adding new metaclasses raises
co-evolution issues only if the new elements are manda-
tory with respect to the specified cardinality. In this case,
new instances of the added metaclass have to be accord-
ingly introduced in the existing models;

– Add metaproperty: this is similar to the previous case
since a new metaproperty may be or not obligatory with
respect to the specified cardinality. The existing models
maintain the conformance to the considered metamodel
if the addition occurs in abstract metaclass without sub-
classes; in other cases, human intervention is required to
specify the value of the added property in all the involved
model elements;

– Generalize metaproperty: a metaproperty is generalized
when its multiplicity or type are relaxed. For instance, if
the cardinality3..n of a sample metaclassMC is modi-
fied in0..n, no co-evolution actions are required on the
corresponding models since the existing instances ofMC

still conform to the new version of the metaclass;

– Pull metaproperty: a metapropertyp is pulled in a super-
classA and the old one is removed from a subclassB. As a
consequence, the instances of the metaclassA have to be
modified by inheriting the value ofp from the instances
of the metaclassB;

– Extract superclass: a superclass is extracted in a hierar-
chy and a set of properties is pulled on. If the superclass

Change type Change
Non-breaking changes Generalize metaproperty

Add (non-obligatory) metaclass
Add (non-obligatory) metaproperty

Breaking and Extract (abstract) superclass
resolvable changes Eliminate metaclass

Eliminate metaproperty
Push metaproperty
Flatten hierarchy
Rename metaelement
Move metaproperty
Extract/inline metaclass

Breaking and Add obligatory metaclass
unresolvable changes Add obligatory metaproperty

Pull metaproperty
Restrict metaproperty
Extract (non-abstract) superclass

Table 1. Changes classification

is abstract model instances are preserved, otherwise the
effects are referable to metaproperty pulls.

Subtractive changes consist of the deletion of some of the
existing metamodel elements as described in the following:

– Eliminate metaclass: a metaclass is deleted by giving
place to a sub metamodel of the initial one. In general,
such a change induces in the corresponding models the
deletions of all the metaclass instances. Moreover, if
the involved metaclass has subclasses or it is referred by
other metaclasses, the elimitation causes side effects also
to the related entities;

– Eliminate metaproperty: a property is eliminated from a
metaclass, it has the same effect of the previous modifi-
cation;

– Push metaproperty: pushing a property in subclasses
means that it is deleted from an initial superclassA and
then cloned in all the subclassesC of A. If A is abstract
then such a metamodel modification does not require any
model co-adaptation, otherwise all the instances ofA and
its subclasses need to be accordingly modified;

– Flatten hierarchy: to flatten a hierarchy means eliminat-
ing a superclass and introducing all its properties into the
subclasses. This scenario can be referred to metaproperty
pushes;

– Restrict metaproperty: a metaproperty is restricted when
its multiplicity or type are enforced. It is a complex case
where instances need to be co-adapted or restricted. Re-
stricting the upper bound of the multiplicity requires a
selection of certain values to be deleted. Increasing the
lower bound requires new values to be added for the
involved element which usually are manually provided.
Restricting the type of a property requires type conver-
sion for each value.



Finally, a new version of the model can consist of some up-
dates of already existing elements leading to updative mod-
ifications which can grouped as follows:

– Rename metaelement: renaming is a simple case in
which the change needs to be propagated to existing in-
stances and can be performed in an automatic way;

– Move metaproperty: it consists of moving a propertyp
from a metaclassA to a metaclassB. This is a resolvable
change and the existing models can be easily co-evolved
by moving the propertyp from all the instances of the
metaclassA to the instances ofB;

– Extract/inline metaclass: extracting a metaclass means
to create a new class and move the relevant fields from the
old class into the new one. Vice versa, to inline a meta-
class means to move all its features into another class and
delete the former. Both metamodel refactorings induce
automated model co-evolutions.

The classification illustrated so far is summarized in Tab. 1
and makes evident the fundamental role of evolution rep-
resentation. At a first glance it seems that the classifica-
tion does not encompassreferencesthat are associations
amongst metaclasses. However, references can be consid-
ered properties of metaclasses at the same level of attributes.
In fact, as it will be described in the following, a metaclassis
composed of structural features which are attributes and ref-
erences. The term property used so far has the same mean-
ing of structural feature in metamodeling languages.

Metamodel evolutions can be precisely categorized by
understanding the kind of modifications a metamodel un-
dergone. Moreover, starting from the classification it is pos-
sible to adopt adequate countermeasures to co-evolve ex-
isting instances. Nonetheless, it is worth noting that the
classification summarized in Tab. 1 is based on a clear dis-
tinction between the metamodel evolution categories. Un-
fortunately, in real world experiences the evolution of a
metamodel can not be reduced to a sequence of atomic
changes, generally several types of changes (recognizable
as non-breaking, resolvable and unresolvable) are operated
as affecting multiple elements with different impacts on the
co-adaptation. Furthermore, the entities involved in the
evolution can be related one another. Therefore, since co-
adaptation mechanisms are based on the described change
classification, a metamodel adaptation will need to be de-
composed in terms of the induced co-evolution categories.
The possibility to have a set of dependences among the sev-
eral parts of the evolution makes the updates not always dis-
tinguishable as single atomic steps of the metamodel revi-
sion, but requires a further refinement of the classification
as introduced in the next section and discussed in details in
Sect. 4.

Figure 2. KM3 metamodel

3 Formalizing differences between metamod-
els

The problem of model differences is intrinsically complex
and requires specialized algorithms and notations to match
the abstraction level of models [17]. Recently, in [10, 22]
two similar techniques have been introduced to represent
differences as models, hereafter calleddifference mod-
els; interestingly these proposals combine the advantages of
declarative difference representations and enable the recon-
struction of the final model by means of automated transfor-
mations which are inherently defined in the approaches. In
the rest of the section, we recall the difference representa-
tion approach defined in [10] in order to provide the reader
with the technical details which underpin the solution pro-
posed in Sect. 4. In fact, the contribution of this work relies
on such model-based representation: differences between
metamodel versions are stored as difference documents de-
noting the manipulations the metamodel undergone during
its life-cycle, and are exploited to co-evolve existing mod-
els conforming to the old version of the metamodel. In gen-
eral, difference models can be obtained by using today’s
available tools like EMFCompare [25], and SiDiff [26].
However, due to space limitation without compromising the
readability of the paper, in this work we do not discuss how
obtaining difference models even though they can be auto-
matically obtained by adopting proper tools.

Despite the work in [10] has been introduced to deal with
model revisions, it is easily adaptable to metamodel evo-
lutions too. In fact, a metamodel is a model itself, which
conforms to a metamodel referred to as the meta meta-
model [4]. For presentation purposes, the KM3 language
in Fig. 2 is considered throughout the paper. It is based
on analogous core concepts used in OMG/MOF [19] and
EMF/Ecore [6] and is focused on metamodelling only (that
is, Java code generation facilities are not supported, for in-
stance). A number of experimental KM3 metamodels have
been specified both from academia and industry [2], while



Figure 3. Overall structure of the model dif-
ference representation approach

the available tool support is able to generate Ecore and MOF
metamodels corresponding to the given KM3 specifications.

The overall structure of the change representation mech-
anism is depicted in Fig. 3: given twobase metamodelsMM1

andMM2 which conform to an arbitrarybase meta meta-
model (KM3 in our case), their difference conforms to a
difference metamodelMMD derived from KM3 by means of
an automated transformationMM2MMD. The base meta meta-
model, extended as prescribed by such a transformation,
consists of new constructs able to represent the possible
modifications that can occur on metamodels and which can
be grouped as follows:

additions: new elements are added in the initial meta-
model; with respect to the classification given in Sect. 2,
Add metaclassandExtract superclassinvolve this kind
of change;

deletions: some of the existing elements are deleted as a
whole. Eliminate metaclassandFlatten hierarchyfall in
this category of manipulations;

changes: a new version of the metamodel being con-
sidered can consist of updates of already existing ele-
ments. For instance,Rename metaelementandRestrict
metapropertyrequire this type of modification. Also
the addition and deletion of metaproperty (i.e.Add
metapropertyandEliminate metaproperty, respectively)
are modelled through this construct. In fact, when a
metaelement is included in a container the manipulation
is represented as achangeof the container itself.

In order to represent the differences between the Petri
Net metamodel revisions, the extended KM3 meta meta-
model depicted in Fig. 4 is generated by applying
the MM2MMD transformation in Fig. 3 previously men-
tioned. For each metaclassMC of the KM3 metamodel,
the additional metaclassesAddedMC, DeletedMC, and
ChangedMC are generated. For instance, the metaclass

Figure 4. Generated difference KM3 meta-
model

Class in Fig. 2 induces the generation of the metaclasses
AddedClass, DeletedClass, andChangedClass as de-
picted in Fig. 4. In the same way,Reference meta-
class inducesAddedReference, DeletedReference,
andChangedReference.

The generated difference metamodel is able to represent
all the differences amongst metamodels which conform to
KM3. For instance, the model in Fig. 5 conforms to the gen-
erated metamodel in Fig. 4 and represents the differences
between the Petri Net metamodels specified in Fig. 1. The
differences depicted in such a model can be summarized as
follows:

1) the addition of the new classPTArc in theMM1 revision
of the Petri Net metamodel is represented by means of an
AddedClass instance, as illustrated by model difference
∆0,1 in Fig. 5. Moreover, the reference betweenPlace
andTransition nameddst has been updated to link
PTArc with nameout. Analogously, the reverse refer-
ence namedsrc has been manipulated to pointPTArc
and named asin. Two new references have been added
through the correspondingAddedReference instances
to realize the reverse links fromPTArc to Place and
Transition, respectively. Finally, the composition re-
lationship betweenNet andPlace has been updated by



prescribing the existence of at least onePlace through
the lower property which has been updated from0 to
1. The same enforcement has been to the composition
betweenNet andTransition;

2) the addition of the new abstract classArc in MM2 together
with its attributeweight is represented through an in-
stance of theAddedClass and theAddedAttribute
metaclasses in the∆1,2 delta of Fig. 5. In the mean-
while,PTArc andTPArc classes are made specializations
of Arc. Finally,Net entity is renamed asPetriNet.

Figure 5. Subsequent Petri Net metamodel
adaptations

The representation mechanism used so far allows to iden-
tify changes which occurred in a metamodel revision and
satisfies a number of properties, as illustrated in [10]. One
of them is thecompositionality, i.e. the possibility to com-
bine difference models in interesting constructions like the
sequential and the parallel compositions, which in turn re-
sult in valid difference models themselves. For the sake of
simplicity, let us consider only two modifications over the
initial model: the sequential composition of such manipu-
lations corresponds to merging the modifications conveyed
by the first document and then, in turn, by the second one
in a resulting difference model containing a minimal differ-
ence set, i.e., only those modifications which have not been
overridden by subsequent manipulations. Whereas, parallel
compositions are exploited to combine modifications oper-
ated from the same ancestor in a concurrent way. In case
both manipulations are not affecting the same elements they
are saidparallel independentand their composition is ob-
tained by merging the difference models by interleaving the
single changes and assimilating it to the sequential compo-
sition. Otherwise, they are referred to asparallel dependent
and conflict issues can arise which need to be detected and
resolved [8].

Finally, difference documentation can be exploited to re-
apply changes to arbitrary input models (see [10] for fur-
ther details) and for managing model co-evolution induced
by metamodel manipulations. In the latter case, once differ-
ences between metamodel versions have been detected and
represented, they have to be partitioned in resolvable and
non resolvable scenarios in order to adopt the correspond-
ing resolution strategy. However, this distinction is not al-
ways feasible because of parallel dependent changes, i.e.
situations where multiple changes are mixed and interde-
pendent one another, like when a resolvable change is in
some way related with a non-resolvable one, for instance.
In those cases, deltas have to be decomposed in order to
isolate the non-resolvable portion from the resolvable one,
as illustrated in the next section.

4 Transformational adaptation of models

This section proposes a transformational approach able
to consistently adapt existing models with respect to the
modifications occurred in the corresponding metamod-
els. The proposal is based on model transformation and the
difference representation techniques presented in the previ-
ous section. In particular, given two versionsMM1 andMM2

of the same metamodel (see Fig. 6.a), their differences
are recorded in a difference model∆, whose metamodel
KM3Diff is automatically derived fromKM3 as described
in Sect. 3. In realistic cases, the modifications consist of an
arbitrary combination of the atomic changes summarized
in Tab. 1. Hence, a difference model formalizes all kind of



modifications, i.e. non-breaking, breaking resolvable and
unresolvable. This poses additional difficulties since cur-
rent approaches (e.g. [27, 14]) do not provide any support
to co-adaptation when the modifications are given without
explicitly distinguishing among breaking resolvable and un-
resolvable changes. Our approach consists of the following
steps

i) automatic decomposition of∆ in two disjoint (sub)
models,∆R and∆¬R, which denote breaking resolv-
able and unresolvable changes, respectively

ii) if ∆R and∆¬R areparallel independent(see previous
section) then we separately generate the corresponding
co-evolutions, otherwise

iii) if ∆R and∆¬R areparallel dependent, they are fur-
ther refined to identify and isolate the interdependen-
cies causing the interferences.

The distinction betweenii) andiii) is due to fact that when
two modifications are not independent their effects depend
on the order the changes occur leading to non confluent sit-
uations. The confluence can still be obtained by removing
those modifications which caused the conflicts as described
in Sect. 4.2.

Figure 6. Overall approach

The general approach is outlined in Fig. 6 where dotted
and solid arrows represent conformance and transformation

relations, respectively, and square boxes are any kind of
models, i.e. models, difference models, metamodels, and
even transformations. In particular, the decomposition of∆
is given by two model transformations,TR andT¬R (right-
hand side of Fig. 6.a). Co-evolution actions are directly ob-
tained as model transformations from metamodel changes
by means of higher-order transformations, i.e. transforma-
tions which produce other transformations [4]. More specif-
ically, the higher-order transformationsHR andH¬R (see
Fig. 6.b and 6.c) take∆R and∆¬R and produce the (co-
evolving) model transformationsCTR andCT¬R, respec-
tively. Since∆R and∆¬R are parallel independentCTR

andCT¬R can be applied in any order because they operate
to disjoint sets of model elements, or in other words

(CT¬R · CTR)(M1) = (CTR · CT¬R)(M1) = M2

with M1 andM2 models conforming to the metamodelMM1

andMM2, respectively (see Fig. 6.d).
The next sections illustrate the approach and its im-

plementation. In particular, we describe the decomposi-
tion of ∆ and the generation of the co-evolving model-
transformations for the case of parallel independent break-
ing resolvable and unresolvable changes. Finally, in
Sect. 4.2 we outline how to remove interdependencies from
parallel dependent changes in order to generalize the solu-
tion provided in Sect. 4.1. The overall approach has been
implemented and the interested reader can download it
at [9].

4.1 Parallel independent changes

The generation of the co-evolving model transformations is
described in the rest of the section by means of the evo-
lutions thePetriNet metamodel has been subject to in
Fig. 1. The differences between the subsequent metamodel
versions are given in Fig. 5 and have, in turn, to be decom-
posed to distinguish breaking resolvable and unresolvable
modifications.

In particular, the difference∆(0,1) from MM0 to MM1 con-
sists of two atomic modifications, i.e. anExtract metaclass
and aRestrict metapropertychange (according to the clas-
sification in Tab. 1), which are referring to different sets
of model elements. The approach is able to detect paral-
lel independence by verifying the eventual decomposed dif-
ferences have an empty intersection. Sincea) the previ-
ous atomic changes are breaking resolvable and unresolv-
able, andb) they do not share any model element, then
∆(0,1) is decomposed byTR andT¬R into the parallel in-
dependent∆R(0,1) and∆¬R(0,1), respectively. In fact, the
former contains the extract metaclass action which affect
the elementsPlace andTransition, whereas the latter
holds the restrict metaproperty changes consisting of the
reference modifications in the metaclassNet. Analogously,



the same decomposition can be operated on∆(1,2) (denot-
ing the evolution fromMM1 to MM2) to obtain∆R(1,2) and
∆¬R(1,2) since the denoted modifications do not conflict
each other. In fact, therename metaelementchange (repre-
sented bycc1 andc1 in Fig. 5.b) is applied toNet, whereas
theAdd obligatory metapropertyoperation involves the new
metaclassArc which is supertype of thePTArc andTPArc
metaclasses.

As previously said, once the∆ is decomposed the
higher-order transformationsHR andH¬R detect the oc-
curred metamodel changes and accordingly generate the co-
evolution to adapt the corresponding models. In the cur-
rent implementation, model transformations are given in
ATL [15], a QVT compliant language part of the AMMA
platform [5] which contains a mixture of declarative and im-
perative constructs. In the Listing 1 a fragment of theHR

transformation is reported: it consists of a module specifi-
cation containing a header section (lines 1-2), transforma-
tion rules (lines 10-89) and a number of helpers (e.g., see
lines 4-19 in Listing 4) which are used to navigate models
and to define complex calculations on them. In particular,
the header specifies the source models, the corresponding
metamodels, and the target ones. Since theHR transforma-
tion is higher-order, the target model conforms to the ATL
metamodel which essentially specifies the abstract syntax
of the transformation language. Moreover,HR takes as in-
put the model which represents the metamodel differences
conforming toKM3Diff.

The helpers and the rules are the constructs used to spec-
ify the transformation behaviour. The source pattern of
the rules (e.g. lines 17-24) consists of a source type and a
OCL [21] guard stating the elements to be matched. Each
rule specifies a target pattern (e.g. lines 25-30) which is
composed of a set of elements, each of them (as the one
at lines 26-29) specifies a target type from the target meta-
model (for instance, the typeMatchedRule from the ATL
metamodel) and a set of bindings. A binding refers to a
feature of the type, i.e. an attribute, a reference or an asso-
ciation end, and specifies an expression whose value initial-
izes the feature.HR consists of a set of rules each of them
devoted to the management of one of the resolvable meta-
model changes reported in Tab. 1. For instance, the Listing 1
contains the rules for generating the co-evolution actions
corresponding to theRename metaelementand theExtract
metaclasschanges.

1module H_R;
2create OUT : ATL from Delta : KM3Diff;
3...
4rule atlModule {
5 from
6 s: KM3Diff!Metamodel
7 to
8 t : ATL!Module (
9 name <- ’CTR’,

10 outModels <- Sequence {tm},
11 inModels <- Sequence {sm},
12 ...

13 ),
14 ...
15}
16rule CreateRenaming {
17 from
18 input : KM3Diff!Class,
19 delta : KM3Diff!ChangedClass
20 ...
21 (not input.isAbstract
22 and input.name <> delta.updatedElement.name
23 ...
24 )
25 to
26 matchedRule : ATL!MatchedRule (
27 name<-input.name + ’2’ + delta.updatedElement.

name,
28 ...
29 ),
30 ...
31}
32rule CreateExtractMetaClass {
33 from
34 cr1: KM3Diff!ChangedReference, cr2: KM3Diff!

ChangedReference,
35 r1 : KM3Diff!Reference, r2 : KM3Diff!Reference,
36 ac1: KM3Diff!AddedClass, ar1: KM3Diff!

AddedReference,
37 ar2: KM3Diff!AddedReference, c1 : KM3Diff!Class,
38 c2 : KM3Diff!Class
39 (
40 -- cr1 structural features
41 cr1.updatedElement = r2 and cr1.owner = c2
42 and cr1.type = c1 and i_cr1.opposite = i_cr2
43
44 -- cr2 structural features
45 and cr2.updatedElement = r1 and cr2.owner = c1
46 and cr2.type = c2 and i_cr2.opposite = i_cr2
47
48 -- ar1 structural features
49 and ar1.owner = ac1 and ar1.type = c1
50 and ar1.opposite = r1
51
52 -- ar2 structural features
53 and ar2.owner = ac1 and ar2.type = c2
54 and ar2.opposite = r2
55
56 -- r2 structural features
57 and r2.type = ac1 and r2.opposite = ar2
58
59 -- r1 structural features
60 and r1.type = ac1 and r1.opposite = ar1
61 )
62 to
63 -- MatchedRule generation
64 matchedRule_i_c2 : ATL!MatchedRule (
65 name<-i_c2.name + ’2’ + i_c2.name,
66 isAbstract <- false,
67 isRefining <- false,
68 inPattern <- ip_i_c2,
69 outPattern <- op_i_c2,
70 ),
71 ...
72}
73...

Listing 1. Fragment of the HOTR

transformation

The application ofHR to the metamodelMM0 in Fig. 1
and the difference model∆R(0,1) in Fig. 5 generates the
model transformation reported in the Listing 2. In fact,
the source pattern of theCreateExtractMetaClass rule
(lines 34-61 in the Listing 1) matches with the twoEx-
tract metaclasschanges represented in∆R(0,1). They



consist of the additions of thePTArc and TPArc meta-
classes instead of the direct references between the ex-
isting elementsPlace and Transition. Consequently,
according to the structural features of the involved ele-
ments, theCreateExtractMetaClass rule generates the
transformationCTR(0,1) which is able to co-evolve all the
models which conform toMM0 by adapting them with re-
spect to the new metamodelMM1 (see line 1-2 of the List-
ing 2). In particular, each element of typePlace has to
be modified by changing all the references to elements of
typeTransition with references to new elements of type
PTArc (see lines 4-24). The same modification has to be
performed for all the elements of typeTransition by
creating new elements of typeTPArc which have to be
added instead of direct references betweenTransition

andPlace instances (see lines 25-44).

1module CTR;
2create OUT : MM1 from IN : MM0;
3...
4rule Place2Place {
5 from
6 s : MM1!Place
7 ...
8 to
9 t : MM2!Place (

10 name <- s.name,
11 net <- s.net,
12 out <- s.dst->collect(e |
13 thisModule.createPTArc(e, t)
14 )
15 )
16}
17rule createPTArc(s : OclAny, n : OclAny) {
18 to
19 t : MM2!PTArc (
20 src <- s,
21 dst <- n
22 )
23 ...
24}
25rule Transition2Transition {
26 from
27 s : MM1!Transition
28 ...
29 to
30 t : MM2!Transition (
31 net <- s.net,
32 in <- s.dst->collect(e |
33 thisModule.createTPArc(e, t)
34 )
35 )
36}
37rule createTPArc(s : OclAny, n : OclAny) {
38 to
39 t : MM2!PTArc (
40 dst <- s,
41 src <- n
42 )
43 ...
44}
45...

Listing 2. Fragment of the generated CTR(0,1)

transformation

The management of the breaking and unresolvable mod-
ifications is based on the same techniques presented so far

for the breaking resolvable case. However, as mentioned
in Sect. 2, the involved transformations can not automati-
cally co-adapt the models but are limited to default actions
which have to be refined by the designer. In particular,H¬R

contains a rule for each breaking and unresolvable modifi-
cation reported in Tab. 1. For instance, the transformation
fragment in the Listing 3 contains the rule for generating
the co-evolution actions related to theRestrict metaproperty
modification. Since in these cases the adaptation choices are
not unique,H¬R generates default transformations which
co-evolve the source models in order to maintain the confor-
mance with the modified metamodel. Thus, it is designer’s
responsibility to refine the rules enriching them with proper
semantic annotations.

1module HOT_NR;
2create OUT : ATL from Delta : KM3Diff;
3...
4rule atlModule {
5 from
6 s: KM3Diff!Metamodel
7 to
8 t : ATL!Module (
9 ...

10 ),
11 ...
12}
13...
14rule CreateRestrictMetaproperty{
15 from
16 cr3: ChangedReference!KM3Diff, r3: Reference!

KM3Diff,
17 c1: Class!KM3Diff, c3 : Class!KM3Diff
18 (
19 cr3.updatedElement=r3 and r3.type=c1
20 and cr3.owner=c3 and cr3.lower<r3.lower
21 )
22 to
23 -- generation of the helper named create+c1.name+

Instances()
24 helper : ATL!Helper (
25 ...
26 )
27 ...
28 matched_rule : ATL!CalledRule (
29 name<-’create’+c1.name,
30 ...
31 )
32}
33...

Listing 3. Fragment of the HOT¬R

transformation

An interesting case is represented by the application ofH¬R

to ∆¬R(0,1) which generates the transformation rules re-
ported in the Listing 4. Since the modifications concern
the reference cardinality of theNet metaclass with the el-
ementsPlace and Transition, models containingNet
instances which have not at least one reference toPlace

andTransition elements are invalid.
The default co-evolution actions which can be performed

are implemented in the generated transformationCT¬R(0,1)

given in the Listing 4. They consist in checking the number



of Place andTransition instances referenced byNet el-
ements (see lines 21-23); if the instance number is less than
one, then other default instances are created by means of
dedicated helpers and transformation rules (see lines 4-19
and lines 32-51). Such rules do not specify any value for the
corresponding structural features, the designer is requested
to do this. Nevertheless, the conformance of the models
with respect to the newPetriNet metamodel is automat-
ically assured.

1module CTNR;
2create OUT : MM1 from IN : MM0;
3
4helper context MM2!Net def : createPlaceInstances() :

Sequence (MM2!Place) =
5 if (thisModule.placeInstances < 1) then
6 thisModule.createPlace(self)->asSequence()->union(self

.createPlaceInstances())
7 else
8 Sequence {}
9 endif;

10
11helper context MM2!Net def : createTransitionInstances()

: Sequence (MM2!Transition) =
12 if (thisModule.transitionInstances < 1) then
13 thisModule.createTransition(self)->asSequence()->union

(self.createTransitionInstances())
14 else
15 Sequence {}
16 endif;
17
18helper def : placeInstances : Integer = MM1!Place.

allInstancesFrom(’IN’)->size();
19helper def : transitionInstances : Integer = MM1!Place.

allInstancesFrom(’IN’)->size();
20
21rule Net2PetriNet {
22 from
23 s: MM1!Net
24 to
25 t: MM2!Net(
26 )
27 do {
28 t.place<-t.createPlaceInstances();
29 t.transition<-t.createTransitionInstances();
30 }
31}
32rule createPlace(s: OclAny) {
33 to
34 t: MM2!Place (
35 net<-s,
36 ...
37 )
38 do {
39 thisModule.placeInstances<-thisModule.placeInstances

+1;
40 t;
41 }
42}
43rule createTransition(s: OclAny) {
44 to
45 t: MM2!Transition (
46 net<-s
47 )
48 do {
49 thisModule.transitionInstances<-thisModule.

transitionInstances+1;
50 t;
51 }
52}

Listing 4. Fragment of the generated CT¬R(0,1)

transformation

4.2 Parallel dependent changes

As mentioned above, the automatic co-adaptation of models
relies on the parallel independence of breaking resolvable
and unresolvable modifications, or more formally

∆R|∆¬R = ∆R;∆¬R + ∆¬R;∆R (1)

where+ denotes the non-deterministic choice. In essence,
their application is not affected by the adopted order since
they do not present any interdependencies. In case the mod-
ifications in Tab. 1 refer to the same elements then the order
in which such modifications take place matters and does not
allow the decomposition of a difference model as, for in-
stance, when evolvingMM0 directly toMM2 (although the sub
stepsMM0 − MM1 andMM1 − MM2 are directly manageable as
described in the previous section).

A possible approach, which is sketched in the following,
consists in isolating the interdependencies whenever (1)
does not hold. The intention is to define an iterative process
consisting indiminishing the modifications between two
metamodels until the corresponding breaking resolvable
and unresolvable differences are parallel independent. In
particular, let∆ be a difference between two metamodels,
then we denote byP(∆) thedifference powermodel, that is
the (partially ordered) set of all possible valid sub models
of ∆ (i.e. fragments of the difference model which are still
conforming to the difference metamodel)

P(∆) = {δ0 = φ, · · · , δi, δi+1, · · · , δn = ∆}

Then, the solution is the smallestk in {0, · · · , n} such that

∆(k); δk = ∆

where∆(k) is the difference model between∆ andδk, and

∆(k) = ∆
(k)
R |∆

(k)
¬R

with ∆
(k)
R and∆

(k)
¬R parallel independent. Hence, the prob-

lem of parallel dependence is reduced to the following

∆ = (∆
(k)
R |∆

(k)
¬R); δk

by applying the higher-order transformation introduced in
the previous section. For instance, if we consider (MM2 −
MM0) the solution consists in iteratively finding a difference
model which mapsMM0 to the intermediate metamodel cor-
responding toMM2 without the attributeweightof theArc
metaclass. Therefore, the remainingδk in this example is a
non resolvable change, while in general it may demand for
further iterations of the decomposition process.



5 Related works

Over the last few years, the problem of metamodel evolu-
tion and model co-evolution has been investigated by sev-
eral works [27, 14]. In general, model co-evolution requires
the changes to be categorized asa) without effects on ex-
isting model instancesb) with simple side effects on mod-
els c) with side effects demanding for additional manage-
ment [24]. To this end, the change classification presented in
Sect. 2 is inspired by the existing experiences on metamodel
evolution. In particular, the work in [27] distinguishes adap-
tations that ensure instance preservation from manipula-
tions which induce co-evolutions. Metamodel evolutions
are specified by QVT relations [20], while co-adaptations
are defined in terms of QVT transformations when resolv-
able changes occur. The main limitations are that co-
adapting transformations are not automatically obtained
from metamodel modifications and unresolvable changes
are not given explicit support. Moreover, using relations
instead of difference models does not allow distinguish-
ing metaelement updates from deletion/addition patterns
and causesfalse-positivesin detecting, for instance, ex-
tract metaclass cases. In fact, the only change types which
can be precisely caught are the additive and subtractive
ones. This problem is (partly) addressed in [14], which
advocates for some metamodel difference management by
means ofchange traces, although no specific proposal is
adopted or given. This work has the merits of classifying
changes as breaking/non-breaking and sketching an algo-
rithmic detection of such modifications which is deferred
to future work. Similarly to [27], it does not provide any
automatic derivation of the co-evolving transformations.

A common aspect to [27, 14] is the atomicity of the
changes, i.e. the classified change types are assumed to oc-
cur individually, which is far from being a realistic scenario
since modifications tend to occur with arbitrary multiplicity
and complexity. Additionally, interdependencies may also
be present posing severe difficulties in distinguishing the
various change types described in Sect. 2.

The solution presented in this paper has a number of
similarities with the techniques illustrated in [11], where
the authors discuss the possibility to induce model trans-
formations through model weaving. In particular, weaving
links are given to establish correspondences between meta-
model elements and consequently to derive mappings be-
tween corresponding models. If the weaving is seen as a
difference representation, the induced transformation can
be considered as the automated co-adaptation of existing
instances. Nonetheless, the approach in [11] lacks of ex-
pressiveness, since only additions and deletions can be rep-
resented through the semantics provided by the proposed
weaving relationships. As a consequence, the co-adaptation
refers only to additive and subtractive cases (as for [27])

and requires the developers to provide explicit support to
updative cases.

The issues discussed in this work can be also found in the
context of database evolution and metadata handling, which
have been demonstrated to share several problems related
to model management [3]. In fact, when schemas evolve
to overcome new requirements all the interconnected arte-
facts need to be co-adapted, like queries, scripts and even
existing data. Also in this field, a common solution relies
on the separation between schema manipulations causing
no or limited updates to existing instances versus modifi-
cations requiring deep structural changes and data conver-
sions. Analogously to this paper, simple situations can be
automatically supported, while complex ones demands for
user intervention, even though the environment can be ade-
quately started-up [13].

6 Conclusions and future work

Increasingly, software development is in need of version-
ing techniques for supporting the evolution of model-based
artefacts [12]. Difference models can record the modifica-
tions a metamodel undergoes during its life-cycle, as shown
in Sect. 3. This paper presented a transformational ap-
proach to co-evolution of models which are requested to be-
come conforming to a newer version of their original meta-
model. The main points include1) starting from metamodel
differences the automated generation of co-evolving actions
can be obtained by means of higher-order transformations;
the adaptation considers both resolvable and non-resolvable
changes by providing the designer, in case of knowledge
non-determinism, with refinement mechanisms;2) the co-
adaptation technique deals with the occurrence of multiple
change types in the metamodel in order to cope with realis-
tic scenarios; in particular, differences must be decomposed
in resolvable and non-resolvable changes.

The previous decomposition can lead to parallel depen-
dent metamodel differences which require an explicit isola-
tion of those modifications which cause the resolvable and
non-resolvable changes to be interdependent. By means of
the difference powermodel construction given in Sect. 4.2 it
is possible to arrange modifications in a lattice which guides
the resolvable and non-resolvable differences to be itera-
tively refined until they become parallel independent.

Apart from the iterative decomposition procedure,
the complete approach has been implemented on the
AMMA [5] platform and is available for download
at [9]. Future work includes the implementation of the
powermodel construction the difference refinement depends
on. Moreover, a more systematic validation of the approach
must necessarily encompass larger population of models
and metamodels. Finally, we plan to investigate how the
works related to change impact analysis [1] can be adapted



and used in MDE to support the co-evolution of metamodels
and corresponding models.

References

[1] R. S. Arnold.Software Change Impact Analysis. IEEE Com-
puter Society Press, Los Alamitos, CA, USA, 1996.

[2] ATLAS Group. The Atlantic Zoo.
http://www.eclipse.org/gmt/am3/ zoos/atlanticZoo/.

[3] P. Bernstein. Applying Model Management to Classical
Meta Data Problems. InProcs of the 1st Conf. on Innovative
Data Systems Research (CIDR), Asilomar, CA, USA, 2003.

[4] J. Bézivin. On the Unification Power of Models.Jour.
on Software and Systems Modeling (SoSyM), 4(2):171–188,
2005.

[5] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Model-
ing in the Large and Modeling in the Small. InModel Driven
Architecture, European MDA Workshops: Foundations and
Applications, volume 3599 ofLNCS, pages 33–46. Springer,
2004.

[6] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and
T. Grose. Eclipse Modeling Framework. Addison Wesley,
2003.

[7] N. Chapin, J. Hale, K. Kham, J. Ramil, and W.-G. Tan.
Types of software evolution and software maintenance.
Journal of Software Maintenance, 13(1):3–30, 2001.

[8] A. Cicchetti. Difference Representation and Conflict Man-
agement in Model-Driven Engineering. PhD thesis, Univer-
sity of L’Aquila, Computer Science Dept., 2008.

[9] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pieran-
tonio. Implementation of an automated co-evolution
of models through atl higher-order transformations.
http://www.di.univaq.it/diruscio/CoevImpl.php, 2008.

[10] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Meta-
model Independent Approach to Difference Representation.
Journal of Object Technology, 6(9):165–185, October 2007.

[11] M. D. Del Fabro and P. Valduriez. Semi-automatic Model
Integration using Matching Transformations and Weaving
Models. InThe 22th Annual ACM SAC, MT 2007 - Model
Transformation Track, Seoul (Korea), pages 963–970, New
York, NY, USA, 2007. ACM.

[12] J.-M. Favre. Meta-Model and Model Co-evolution within
the 3D Software Space. InProcs. of the Int. Workshop on
Evolution of Large-scale Industrial Software Applications
(ELISA) at ICSM 2003, Amsterdam, September 2003.

[13] R. Galante, N. Edelweiss, and C. dos Santos. Change
Management for a Temporal Versioned Object-Oriented
Database. InProcs. of ER 2002, 21st Int. Conf. on Concep-
tual Modeling, Tampere, Finland, volume 2503 ofLecture
Notes in Computer Science, pages 1–12. Springer, 2002.

[14] B. Gruschko, D. Kolovos, and R. Paige. Towards Syn-
chronizing Models with Evolving Metamodels. InProceed-
ings of the Workshop on Model-Driven Software Evolution
(MODSE 2007), 2007.

[15] F. Jouault. Loosely Coupled Traceability for ATL.
In European Conference on Model Driven Ar-
chitecture (ECMDA) Workshop on Traceability,
pages 29–37, 2005. http://www.lina.sciences.univ-
nantes.fr/Publications/2005/Jou05.

[16] M. M. Lehman and L. A. Belady, editors.Program evolu-
tion: processes of software change. Academic Press Profes-
sional, Inc., San Diego, CA, USA, 1985.

[17] Y. Lin, J. Zhang, and J. Gray. Model Comparison: A Key
Challenge for Transformation Testing and Version Control
in Model Driven Software Development. InOOPSLA Work-
shop on Best Practices for Model-Driven Software Develop-
ment, 2004.

[18] T. Mens, J. Buckley, A. Rashid, and M. Zenger. Towards
a taxonomy of software evolution. Technical Report vub-
prog-tr-02-05, Vrije Universiteit Brussel, 2003. Position pa-
per at Workshop on Unanticipated Software Evolution, War-
shau (Poland).

[19] Object Management Group (OMG).Meta Object Facility
(MOF) 2.0 Core Specification, OMG Document ptc/03-10-
04. http://www.omg.org/docs/ptc/03-10-04.pdf, 2003.

[20] Object Management Group (OMG). MOF QVT Final
Adopted Specification, 2005. OMG Adopted Specification
ptc/05-11-01.

[21] Object Management Group (OMG). OCL 2.0 Specification,
2006. OMG Document formal/2006-05-01.

[22] J. Rivera and A. Vallecillo. Representing and Operating
with Model Differences. InTOOLS EUROPE 2008, 46th
Intl. Conf. Objects, Models, Components, Patterns, Zurich,
Switzerland, 2008. To appear.

[23] D. C. Schmidt. Guest Editor’s Introduction: Model-Driven
Engineering.Computer, 39(2):25–31, 2006.

[24] J. Sprinkle and G. Karsai. A domain-specific visual lan-
guage for domain model evolution.Journal of Visual Lan-
guages & Computing, 15(3-4):291–307, 2004.

[25] A. Toulmé. The EMF Compare Utility.
http://www.eclipse.org/modeling/emft/.

[26] C. Treude, S. Berlik, S. Wenzel, and U. Kelter. Difference
computation of large models. InProceedings of ESEC/FSE,
pages 295–304, New York, NY, USA, 2007. ACM.

[27] G. Wachsmuth. Metamodel Adaptation and Model Co-
adaptation. In E. Ernst, editor,Proceedings of the 21st
European Conference on Object-Oriented Programming
(ECOOP’07), volume 4069 ofLNCS. Springer-Verlag, July
2007.


