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Abstract fore, evolution management is a complex task which re-
quires specialized discipline and tool support.

Software development is witnessing the increasing need Similarly to other software artefacts, metamodels can
of version management techniques for supporting the evo-evolve over time too [12]. Accordingly, models need to
lution of model-based artefacts. In this respect, metamod-be co-adapted in order to remain compliant to the meta-
els can be considered one of the basic concepts of Modelsmodel and not become eventually invalid. When manually
Driven Engineering and are expected to evolve during their operated the adaptation is error-prone and can give place to
life-cycle. As a consequence, models conforming to changednconsistencies between the metamodel and the related arte
metamodels have to be updated for preserving their well- facts. Such issue becomes very relevant when dealing with
formedness. enterprise applications, since in general system models en

This paper deals with the co-adaptation problems by compass a large population of instances which need to be
proposing higher-order model transformations which take appropriately adapted, hence inconsistencies can pgssibl
a difference model recording the metamodel evolution and !ead to irremediable information erosion [27].

produce a model transformation able to co-evolve the in-  This work proposes a transformational approach to
volved models. model co-evolution, i.e. how to automatically generate

well-defined adaptation steps directly from the modifica-
tions the metamodel underwent. In particular, the approach
. is based on a model difference representation [10] which

1 Introduction is used to specify in alifferencemodel the metamodel

changes. Thus, the co-adaptation is given as a higher-order
Model-Driven Engineering (MDE) [23] aims at rendering Model transformation which takes the difference model
business logic and intellectual property resilient to tesh ~ recording the metamodel evolution and generates a model
logical changes by shifting the focus of software develop- fransformation able to produce the co-evolution of mod-
ment from coding to modeling. In general, domains are €lS- Especially, the proposal shows how tineaking resolv-
analysed and engineered by means ofigtamodeli.e. a able andunresolvablechanges (see Sect. 2) require a spe-
coherent set of interrelated concepts. A model is saitte cific management whenever interdependencies among them
form to a metamodel, or in other words it is expressed by OcCur.
the concepts encoded in the metamodel, constraints are ex- 1he structure of the paper is as follows. In Sect. 2 the dif-
pressed at the metalevel, and model transformation occurdeérent kinds of modifications a metamodel can be subject to
when a source model is modified to produce a target model @€ illustrated and categorized in accordance with thd-avai

Evolution is an inevitable aspect which affects the whole 2PI€ literature. Moreover, it presents the typologies of co
life-cycle of software systems [16]. In general, artefacts adaptation steps a metamodel evolution induces. Then, the

be subject to many kinds of changes, which range from re-Proposed approach is described: Sect. 3 introdupes amodel-
quirements through architecture and design, to source codeP@sed representation of the metamodel evolution, whereas
documentation and test suites. Moreover, taxonomies ofSect. 4 describes the automated co-adaptation. Finally, in
software evolution distinguish maintenance activitiesren ~ S€Ct: 5 and Sect. 6 related works and some conclusions are
basis of their purpose (i.e. updative, adaptive, perfocaan  discussed, respectively.

corrective or reductive) or technical aspects (i.e., thenyh 1The terms (co-)adaptation and (co-)evolution will be usedsys
where, what and how of software changes) [7, 18]. There- onyms throughout the paper.




2 Metamode evolution and modd co- (simplified) Petri Net metamodel, which takes inspiration
evolution from the work in [27]. The initial Petri Net\w)) con-
sists of Pl aces andTr ansi ti ons; moreover, places can

Metamodels can be considered one of the constituting con-nave source and/or destination transitions, whereasirans
cepts of MDE, since they are the formal definition of well- tions 'T‘“_St “nkl source and_ dTSt'Tat'ﬁn placaso(anddst
formed models, or in other words they constitute the lan- aSSociation roles, respectively). In the new metambtie|

guages by which a given reality can be described in some€achet has atleaston@ ace and on€Tr ansi ti on. Be-

abstract sense [4]. Metamodels are expected to evolve durSides, arcs between places and transitions are made explici

ing their life-cycle, thus causing possible problems teexi by extractmgPTAr ¢ andTPArc metaf:lasses. T_h|s re_f|ne-
ing models which conform to the old version of the meta- ment permits (o add furt.h.er properties to relat|onsh|p§ be-
model and do not conform to the new version anymore. Thetween_places and transitions. For ex.ample, th_e Petr| Net
problem is due to the incompatibility between the meta- formalism can be extended by annotating arcs with weights.
model revisions and a possible solution is the adoption ofAS PTAr ¢ andTPAr ¢ both represent arcs, they can be gen-

mechanisms of model co-evolution, i.e. models need to beerallzed by a superclass, and a new integer metaproperty

migrated in new instances according to the changes of the“2" be added in it. Therefore, an abstract chigsencom-

corresponding metamodel passing the integer metapropertyi ght has been added
Unfortunately, model co-evolution is not always simple in MM, revision of the metamodel. Finallet has been

and presents intrinsic difficulties which are related to the "€named iniet ri Net .

kind of evolution the metamodel has been subject to. Go- The metamc;detls n Elg.t %hw'” be ex_lp}thone?] as éhe
ing into more details, metamodels may evolve in different running example throughout the paper. €y have been

ways: some changes may be additive and independent fronﬁ? pt dﬁ Itlgerately sm_:plt;el bfcause OftSpl?(t:ﬁ “r.mtat'r?tnmﬂﬁ
the other elements, thus requiring no or little instance re- oug €y are suitable to present afl the insignts of the
vision. However, in other cases metamodel manipulationsCO"”Id""ptmIon mechanisms as already demonstrated in [27].

introduce incompatibilities and inconsistencies which ca . The revisions illustrated so f_ar can invalidate existing
not be easily (and automatically) resolved. instances; therefore, each version needs to be analysed to

comprehend the various kind of updates it has been sub-
. o ject to and, eventually, to elicit the necessary adaptation
Place " Toef [cansrion of corresponding models. Metamodel manipulations can be
— S classified by their corrupting or not-corrupting effects on
existing instances [14]:

Het
1 1 - non-breaking changeschanges which do not break
the conformance of models to the corresponding meta-
Place tsre  +out FEEG ul Ll Transition mOde.I; .
T or 1.0 1 - breaking and resolvable changeschanges which
ot  +in [TPArC |eout  serc break the conformance of models even though they can

] B R E T be automatically co-adapted;

= - breaking and unresolvable changeshanges which
1 1 break the conformance of models which can not auto-
matically co-evolved and user intervention is required.

MM,

MM,

e In other wordsnon-breaking changesonsist of additions
e of new elements in a metamodel leading toMV with-
& out compromising models which conform k& and thus,
ssic_sout | prare |sin sl e in turn, conform toMM. For instance, in the metamodel

S o 1 MM illustrated in Fig. 1 the abstract metaclass has been
ﬁ—;@ﬁn% added as a generalization of tR®Ar c and TPAr ¢ meta-
12 ’ 1.2 classes (without considering the new attribmté ght ). Af-
Petritiet ter such a modification, models conformingvig, still con-
MM, / ! form to M\, and co-evolution is not necessary. Unfortu-
nately, this is not always the case since in general changes
Figure 1. Petri Net metamodel evolution may break models even though sometimes automatic res-
olution can be performed, i.e. when facibgeaking and
In Fig. 1 it is depicted an example of the evolution of a resolvable changed-or instance, the Petri Net metamodel

Place




MV in Fig. 1 is enriched with the ne®TAr ¢ and TPAr ¢

Changetype Change

metaclasses. Such a modification breaks the models thg
conform toMV}, since according to the new metamotiwsi ,
Pl ace andTr ansi ti on instances can not be directly re-

t Non-breaking changes

Generalize metaproperty
Add (non-obligatory) metaclass
Add (non-obligatory) metaproperty

lated, butPTAr c and TPAr c elements are required. How-
ever, models can be automatically migrated by adding for
each couple oPl ace andTr ansi ti on entities two addi-
tional PTAr ¢ andTPAr ch instances between them.

Often manual interventions are needed to solve breaking
changes like, for instance, the addition of the new attebut
wei ght to the classAr ¢ of M, in Fig. 1 which were not

Breaking and
resolvable changes

Extract (abstract) superclass
Eliminate metaclass
Eliminate metaproperty
Push metaproperty

Flatten hierarchy

Rename metaelement

Move metaproperty
Extract/inline metaclass

specified invv,. The models conforming t, can not be

automatically co-evolved since only a human intervention
can introduce the missing information related to the weight
of the arc being specified, or otherwise default values have

Breaking and
unresolvable changes

Add obligatory metaclass

Add obligatory metaproperty

Pull metaproperty

Restrict metaproperty

Extract (non-abstract) superclass

to be considered. We refer to such situationdeeaking
and unresolvable changes

All the scenarios of model co-adaptations can be man-
aged with respect to the possible metamodel modifications
which can be distinguished in@dditive subtractive and
updative In particular, with additive changes we refer to

Table 1. Changes classification

is abstract model instances are preserved, otherwise the
effects are referable to metaproperty pulls.

metamodel element additions which in turn can be further Subtractive changes consist of the deletion of some of the

distinguished as follows:

— Add metaclassintroducing new metaclasses is a com-
mon practice in metamodel evolution which gives place

to metamodel extensions. Adding new metaclasses raises

co-evolution issues only if the new elements are manda-
tory with respect to the specified cardinality. In this case,

new instances of the added metaclass have to be accord-

ingly introduced in the existing models;

— Add metapropertythis is similar to the previous case
since a new metaproperty may be or not obligatory with
respect to the specified cardinality. The existing models

maintain the conformance to the considered metamodel™

if the addition occurs in abstract metaclass without sub-

classes; in other cases, human intervention is required to

specify the value of the added property in all the involved
model elements;

— Generalize metapropertya metaproperty is generalized
when its multiplicity or type are relaxed. For instance, if
the cardinality3. . n of a sample metaclaseC is modi-
fied in0. . n, no co-evolution actions are required on the
corresponding models since the existing instancegcof
still conform to the new version of the metaclass;

— Pull metaproperty a metaproperty is pulled in a super-
classA and the old one is removed from a subclasas a
consequence, the instances of the metaddss/e to be
modified by inheriting the value qf from the instances
of the metaclass;

— Extract superclassa superclass is extracted in a hierar-
chy and a set of properties is pulled on. If the superclass

existing metamodel elements as described in the following:

— Eliminate metaclassa metaclass is deleted by giving

place to a sub metamodel of the initial one. In general,
such a change induces in the corresponding models the
deletions of all the metaclass instances. Moreover, if
the involved metaclass has subclasses or it is referred by
other metaclasses, the elimitation causes side effects als
to the related entities;

Eliminate metapropertya property is eliminated from a
metaclass, it has the same effect of the previous modifi-
cation;

Push metapropertypushing a property in subclasses
means that it is deleted from an initial superclasand
then cloned in all the subclassef A. If A is abstract
then such a metamodel modification does not require any
model co-adaptation, otherwise all the instances afid

its subclasses need to be accordingly modified;

Flatten hierarchy to flatten a hierarchy means eliminat-
ing a superclass and introducing all its properties into the
subclasses. This scenario can be referred to metaproperty
pushes;

Restrict metapropertya metaproperty is restricted when

its multiplicity or type are enforced. It is a complex case
where instances need to be co-adapted or restricted. Re-
stricting the upper bound of the multiplicity requires a
selection of certain values to be deleted. Increasing the
lower bound requires new values to be added for the
involved element which usually are manually provided.
Restricting the type of a property requires type conver-
sion for each value.



Finally, a new version of the model can consist of some up- [Eocateaeiement
dates of already existing elements leading to updative mod-
ifications which can grouped as follows:

0.1 | +opposite

+metamode! [ Metamodel | |!h’l:d’e.rf.l’ement| ‘ ] “Ef_e'enm |"‘“"“’“"a |
-] |+mams_8"m1 | ‘+|SCUrrta|ner.buulean| | |
— Rename metaelementnaming is a simple case in ARl T
which the change needs to be propagated to existing in- | =7 | | .
stances and can be performed in an automatic way; o Eaam e
£ Hpper ; int
— Move metapropertyit consists of moving a property | +mm‘.5 : T I ‘ e b
from a metaclasa to a metaclasB. This is a resolvable
change and the existing models can be easily co-evolved ™y | | ’ meﬂ Stuctaraifsaturs
by moving the property from all the instances of the IE""'"W"’" | Immel Imc'“,m

metaclas#\ to the instances &;

- ) Figure 2. KM3 metamodel
— Extract/inline metaclassextracting a metaclass means

to create a new class and move the relevant fields from the

old class into the new one. Vice versa, to inline a meta- 3 Formalizing differences between metamod-
class means to move all its features into another classand  ¢g|s

delete the former. Both metamodel refactorings induce

automated model co-evolutions. The problem of model differences is intrinsically complex

and requires specialized algorithms and notations to match

The classification illustrated so far is summarized in Tab. 1 the abstraction level of models [17]. Recently, in [10, 22]
and makes evident the fundamental role of evolution rep-two similar techniques have been introduced to represent
resentation. At a first glance it seems that the classifica-differences as models, hereafter calldifference mod-
tion does not encompasseferencesthat are associations els interestingly these proposals combine the advantages of
amongst metaclasses. However, references can be considteclarative difference representations and enable tla+ec
ered properties of metaclasses at the same level of atisibut  struction of the final model by means of automated transfor-
Infact, as it will be described in the following, a metaclass  mations which are inherently defined in the approaches. In
composed of structural features which are attributes @d re the rest of the section, we recall the difference representa
erences. The term property used so far has the same meanion approach defined in [10] in order to provide the reader
ing of structural feature in metamodeling languages. with the technical details which underpin the solution pro-

Metamodel evolutions can be precisely categorized by posed in Sect. 4. In fact, the contribution of this work relie
understanding the kind of modifications a metamodel un- on such model-based representation: differences between
dergone. Moreover, starting from the classification itispo metamodel versions are stored as difference documents de-
sible to adopt adequate countermeasures to co-evolve exnoting the manipulations the metamodel undergone during
isting instances. Nonetheless, it is worth noting that the its life-cycle, and are exploited to co-evolve existing mod
classification summarized in Tab. 1 is based on a clear dis-els conforming to the old version of the metamodel. In gen-
tinction between the metamodel evolution categories. Un-eral, difference models can be obtained by using today’s
fortunately, in real world experiences the evolution of a available tools like EMFCompare [25], and SiDiff [26].
metamodel can not be reduced to a sequence of atomidHowever, due to space limitation without compromising the
changes, generally several types of changes (recognizableeadability of the paper, in this work we do not discuss how
as non-breaking, resolvable and unresolvable) are opkrate obtaining difference models even though they can be auto-
as affecting multiple elements with different impacts om th matically obtained by adopting proper tools.
co-adaptation. Furthermore, the entities involved in the  Despite the work in [10] has been introduced to deal with
evolution can be related one another. Therefore, since coimodel revisions, it is easily adaptable to metamodel evo-
adaptation mechanisms are based on the described chandstions too. In fact, a metamodel is a model itself, which
classification, a metamodel adaptation will need to be de-conforms to a metamodel referred to as the meta meta-
composed in terms of the induced co-evolution categories.model [4]. For presentation purposes, the KM3 language
The possibility to have a set of dependences among the sevin Fig. 2 is considered throughout the paper. It is based
eral parts of the evolution makes the updates not always dis-on analogous core concepts used in OMG/MOF [19] and
tinguishable as single atomic steps of the metamodel revi-EMF/Ecore [6] and is focused on metamodelling only (that
sion, but requires a further refinement of the classification is, Java code generation facilities are not supported fifor i
as introduced in the next section and discussed in details instance). A number of experimental KM3 metamodels have
Sect. 4. been specified both from academia and industry [2], while
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Figure 3. Overall structure of the model dif-
ference representation approach

MO

the available tool support is able to generate Ecore and MOF

metamodels corresponding to the given KM3 specifications.
The overall structure of the change representation mech-

anism is depicted in Fig. 3: given twaase metamodelgvy

and MM, which conform to an arbitrarppase meta meta-

model (KM3 in our case), their difference conforms to a

difference metamod@ivD derived from KM3 by means of

an automated transformatisfy2 MVD. The base meta meta-

model, extended as prescribed by such a transformation,

consists of new constructs able to represent the possible

modifications that can occur on metamodels and which can
be grouped as follows:

ModelElement

+name : String

I

Classifier +ype

TypedElemont

+Howeer - int

+zuperTypes

O

+izhbatract : boolean

+updatedElement 7~

AddedClass

1 +OenEr

+upper :int
+isDrdered : boolean
+isUnigue : boolean

§ rm};m.fﬂzaiure

DeletedClass

ChangedClass

+atructuralF estures

+opposite
Reference

Attribute

+zContainet : boolean

i

AddedReference

DeletedReference
ChangedReference
updatedElement

pa

fAddedAttribute l
Deletehttribute
ChangedAttribute |

+updatedElement

Figure 4. Generated difference KM3 meta-

model

additions new elements are added in the initial meta- € @ss in Fig. 2 induces the generation of the metaclasses
model; with respect to the classification given in Sect. 2, Addedd ass, Del et edd ass, andChangedd ass as de-

Add metaclassind Extract superclassnvolve this kind
of change;

picted in Fig. 4.
class inducesAddedRef er ence,

In the same wayef er ence meta-

Del et edRef er ence,

. - andChangedRef er ence.
deletions some of the existing elements are deleted asa g generated difference metamodel is able to represent
whole. Eliminate metaclasandFlatten hierarchyfall in all the differences amongst metamodels which conform to
this category of manipulations; KM3. For instance, the model in Fig. 5 conforms to the gen-
changes a new version of the metamodel being con- erated metamodel in Fig. 4 and represents the differences
sidered can consist of updates of already existing ele-between the Petri Net metamodels specified in Fig. 1. The

ments. For instancdRename metaelemeand Restrict
metapropertyrequire this type of modification. Also
the addition and deletion of metaproperty (i.eAdd
metapropertyand Eliminate metapropertyrespectively)
are modelled through this construct. In fact, when a
metaelement is included in a container the manipulation
is represented asanangeof the container itself.

In order to represent the differences between the Petri
Net metamodel revisions, the extended KM3 meta meta-
model depicted in Fig. 4 is generated by applying
the vveMVD transformation in Fig. 3 previously men-
tioned. For each metaclas& of the KM3 metamodel,
the additional metaclassesddedMC, Del et edMC, and
ChangedMC are generated. For instance, the metaclass

differences depicted in such a model can be summarized as
follows:

1) the addition of the new clag®rAr ¢ in the M revision

of the Petri Net metamodel is represented by means of an
Addedd ass instance, as illustrated by model difference
Ay,1 in Fig. 5. Moreover, the reference betweirace
andTr ansi ti on nameddst has been updated to link
PTAr ¢ with nameout . Analogously, the reverse refer-
ence namedr c has been manipulated to poiRTAr ¢
and named asn. Two new references have been added
through the correspondingddedRef er ence instances

to realize the reverse links frofTAr ¢ to Pl ace and
Transi ti on, respectively. Finally, the composition re-
lationship betweemet andPl ace has been updated by



2)

prescribing the existence of at least dfieace through
the | ower property which has been updated franto

The representation mechanism used so far allows to iden-
tify changes which occurred in a metamodel revision and

1. The same enforcement has been to the compositionsatisfies a number of properties, as illustrated in [10]. One

betweerNet andTr ansi ti on;

the addition of the new abstract clags in M, together
with its attributewei ght is represented through an in-
stance of theAddedC ass and theAddedAttri but e
metaclasses in th&, , delta of Fig. 5. In the mean-
while, PTAr c andTPAr ¢ classes are made specializations
of Ar c. Finally, Net entity is renamed aBet ri Net .

crd : ChangedReference crd: ChangedReference
M lower=10 lower=10 1
thdaiedElelnem updatedEIemeni
r3: Reference r4: Reference
lower=1 lower=1
pwner owner
c3: Class
ownerl name ="Net' owner
type
i type ST type type
c2: Class SWner ¢l : Class
a name ="Transition" — name ="Place" |
owner| ‘
type type type i
cr2 : ChangedReference cr1: ChangedReference
name ="dst' name ="src"
updatedElement updatedElement
r1: Reference r2 : Reference
name = "out' name="in"
type ype
acl : AddedClass
isAbstract = false
name ="PTAr"
ar? : AddedReference | ar1 : AddedReference
—_—  ————— Fowner owner
name = "dst' name ="src"
isContainer = false isContainer = false
isOrdered = false isOrdered = false
isUnigue =false islUnigue = false
lower=1 lower=1
upper=1 upper=1

Agq (MM - MM )

superTypes

c2: Class up Eﬁ_h?ged_class
ac1 : AddedClass name = "PTArc" name = "PTArc"
isAbstract=true |~
FAME A c3: Class p ce3 : ChangedClass
owner _| name ="TPArc" name = "TPArc"
superTypes
aal : AddedAttribute type cd:Class
name ="weight" name ="Integer"
ccl : ChangedClass updatedElement ¢l :Class
name ="Het' name = "PetriMet'

Aqz (MM — MM, )

Figure 5. Subsequent Petri Net metamodel
adaptations

of them is thecompositionalityi.e. the possibility to com-
bine difference models in interesting constructions like t
sequential and the parallel compositions, which in turn re-
sult in valid difference models themselves. For the sake of
simplicity, let us consider only two modifications over the
initial model: the sequential composition of such manipu-
lations corresponds to merging the modifications conveyed
by the first document and then, in turn, by the second one
in a resulting difference model containing a minimal difer
ence set, i.e., only those modifications which have not been
overridden by subsequent manipulations. Whereas, parallel
compositions are exploited to combine modifications oper-
ated from the same ancestor in a concurrent way. In case
both manipulations are not affecting the same elements they
are saidparallel independenand their composition is ob-
tained by merging the difference models by interleaving the
single changes and assimilating it to the sequential compo-
sition. Otherwise, they are referred togallel dependent
and conflict issues can arise which need to be detected and
resolved [8].

Finally, difference documentation can be exploited to re-
apply changes to arbitrary input models (see [10] for fur-
ther details) and for managing model co-evolution induced
by metamodel manipulations. In the latter case, once differ
ences between metamodel versions have been detected and
represented, they have to be partitioned in resolvable and
non resolvable scenarios in order to adopt the correspond-
ing resolution strategy. However, this distinction is nbt a
ways feasible because of parallel dependent changes, i.e.
situations where multiple changes are mixed and interde-
pendent one another, like when a resolvable change is in
some way related with a non-resolvable one, for instance.
In those cases, deltas have to be decomposed in order to
isolate the non-resolvable portion from the resolvable one
as illustrated in the next section.

4 Transformational adaptation of models

This section proposes a transformational approach able
to consistently adapt existing models with respect to the
modifications occurred in the corresponding metamod-
els. The proposal is based on model transformation and the
difference representation techniques presented in thé pre
ous section. In particular, given two versiong, and M,

of the same metamodel (see Fig. 6.a), their differences
are recorded in a difference modal, whose metamodel
KMBDi f f is automatically derived frorKM3 as described

in Sect. 3. In realistic cases, the modifications consishof a
arbitrary combination of the atomic changes summarized
in Tab. 1. Hence, a difference model formalizes all kind of



modifications, i.e. non-breaking, breaking resolvable and relations, respectively, and square boxes are any kind of
unresolvable. This poses additional difficulties since cur models, i.e. models, difference models, metamodels, and
rent approaches (e.g. [27, 14]) do not provide any supporteven transformations. In particular, the decompositioA of

to co-adaptation when the modifications are given without is given by two model transformatiorisz and7- 5 (right-
explicitly distinguishing among breaking resolvable and u  hand side of Fig. 6.a). Co-evolution actions are directly ob
resolvable changes. Our approach consists of the followingtained as model transformations from metamodel changes
steps by means of higher-order transformations, i.e. transferma
tions which produce other transformations [4]. More specif
ically, the higher-order transformatioftér and’H—-r (see

Fig. 6.b and 6.c) také\p and A_x and produce the (co-
evolving) model transformationSTr and CT- g, respec-

ii) if ArandA_y areparallel independentsee previous tively. SinceAr and A_p are parallel independeidt7r

section) then we separately generate the correspondinddC7-r can be applied in any order because they operate
co-evolutions, otherwise to disjoint sets of model elements, or in other words

i) automatic decomposition ah in two disjoint (sub)
models,Ar andA_ g, which denote breaking resolv-
able and unresolvable changes, respectively

i) if Ag andA_p areparallel dependentthey are fur- (CT-Rr - CTR) (M) = (CTR - CT-R)(M1) = M
ther refined to identify and isolate the interdependen-

cies causing the interferences. with M, and M, models conforming to the metamodély

andM\;, respectively (see Fig. 6.d).
The distinction betweeii) andiii) is due to fact that when The next sections illustrate the approach and its im-
two modifications are not independent their effects dependplementation. In particular, we describe the decomposi-
on the order the changes occur leading to non confluent sittion of A and the generation of the co-evolving model-
uations. The confluence can still be obtained by removing transformations for the case of parallel independent break
those modifications which caused the conflicts as describedng resolvable and unresolvable changes. Finally, in

in Sect. 4.2. Sect. 4.2 we outline how to remove interdependencies from
parallel dependent changes in order to generalize the solu-
I w T e tion provided in Sect. 4.1. The overall approach has been
Metamodel Metamodel e ———————- . . .
 — conformsTo | implemented and the interested reader can download it
|

conformsTo | I

at [9].

]

1

1

i

e}

] ~ -
i

conformsT

4.1 Parallel independent changes

The generation of the co-evolving model transformations is
------------------------------------------------- described in the rest of the section by means of the evo-

A CTx lutions thePet ri Net metamodel has been subject to in
Fig. 1. The differences between the subsequent metamodel
b) Generation of the C Ty transformation versions are given in Fig. 5 and have, in turn, to be decom-

posed to distinguish breaking resolvable and unresolvable
i modifications.
A CT-
NR In particular, the differencé o ;) from M to M, con-
sists of two atomic modifications, i.e. &xtract metaclass
and aRestrict metapropertghange (according to the clas-

c) Generation of the CT-z transformation

L AsMmn) [ Aamn) T sification in Tab. 1), which are referring to different sets
. of model elements. The approach is able to detect paral-
conformeTe conformsTey eortemeTey lel independence by verifying the eventual decomposed dif-
M‘1 CTe er CT N;z ferences _have an empty inters_ection. Siagehe previ-
ous atomic changes are breaking resolvable and unresolv-
able, andb) they do not share any model element, then
d) Model Co-evolution Ao,1) is decomposed b¥r and 7. into the parallel in-
dependeni\ (o 1) andA_ g, 1), respectively. In fact, the
Figure 6. Overall approach former contains the extract metaclass action which affect

the element$l ace and Tr ansi ti on, whereas the latter
The general approach is outlined in Fig. 6 where dotted holds the restrict metaproperty changes consisting of the
and solid arrows represent conformance and transformatiorreference modifications in the metacl&&s . Analogously,



1
2

the same decomposition can be operated\gy,) (denot-
ing the evolution fromM\; to M) to obtainAz(; o) and

13
14

A_R(1,2) since the denoted modifications do not conflictiérul e o eat eRenaning {

17
18
19

each other. In fact, theename metaelemenhange (repre-
sented byc1 andcl in Fig. 5.b) is applied tolet , whereas

theAdd obligatory metapropertyperation involves the new 32
metaclasgvr ¢ which is supertype of theTArc andTPArc 22
metaclasses. o

As previously said, once thé\ is decomposed the
higher-order transformatior’¥ s and H_ g detect the oc-
curred metamodel changes and accordingly generate the cc
evolution to adapt the corresponding models. In the cug-g
rent implementation, model transformations are given igo
ATL [15], a QVT compliant language part of the AMMA

31}
32rul e CreateExtract MetaC ass {

from
input :
delta :

KMBDI f f! Cl ass,
KMBDI f f ! Changedd ass

(not input.isAbstract

and input.nane <> del ta. updat edEl enent . nane

.

to
mat chedRul e :  ATL! Mat chedRul e (
name<-input.nane + '2’ + delta.updatedEl enent.
name,

platform [5] which contains a mixture of declarative and im-33 from

perative constructs. In the Listing 1 a fragment of #ig ~ >*

transformation is reported: it consists of a module specifiss
cation containing a header section (lines 1-2), transferma®
tion rules (lines 10-89) and a number of helpers (e.g., see
lines 4-19 in Listing 4) which are used to navigate model$
and to define complex calculations on them. In particulaso
the header specifies the source models, the correspondﬁi
metamodels, and the target ones. Sincelhetransforma- 43
tion is higher-order, the target model conforms to the AT}
metamodel which essentially specifies the abstract syntas
of the transformation language. Moreovefy takes as in- jg
put the model which represents the metamodel dlﬁerencee
conforming toKMBDi f f .

The helpers and the rules are the constructs used to spez
ify the transformation behaviour. The source pattern o?i
the rules (e.g. lines 17-24) consists of a source type andbz
OCL [21] guard stating the elements to be matched. Ea@
rule specifies a target pattern (e.g. lines 25-30) which &
composed of a set of elements, each of them (as the off
at lines 26-29) specifies a target type from the target metex
model (for instance, the typeat chedRul e from the ATL 5
metamodel) and a set of bindings. A binding refers to &4
feature of the type, i.e. an attribute, a reference or arrassgt‘g
ciation end, and specifies an expression whose value initiaf
izes the featurel ; consists of a set of rules each of themfs
devoted to the management of one of the resolvable meta
model changes reported in Tab. 1. For instance, the L|st|ng7i
contains the rules for generating the co-evolution actlons
corresponding to thRename metaelemeand theExtract
metaclasghanges.

nodule H R

create OUT : ATL fromDelta : KM3Diff;

3...

4
5

rule atl Modul e {
from
s: KMBDi ff! Met anpdel
to
t @ ATL! Modul e (
nane <- 'CIR,
out Model s <- Sequence {tni,
i nMbdel s <- Sequence {sni,

crl: KMBDi ff! ChangedRef erence,
ChangedRef er ence,
KMBDi f f | Ref er ence,
KMBDI f f! Addedd ass,
AddedRef er ence,
KMBDI f f ! AddedRef er ence,

KMBDI f f! O ass

rl:
acl:

r2 :
arl: KMBDiff!

ar2:
©2 :

cl : KMBDiff!

crl structural features
crl updat edEl ement = r2 and cr 1. owner
and crl.type = cl1 and i_crl.opposite =i

- cr2 structural features
and cr 2. updat edEl enent ri
and cr2.type = c2 and i _cr2.

opposite =i

- arl structural features
and arl.owner = acl and arl.
and arl.opposite = rl

type = cl

- ar2 structural features
and ar2.owner = acl and ar2.
and ar2.opposite = r2

type c2

- r2 structural features
and r2.type = acl and r2.opposite

ar 2

- rl structural features
and rl.type = acl and r1.opposite

arl

)

-- MatchedRul e generation

mat chedRul e_i _c2 : ATL! Mat chedRul e (
nanme<-i _c2.nane + '2’ + i_c2.naneg,
i sAbstract <- false,
isRefining <- false,
inPattern <- ip_i_c2
outPattern <- op_i_c2

62 to

Listing 1. of the

transformation

Fragment

cr2: KMBDiff!

KMBDi f f ! Ref er ence,

d ass,

©2
_cr2

and cr2.owner = cl

_cr2

HOTg

The application ofHr to the metamodein, in Fig. 1

and the difference modeh (1) in Fig. 5 generates the
model transformation reported in the Listing 2.
the source pattern of the eat eExt r act Met aCl ass rule
(lines 34-61 in the Listing 1) matches with the tvix-
tract metaclasschanges represented g, 1).

In fact,

They



consist of the additions of theTArc and TPAr ¢ meta-

for the breaking resolvable case. However, as mentioned

classes instead of the direct references between the exin Sect. 2, the involved transformations can not automati-

isting elementsl ace and Tr ansi ti on. Consequently,

cally co-adapt the models but are limited to default actions

according to the structural features of the involved ele- which have to be refined by the designer. In particdtarg

ments, theCr eat eExt r act Met aCl ass rule generates the
transformationCTx (1) which is able to co-evolve all the
models which conform taa, by adapting them with re-
spect to the new metamodely, (see line 1-2 of the List-
ing 2). In particular, each element of typeace has to

contains a rule for each breaking and unresolvable modifi-
cation reported in Tab. 1. For instance, the transformation
fragment in the Listing 3 contains the rule for generating
the co-evolution actions related to tRestrict metaproperty
modification. Since in these cases the adaptation choiees ar

be modified by changing all the references to elements ofnot unique,H—_z generates default transformations which
typeTr ansi t i on with references to new elements of type co-evolve the source models in order to maintain the confor-
PTAr c (see lines 4-24). The same modification has to be mance with the modified metamodel. Thus, it is designer’s

performed for all the elements of type ansiti on by
creating new elements of typePAr ¢ which have to be
added instead of direct references betw@&eansi ti on
andPl ace instances (see lines 25-44).

1nodul e CTR;

2create QUT : MML fromIN : MWD;
3...

4rul e Pl ace2Pl ace {

5 from

6 s : MMVL! Pl ace

8 to

9 t : MW!Place (

10 nanme <- S.nane,

11 net <- s.net,

12 out <- s.dst->collect(e |

13 t hi sModul e. creat ePTArc(e, t)
14 )

15 )

16}

17rul e createPTArc(s : Ccl Any, n : Ccl Any) {
18 to

19 t : MIPTArc (

20 src <- s,

21 dst <- n

22 )

23 ...

24}

25rul e Transition2Transition {

26 from

27 s : MML! Transition

28 s

29 to

30 t : MMITransition (

31 net <- s.net,

32 in <- s.dst->collect(e |

33 thi sMbdul e. createTPArc(e, t)
34 )

35 )

36}

37rul e createTPArc(s : Ccl Any, n : Ccl Any) {
38 to

39 t : MWRIPTArc (

40 dst <- s,

41 src <- n

42 )

43

44}

45. .

Listing 2. Fragment of the generated ~ CTg(g 1)
transformation

responsibility to refine the rules enriching them with prope
semantic annotations.

1nodul e HOT_NR;
2create OQUT : ATL fromDelta : KMBDiff;

3...

4rul e atl Modul e {

5 from

6 s: KMBDi ff! Met anodel

7 to

8 t : ATL! Modul e (

9 e

10 ),

11 .

12}

13. ..

14rul e CreateRestrictMetaproperty{

15 from

16 cr3: ChangedRef erence! KMBDi ff, r3: Reference!
KMBDI f f,

17 cl: Class!KMBDiff, c3 : O ass! KMBDiff

18 (

19 cr 3. updat edEl ement=r3 and r3.type=cl

20 and cr 3. owner=c3 and cr 3. | ower<r3. | ower

21 )

22 to

23 -- generation of the hel per named create+cl. name+

I nst ances()
24 hel per : ATL! Hel per (

26 )

28 mat ched_rule : ATL! Cal | edRul e (
29 nane<-’ create’ +cl. nane,

Listing 3. Fragment of the HOT-R
transformation

Aninteresting case is represented by the applicatidm-qf
to A_R(,1) Which generates the transformation rules re-
ported in the Listing 4. Since the modifications concern
the reference cardinality of theet metaclass with the el-
ementsPl ace and Transi ti on, models containingNet
instances which have not at least one referencel txe
andTr ansi ti on elements are invalid.

The default co-evolution actions which can be performed

The management of the breaking and unresolvable mod-are implemented in the generated transforma@dng o 1)
ifications is based on the same techniques presented so fagiven in the Listing 4. They consist in checking the number



of Pl ace andTr ansi ti on instances referenced bt el- 4.2 Parallel dependent changes
ements (see lines 21-23); if the instance number is less than
one, then other default instances are created by means o
dedicated helpers and transformation rules (see lines 4-1$
and lines 32-51). Such rules do not specify any value for the
corresponding structural features, the designer is regdes
to do this. Nevertheless, the conformance of the models
with respect to the neWet r i Net metamodel is automat-

s mentioned above, the automatic co-adaptation of models
elies on the parallel independence of breaking resolvable
and unresolvable modifications, or more formally

AR|A-r = Ar; A-p + A-g; AR (1)

ically assured.

1nodul e CTNR;

2create QUT : MML fromIN : MWD;
3
4hel per context MWR! Net def :

Sequence (MWR! Pl ace) =

if (thisWbdul e. pl acel nstances < 1) then

t hi sModul e. creat ePl ace(sel f)->asSequence() - >uni on(sel f

. createPl acel nst ances())

creat ePl acel nstances() :

[ Né)]

7 el se
8 Sequence {}
9 endif;
10
1lhel per context MWR! Net def : createTransitionlnstances()
. Sequence (MWR!Transition) =
12 if (thisMdule.transitionlnstances < 1) then
13 thisMdul e. createTransition(sel f)->asSequence()->uni on
(self.createTransitionlnstances())
14 el se
15 Sequence {}
16 endif;
17
18hel per def : placelnstances : Integer = MVL! Pl ace.
al | I nstancesFron(’' IN)->size();
19hel per def : transitionlnstances :
al | I nstancesFron(’ I N )->size();

I nteger = MML! Pl ace.

20

21rul e Net2Petri Net {

22 from

23 s: MML! Net

24 to

25 t: MWR! Net (

26 )

27 do {

28 t.place<-t.createPlacel nstances();

29 t.transition<-t.createTransitionlnstances();

31}

32rul e createPlace(s: Ccl Any) {

33 to

34 t: MWRIPlace (

35 net<-s,

36 ...

37 )

38 do {

39 thisMdul e.pl acel nst ances<-t hi sMbdul e. pl acel nst ances
+1;

40 t;

41}

42}

43rul e createTransition(s: Ccl Any) {

44 to

45 t: MWRITransition (

46 net<-s

47 )

48 do {

49 thisMdule.transitionlnstances<-thishdule.
transitionlnstances+1;

50 t;

51 }

52}

Listing 4. Fragment of the generated
transformation

CT-gr(o,1)

where-+ denotes the non-deterministic choice. In essence,
their application is not affected by the adopted order since
they do not present any interdependencies. In case the mod-
ifications in Tab. 1 refer to the same elements then the order
in which such modifications take place matters and does not
allow the decomposition of a difference model as, for in-
stance, when evolving\, directly toMv;, (although the sub
stepsvvy — MV, andMVy — MV, are directly manageable as
described in the previous section).

A possible approach, which is sketched in the following,
consists in isolating the interdependencies whenever (1)
does not hold. The intention is to define an iterative process
consisting indiminishing the modifications between two
metamodels until the corresponding breaking resolvable
and unresolvable differences are parallel independent. In
particular, letA be a difference between two metamodels,
then we denote b (A) thedifference powermodgthat is
the (partially ordered) set of all possible valid sub models
of A (i.e. fragments of the difference model which are still
conforming to the difference metamodel)

P(A):{50:(bv"'vaivéi—&-l;"'aan:A}

Then, the solution is the smallésin {0, - - -, n} such that
AR5 = A
whereA(*) is the difference model betweexandd,,, and
A® = AP A

with A%f) andA(ﬁk} parallel independent. Hence, the prob-
lem of parallel dependence is reduced to the following

A= (AR 1A%): 8,

by applying the higher-order transformation introduced in
the previous section. For instance, if we considdvh(—
MV)) the solution consists in iteratively finding a difference
model which map8$MV, to the intermediate metamodel cor-
responding tdvM, without the attributeveightof the Ar ¢
metaclass. Therefore, the remainingin this example is a
non resolvable change, while in general it may demand for
further iterations of the decomposition process.



5 Related works and requires the developers to provide explicit support to
updative cases.

The issues discussed in this work can be also found in the
context of database evolution and metadata handling, which
have been demonstrated to share several problems related
to model management [3]. In fact, when schemas evolve
to overcome new requirements all the interconnected arte-
facts need to be co-adapted, like queries, scripts and even

Over the last few years, the problem of metamodel evolu-
tion and model co-evolution has been investigated by sev-
eral works [27, 14]. In general, model co-evolution regsiire
the changes to be categorizedagswithout effects on ex-
isting model instancel) with simple side effects on mod-
els c) with side effects demanding for additional manage- "~ .. T . :
ment [24]. To this end, the change classification presented i existing data. Also in this field, a common solution relies

Sect. 2 is inspired by the existing experiences on metamodeP" the separation between schema manipulations causing

evolution. In particular, the work in [27] distinguishesagd not'or I|m|ted. gpdg\tes toteXIftm? w;}stances vgrzu? modifi-
tations that ensure instance preservation from manipula—Ca I0NS requiring deep structural changes and data conver-

tions which induce co-evolutions. Metamodel evolutions sions. Analogously to this p_aper, simple situations can be
are specified by QVT relations [20], while co-adaptations automatically supported, while complex ones demands for

are defined in terms of QVT transformations when resoly- YS€" intervention, even though the environment can be ade-
able changes occur. The main limitations are that Co_quately started-up [13]

adapting transformations are not automatically obtained _

from metamodel modifications and unresolvable changes6 Conclusionsand futurework

are not given explicit support. Moreover, using relations

instead of difference models does not allow distinguish- |ncreasingly, software development is in need of version-
ing metaelement updates from deletion/addition patternsing techniques for supporting the evolution of model-based
and causedalse-positivesn detecting, for instance, ex-  artefacts [12]. Difference models can record the modifica-
tract metaclass cases. In fact, the only change types whichjons a metamodel undergoes during its life-cycle, as shown
can be precisely caught are the additive and subtractivein Sect. 3. This paper presented a transformational ap-
ones. This problem is (partly) addressed in [14], which proach to co-evolution of models which are requested to be-
advocates for some metamodel difference management by:-ome conforming to a newer version of their original meta-
means ofchange tracesalthough no specific proposal is  model. The main points includs starting from metamodel
adopted or given. This work has the merits of classifying differences the automated generation of co-evolving astio
changes as breaking/non-breaking and sketching an algocan be obtained by means of higher-order transformations;
rithmic detection of such modifications which is deferred the adaptation considers both resolvable and non-redelvab
to future work. Similarly to [27], it does not provide any changes by providing the designer, in case of knowledge
automatic derivation of the co-evolving transformations. non-determinism, with refinement mechanisrsthe co-

A common aspect to [27, 14] is the atomicity of the adaptation technique deals with the occurrence of multiple
changes, i.e. the classified change types are assumed to ochange types in the metamodel in order to cope with realis-
cur individually, which is far from being a realistic sceiwar  tic scenarios; in particular, differences must be decomgos
since modifications tend to occur with arbitrary multipici  in resolvable and non-resolvable changes.
and complexity. Additionally, interdependencies may also  The previous decomposition can lead to parallel depen-
be present posing severe difficulties in distinguishing the dent metamodel differences which require an explicit isola
various change types described in Sect. 2. tion of those modifications which cause the resolvable and

The solution presented in this paper has a number ofnon-resolvable changes to be interdependent. By means of
similarities with the techniques illustrated in [11], wher the difference powermodel construction given in Sect.¥4.2 i
the authors discuss the possibility to induce model trans-is possible to arrange modifications in a lattice which gside
formations through model weaving. In particular, weaving the resolvable and non-resolvable differences to be itera-
links are given to establish correspondences between metatively refined until they become parallel independent.
model elements and consequently to derive mappings be- Apart from the iterative decomposition procedure,
tween corresponding models. If the weaving is seen as athe complete approach has been implemented on the
difference representation, the induced transformation ca AMMA [5] platform and is available for download
be considered as the automated co-adaptation of existingat [9]. Future work includes the implementation of the
instances. Nonetheless, the approach in [11] lacks of ex-powermodel construction the difference refinement depends
pressiveness, since only additions and deletions can be repon. Moreover, a more systematic validation of the approach
resented through the semantics provided by the proposednust necessarily encompass larger population of models
weaving relationships. As a consequence, the co-adaptatioand metamodels. Finally, we plan to investigate how the
refers only to additive and subtractive cases (as for [27]) works related to change impact analysis [1] can be adapted



and used in MDE to support the co-evolution of metamodels [16] M. M. Lehman and L. A. Belady, editorsProgram evolu-
and corresponding models.
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