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Objectives:  The  rapid  finger-tapping  test  (RFT)  is an  important  method  for clinical  evaluation  of  move-
ment  disorders,  including  Parkinson’s  disease  (PD).  In clinical  practice,  the  naked-eye  evaluation  of  RFT
results  in  a  coarse  judgment  of  symptom  scores.  We  introduce  a  novel  computer-vision  (CV)  method  for
quantification  of tapping  symptoms  through  motion  analysis  of index-fingers.  The  method  is  unique as
it  utilizes  facial  features  to  calibrate  tapping  amplitude  for normalization  of  distance  variation  between
the  camera  and  subject.
Methods:  The  study  involved  387  video  footages  of  RFT recorded  from  13  patients  diagnosed  with
advanced  PD.  Tapping  performance  in these  videos  was  rated by  two clinicians  between  the  symptom
severity  levels  (‘0: normal’  to ‘3:  severe’)  using  the  unified  Parkinson’s  disease  rating  scale  motor  exam-
ination  of  finger-tapping  (UPDRS-FT).  Another  set  of  recordings  in this  study  consisted  of 84  videos  of
RFT  recorded  from  6  healthy  controls.  These  videos  were  processed  by  a CV  algorithm  that  tracks  the
index-finger  motion  between  the video-frames  to produce  a tapping  time-series.  Different  features  were
computed  from  this  time  series  to estimate  speed,  amplitude,  rhythm  and  fatigue  in  tapping.  The  fea-
tures  were  trained  in  a support  vector  machine  (1) to categorize  the  patient  group  between  UPDRS-FT
symptom  severity  levels,  and (2) to  discriminate  between  PD  patients  and healthy  controls.
Results:  A  new  representative  feature  of  tapping  rhythm,  ‘cross-correlation  between  the  normalized
peaks’  showed  strong  Guttman  correlation  (�2 =  −0.80)  with  the  clinical  ratings.  The  classification  of

tapping  features  using  the  support  vector  machine  classifier  and  10-fold  cross  validation  categorized
the  patient  samples  between  UPDRS-FT  levels  with  an  accuracy  of 88%.  The  same  classification  scheme
discriminated  between  RFT samples  of  healthy  controls  and  PD  patients  with  an  accuracy  of  95%.
Conclusion:  The  work  supports  the  feasibility  of the  approach,  which  is  presumed  suitable  for  PD mon-
itoring  in  the  home  environment.  The  system  offers advantages  over  other  technologies  (e.g.  magnetic
sensors,  accelerometers,  etc.)  previously  developed  for objective  assessment  of tapping  symptoms.

© 2013 Elsevier B.V. All rights reserved.
. Introduction

Measurement of an individual’s ability to tap fingers is an
mportant method of assessing neuromuscular integrity [1]. In
nger-tapping tests, subjects are asked to tap their fingers consis-
ently in a rapid succession. The varying amplitude in tapping and
he series of inter-tap intervals are variables of interest for symp-
Please cite this article in press as: Khan T, et al. A computer vision framew
Med  (2013), http://dx.doi.org/10.1016/j.artmed.2013.11.004

om assessment. One way to produce these variables is through
he ‘rapid finger-tapping test’ (RFT) in which subjects attempt to
eproduce a sequence of stimuli by pinching their index-finger and
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thumb together. Stable RFT is unaffected by cultural experience
or cognitive and perceptual demands [1] and clinical impairments
are readily apparent in tapping signal patterns. For assessment of
Parkinson’s disease (PD) in particular, RFT is widely applied in clin-
ical settings as the rhythm of the dominant hand finger movements
acts as an efficient index for evaluation of brain motor function [2].
Volkow et al. found a strong correlation between the dopamine
receptors in PD and the motor task characterized by RFT [3]. Typi-
cally, the RFT is visually evaluated in clinical practice which results
in coarse resolution to determine the PD status.

PD is characterized by the loss of dopaminergic neurons which
ork for finger-tapping evaluation in Parkinson’s disease. Artif Intell

causes slowed muscular movement and motor rigidity. PD is a pro-
gressive and incurable disease and results in extensive utilization of
health and community services. The cost of PD to society is high; the
annual cost in the UK is estimated between 449 million to 3.3 billion

dx.doi.org/10.1016/j.artmed.2013.11.004
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http://www.sciencedirect.com/science/journal/09333657
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ounds [4]. The cost per patient per year in USA is around 10,000
SD where the largest proportion comes from inpatient care while

 lower share comes from medication. The number of PD patients
uffering from motor dysfunction is increasing in an aging society.
eliable and objective clinical assessments are therefore important
s patients need to be followed up frequently with frequent treat-
ent adjustments for many years. An accurate and cost-effective

ontrol of PD symptoms may  be possible if the desired treatment
ffects are evaluated quantitatively through computerized meth-
ds.

An electrocardiographic apparatus has been used to examine
apping velocity [5,6] and tapping amplitude has been estimated
rom 3D images captured from infrared cameras [7]. The system
ould record 3D motion of fingers but required a large and costly
aboratory setup. In recent years, lightweight magnetic sensors and
ccelerometers [8–11] were utilized for movement analysis, how-
ver with a drawback that only a basic analysis could be performed
hich was irrelevant to the routine assessment of PD in clinical

nvironment. These systems computed tapping velocity and accel-
ration which were then correlated with the disease status to verify

 relationship between the quantities of these features and PD.
esides, some other important features for identification of tap-
ing symptoms in PD, such as tapping rhythm and fatigue, were
ot investigated. Moreover, the equipments used in these systems
ere invasive as well as expensive and required supervision for
onitoring the tapping symptoms. It has also been discovered that

ccelerometer readings are affected by gravitational artifacts [12].
ll these equipments required appropriate environmental settings

o conduct diagnosis.
At-home treatment systems provide an economical solution to

rack disease progression as well as support patients having physi-
al limitations to access medical facilities. An example is ‘Objective
D Measurement System’ [13] comprising of dexterity and mobil-
ty measurement devices which communicate to a central server
ia internet. The PD related motor impairment symptoms can
e recorded in the server and can be accessed by clinicians and
esearchers through a web interface. In this way the patient’s symp-
oms can be objectively rated. The investigator can quickly assess
reatment effect by grouping together different tests. A web-based
ideo analysis of RFT can be particularly useful when incorporated
n systems where tapping videos can be stored in a centralized
erver for computerized processing.

A recent computer-vision (CV) based approach is ‘Virtual Touch-
ad Interface’ [14]. It includes a mobile interface that instructs
atients to perform the test. A webcam is attached to the sys-
em to record the test which can be evaluated in real time. The
ssessments are made using contour algorithms to determine if the
ndex-finger and thumb are touching or are apart. However this sys-
em had similar limitations to other sensor-based systems [8–11],
.e. it could only compute tapping speed and velocity, and it did not
ake into account other important clinical features (such as ampli-
ude and rhythm) for symptom level discrimination. Further the
lgorithm was unable to solve problems in dyskinesias where the
atient may  not control the body movements and may  not keep his
ands at one location consistently, i.e. over the testing pad in this
ase.

We propose a new and unique CV framework for objective
ssessment of RFT based on quantitative motion analysis of index-
ngers combined with the face detection method. We  claim that
apping characterization is possible through quantification of rapid
pposition of index-finger against the thumb through video analy-
is. It is a low-cost approach as it does not require any specialized
Please cite this article in press as: Khan T, et al. A computer vision framew
Med  (2013), http://dx.doi.org/10.1016/j.artmed.2013.11.004

ardware and can be performed in a more natural setup. An added
dvantage is that the subject’s face in tapping video may  be local-
zed and blurred to avoid ethical issues in publishing and data
haring.
 PRESS
 Medicine xxx (2013) xxx– xxx

2. Methods and materials

2.1. Patients and data

The data have been acquired from a multi-center clinical study
called ‘DIREQT’ (Duodopa Infusion: Randomized Efficacy and Qual-
ity of life Trial) [15] conducted during 2002–2003 at 5 different
medical facilities in Sweden. The study involved video estimates of
film footage in which the patients performed standardized move-
ments such as RFT, alternating finger movement test, oscillatory
hand movement test, sitting and arising from a chair and frontal
gait. The raters scored the motor functions utilizing the unified
Parkinson’s disease rating scale (UPDRS) [16]. The motor examina-
tion of finger-tapping is part III in UPDRS abbreviated as UPDRS-FT.
The scores in UPDRS-FT are ranged between 0 and 4 points where
‘0’ represents normal tapping, ‘1’ represents mildly impaired, ‘2’
represents moderately impaired, ‘3’ represents severely impaired,
and ‘4’ represents inability to perform tapping.

The patient data in the present study consisted of RFT recordings
from 13 patients (5 females and 8 males) suffering from advanced
PD. The mean total UPDRS score of these patients was  50.45 (range
14–92; SD ± 18.12) on the UPDRS scale 0 (normal state) to 108 (total
motor impairment). The patients were aged between 50 and 75. The
recordings took place at different timings of the day, i.e. from 9 am
till 5 pm with a rest of 30 min  in between. A total of 17 recordings
took place each day for each patient. Six patients were recorded for
2 days while two others were videotaped for 3 days with a gap of a
week in between the recording days. Five patients could show up
for a single day for recordings. The tapping videos were rated by
two clinicians based upon the tapping performance of each patient
using the UPDRS-FT.

During the video recordings, the patients were seated on a chair
against a plain wall behind. The videos were recorded for each
patient facing toward a pivoted camera. During RFT, the patients
positioned their hands above the shoulders besides the face. They
were asked to stretch the index-finger vertically against the thumb
as much as possible. The tapping had to be done as fast as possible.
The visual features of interest for the two clinicians were the tap-
ping rate, amplitude between index-finger and thumb, hesitations,
halts, and decrement in the amplitude. The raters classified tapping
symptoms in 4 symptom levels in UPDRS-FT (i.e. ‘0’, ‘1’, ‘2’ and ‘3’).
Each patient was  videotaped for 10 s at a frame rate of 25 fps and a
frame resolution of 352 × 288 pixels.

In addition to the patient group, RFT from 6 healthy controls
(HC), aged between 40 and 60 years, were recorded with the same
video configuration. A total of 84 recordings were made over a span
of two weeks such that each individual was recorded once every day
in a week. The recorded videos from the two  groups (patient and
HC) were fed to the CV-based system to produce and analyze the
tapping signals. A total of 471 videos, 387 patients (i.e. 23 days × 17
videos/day = 391 videos; 4 bad quality videos were removed) and
84 HC (i.e. 7 days × 2 video/day × 6 subjects = 84 videos) were uti-
lized for tapping classification. The investigation was approved
by the local ethics committee and written informed consent was
obtained from the HC and the patient group.

2.2. System description

The block diagram of the proposed CV based algorithm for RFT
quantification is shown in Fig. 1. In the first step the face of the
subject is detected. The video-frame is split into two images from
the center coordinates of a face-rectangle. Two regions of inter-
ork for finger-tapping evaluation in Parkinson’s disease. Artif Intell

est (ROI) are located in each of the images representing areas of
index-finger movements of left and right hands, respectively. In
the next step, motion of the index-finger is estimated in each ROI.
The movement of index-finger tip coordinates produces a tapping

dx.doi.org/10.1016/j.artmed.2013.11.004
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Fig. 1. System diagram of video-based finger-tapping quantification.

ime-series which is normalized by face-rectangle height. The tap-
ing features are extracted and classified using a support vector
achine (SVM) classifier to characterize between the symptom

everity levels based on the clinical scores.

.3. Face detection

Face detection for tapping analysis is a novel approach moti-
ated from the observation that the length of an adult person’s hand
s approximately equal to the height of that person’s face (Fig. 2a.i
nd a.ii)[17]. In previous video based methods for tapping analy-
is, the tapping signal amplitude was affected by distance of the
amera from the subject’s hand which could not be corrected [18].
his amplitude calibration problem led to problematic estimation
f tapping features for symptom characterization. There are sev-
ral advantages of human face incorporation in tapping analysis
here the frontal face position is readily apparent in the videos

nd both hands are positioned besides the face. First, the tapping
ignal can be normalized by face height to cope with varying camera
ositions during recordings. The nearer the camera is to the sub-

ect, the larger the finger-tapping amplitude and face height. The
pposite is true if the camera is placed at a farther distance. The
apping signal normalization would calibrate the tapping ampli-
ude resulting in correct estimation of tapping features. Secondly,
ince tapping is performed by placing the hands besides the face,
he ROI besides the face may  be located to track the index-finger

ovement of both hands in reference to the face-rectangle coor-
inates (Fig. 2c). Interfering head movements during tapping may
lso be located and eliminated. Third, the algorithm would be able
o blur the face to comply with ethical restrictions when publishing
he videos (Fig. 2b). Further, the subjects may  be assessed for dys-
onia symptoms by analyzing their facial expressions (a possible
xtension to this work).

Face detection in this framework has been performed using a
ace tracker available in the OpenCV library developed by Turk [19].
he face tracker is based upon the eigenfaces recognition algorithm
here for a given face image and a set of face images (called eigen-

aces); a Euclidean distance is computed between eigenfeatures
n the new image and each of the example faces. The eigenfaces
re considered as a set of standard face eigenfeatures derived from
rincipal component analysis of many face pictures. Any human
ace structure may  be considered as a combination of these stan-
ard features. A face detector called the ‘Haar Cascade Classifier’
20] is used to examine each image location and classify it as ‘face’
r ‘not face’. The classification results in identifying a face-rectangle
epresenting facial features in video frames (Fig. 2b). The OpenCV
rovides an option to choose between the classifiers for frontal
r sideways face detection. In our case the subjects were facing
Please cite this article in press as: Khan T, et al. A computer vision framew
Med  (2013), http://dx.doi.org/10.1016/j.artmed.2013.11.004

oward the camera so the classifier used was ‘Haar Cascade Frontal
ace’ classifier. Face classification is performed with a reliability of
8% in nearly 96,000 video frames. The 2% failure in face detec-
ion is because of the subjects moving their head sideways during
 PRESS
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finger-tapping. This minor loss may  be ignored by skipping the
frames later in the tapping recording.

Once the face-rectangle with top-left coordinates xmin, ymin and
bottom right coordinates xmax, ymax is computed, the video frame
is divided into two  images from the face-rectangle center. Since
the hands are positioned over the shoulders besides the face, two
rectangles are drawn (twice the size of face-rectangle) besides the
face-rectangle to cover hand movements in each image (Fig. 2c).
These rectangles represent the two  regions of interest (i.e. ROIleft
and ROIright) for motion detection of index-fingers in left and right
hands, respectively. The ROIs can be adjusted to cover bigger areas
depending upon the background steadiness during RFT.

2.4. Index-finger motion segmentation

Motion segmentation algorithms generally work by compar-
ing the incoming video frame to a previously referenced frame.
Deviations from the referenced frame are analyzed to attribute the
difference with the incoming frame. The camera should be station-
ary so that a static scene model (background) may be built to detect
movement regions. The motion analysis of index-fingers in ROIleft
and ROIright has been performed using the motion-template gradi-
ent algorithm [21]. The motion templates record location of moving
pixels in video frames at each time-stamp. A motion history image
(MHI) is kept to track the latest movements together with the lat-
est timestamps. An important feature of this method is that motion
can be detected in small regions of a frame even in low resolution
imagery; this is particularly suited to detect fine finger movements
in tapping.

Motion-template gradient is a five step algorithm: (1) silhou-
ette detection, (2) MHI  updates, (3) motion gradient calculation, (4)
motion orientation calculation and (5) motion segmentation. Sil-
houettes are the basic components of motion detection. Silhouettes
are detected in ROIleft and ROIright separately (Fig. 3a) by comput-
ing the absolute pixel difference between an incoming frame and
previous 4 frames. An absolute difference greater than 40 pixels
is kept as a threshold to identify the motion silhouettes represent-
ing index-finger movements. Experiments showed that an absolute
difference less than 40 pixels may  represent insignificant motion
details which may  arise due to fine movements of fingers poste-
rior to the index-finger. The motion silhouettes are then binarized
and stored in two memory buffers (one for left and the other for
the right hand) to track movement of index-fingers in successive
video frames. A time stamp (a current system time) is associated
with the motion silhouettes to identify a recent motion. The pre-
vious frames consisting of a sequence of motion silhouettes are
referred to as MHIs based on which the motion templates are con-
structed by comparing the silhouettes in a recent frame with the
MHIs. The buffer size is specified as 5 MHIs. A time limit of 1 s is
kept to store previous MHIs after which the oldest MHI  is removed
with an addition of a recent MHI.

An overall motion is detected by computing the gradients of
MHIs in the memory buffer by convolving MHIs with a Sobel filter.
The gradients of MHIs point orthogonal to silhouettes’ boundaries.
The output of the gradient function is a mask which gives the angle
of gradients’ direction (motion orientation). Overall motion orien-
tation has been computed in ROIleft and ROIright, respectively, by
taking the vector-sum of all the gradient orientations inside the
mask as shown in Fig. 3b.

Once motion orientation is computed, the local motion is seg-
mented within ROIleft and ROIright, respectively. MHIs in the buffers
are scanned for silhouette regions with a recent timestamp to
ork for finger-tapping evaluation in Parkinson’s disease. Artif Intell

search for the most recent motion toward the motion orientation.
Floodfilling is done to isolate the locally found motion silhouettes in
ROIleft and ROIright, respectively. The motion silhouettes are merged
as connected components representing the moving pixels of hand.

dx.doi.org/10.1016/j.artmed.2013.11.004
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Fig. 2. The golden ratio and the role of face detection in finger-tapping quantification. (a) (i) The model is based upon the golden ratios called the proportions of man. (ii)
Face  height (marked with arrows) can be used to approximate hand’s length. (b) Face-rectangle. (c) Virtual framework for tapping analysis.

Fig. 3. Index-fingers motion detection. Motion orientation of index-fingers in ROIleft and ROIright, respectively, is determined to identify the opening and closing phases of
tapping. Tip of index-fingers are marked to locate finger coordinates over time to produce a tapping signal.

F
w

Please cite this article in press as: Khan T, et al. A computer vision framew
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ig. 4. The tapping signals produced by the video processing of representative clinically r
ith  the increase in symptom levels. Non-dominant (left) hand tapping signals deteriora
ork for finger-tapping evaluation in Parkinson’s disease. Artif Intell

ated samples. The tapping rhythm deteriorates as well as the amplitude decreases
tes more than the dominant (right) hand.

dx.doi.org/10.1016/j.artmed.2013.11.004
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he top position of the connected component (Fig. 3c and d) is
etermined to locate the tip of an index-finger and a position-
arker is placed over the tip coordinates. The moving y-coordinate

amplitude) of this position-marker over time forms the tapping
ime-series. The signal values are divided by the face-rectangle
eight to normalize the effect of distance variation between cam-
ra and subject for a correct estimation of tapping amplitude. Fig. 4
llustrates tapping signals acquired by the video processing of rep-
esentative clinically rated samples. It can be observed that the
hythm in these signals deteriorates with the increasing symp-
om levels. The tapping signals produced by the left hand depict

ore deterioration. This is because the subjects have less con-
rol over their non-dominant (left) hand which resulted in varying
mplitude and hesitations in the tapping signal as compared to the
ominant (right) hand.

.5. Baseline calibration and the measurement accuracy

The varying hand position in the video frames shifts the base-
ine of tapping signal from the horizontal axis (Fig. 4). One way  to
alibrate the baseline is to apply a moving average on the signal
alues so that the signal lies over the horizontal zero-axis. This can
e done by negating each signal value with a moving average of 4
eighboring values (2 neighbors on left and 2 on right) as given in
q. (1).

i−2 = Ti − Ti−2 + Ti−1 + Ti+1 + Ti+2

4
for i = 3, . . .,  n − 2 (1)

here T1,. . .,n and S1,. . .,n−4 are the original and the calibrated
apping signals, respectively, and n is the signal length. The base-
ine calibration was particularly useful in a situation where the
ndex-finger movements were affected due to dyskinesias and the
atients could not keep control of their hands constantly at one
osition during finger tapping (Fig. 6II.A). The calibrated signal is
hen filtered using the 3-standard deviation rule to remove possible
utliers (noise) in the signal.

In order to assess the accuracy of this algorithm in measuring
he index finger motion, we compared the tapping signals produced
sing our non-invasive motion-based method, and the tapping sig-
als produced using an invasive marker-based method. To perform
his comparison, two red-color passive markers were attached on
he tip of the index-finger and thumb on both hands of the HC
Fig. 5a). The RFT was carefully recorded after ensuring that there
as no other red-color object placed in the background.

Each frame of the recorded video was transformed from RGB
nto HSV (Hue-Saturation-Value) color space [22]. The values of
ue, saturation and value were normalized in the range 0–255. Red
olor was segmented in ROIleft and ROIright, respectively using the
ue range of ‘210–255’ and ‘0–10’, saturation range of ‘127–255’,
nd the value range of ‘127–255’. The segmented pixels were
erged as connected components representing the red-color pas-

ive markers. The top position of connected component was deter-
ined and a position-marker was placed over the pixel coordinates.

he moving y-coordinate (amplitude) of position-marker over time
as used to produce the tapping time-series. This time-series was
ormalized using the face height. The baseline was  adjusted using
q. (1). A right hand tapping signal is shown in Fig. 5b.

The same video was then used to produce another tapping sig-
al using the motion-based method. The signal was normalized
nd calibrated, and then was compared with the calibrated tap-
ing signal produced using the marker-based method. It can be
een in Fig. 5a that the position-markers for both motion-based and
Please cite this article in press as: Khan T, et al. A computer vision framew
Med  (2013), http://dx.doi.org/10.1016/j.artmed.2013.11.004

he marker-based methods are overlapping between each other in
he closing and opening phases of tapping. Also the tapping signals
roduced by these methods are similar and are nearly overlapping
Fig. 5b). A minor translation in the motion-based signal can be
 PRESS
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noticed which is due to the fact that the motion algorithm has to
buffer previous 4 frames to compute motion in the next frame. A
peak-finder was  utilized to locate peaks and valleys in these sig-
nals. The magnitude difference of peaks and valleys between the
two signals for both left and right hand was  computed.

In a total of 168 tapping signals (right and left hand tap-
ping signals in 84 videos of HC), the magnitude difference
was 3.314 ± 0.09 pixels between the peaks and 2.44 ± 0.05 pixels
between the valleys within the 95% confidence interval. This proves
that a motion-based marker-less system can produce a tapping sig-
nal similar to a marker-based system with a very minor difference
of accuracy in measuring the index-finger motion. The motion-
based algorithm offers several other advantages compared to a
marker-based algorithm because the accuracy of color segmenta-
tion is highly dependent upon the colors in the background and is
more sensitive to illumination changes as compared to the motion
based algorithm. Secondly, a motion-based system is non-invasive
does not require markers, and does not cause any discomfort to the
patients in tapping.

2.6. Feature extraction

The biological rhythm in tapping is a representative feature
of brain function [23]. The disturbed rapid alternating move-
ments are the sign of brain dysfunction known in medical term as
‘arrhythmokinesis’. Shimoyama et al. [2] found that in the normal
subjects (1) the tapping frequency is lowered with advancing age,
(2) women  tap slower than men, and (3) tapping with the domi-
nant hand is faster than the non-dominant hand and is the correct
representative of brain function. According to them, the tapping
rhythm of the dominant hand is a generalized feature which can
distinguish between a person with PD and a normal subject. In PD,
the tapping amplitude varies depending upon patient’s condition,
i.e. it may  reduce in bradykinesias (reduced muscular movement)
or may  increase in dyskinesias (involuntarily muscular movements
caused by dopaminergic medication). There is a need of a signal
feature which can be used to identify both conditions.

The tapping features have been estimated from the dom-
inant hand tapping signal which was  the right hand for
all subjects. The signal baseline is calibrated (Section 2.5)
before computing these features. A novel feature called the
‘cross-correlation between the normalized peaks’ (CCNP) is
used for estimating the consistency and rhythm in tapping
. In this approach, the signal Si (Eq. (1)) is split into two  time-slots.
Time-slot 1 consists of signal values from 2 to 5 s (75 frames) of the
tapping video. Time-slot 2 consists of signal values from 6 to 9 s (75
frames). A peak-finder algorithm is applied over the tapping signal
to find out peak magnitudes and locations (Fig. 6IC and IIC). A new
‘peak-signal’ is constructed by joining the peak points within each
time slot. In case of ‘normal’ rated tapping signal, peak-signal-1 and
peak-signal-2 exhibited similarity in peak occurrences as well as in
the peak magnitudes representing rhythm and tapping consistency
over time. This similarity can also be considered a measure of sub-
jects’ stamina as the tapping amplitude reduces due to fatigue in
later stages of tapping.

By contrast, the peak-signal-2 in an ‘impaired’ signal (Fig. 6II.E)
represents the slot where the subject hesitated for a while. This has
resulted in a rather straighter line with lower magnitude as com-
pared to peak-signal-1 (Fig. 6II.D). Cross-correlation is applied to
measure the similarity between peak-signals 1 and 2 using Eq. (2).
ork for finger-tapping evaluation in Parkinson’s disease. Artif Intell

CCNPP1P2 (m) = 1
N

N−m+1∑
n=1

P1(n)P2(n + m − 1) for m = 1, 2, . . .,  N

(2)

dx.doi.org/10.1016/j.artmed.2013.11.004
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Fig. 5. A comparison between the marker-based and the marker-less methods of tapping. (a) Opening and closing phases of tapping are shown. The marker-based (in blue)
and  the marker-less (in red) position-markers of moving index-finger are overlapping in the opening and closing phases of tapping. (b) Calibrated tapping signals of right
hand  produced by the marker-less (motion) and the marker-based (color) methods are shown. Overlapping between these signals, accompanied by a minor translation in
the  motion-based signal in relation to the color-based signal, can be noticed. (For interpretation of the references to color in this figure legend, the reader is referred to the
web  version of the article).

Fig. 6. Cross-correlation between the normalized peaks (CCNP). The signal rated ‘normal’ shows rhythm and consistency in tapping over time. A comparison between the
tapping  signals rated ‘normal’ and ‘severely-impaired’ shows that the CCNP values are larger in normal tapping.

dx.doi.org/10.1016/j.artmed.2013.11.004
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here P1 and P2 are peak-signals 1 and 2 of length N, respectively,
nd M is the number of correlation points. In case if P1 and P2 have
ifferent lengths, the shorter signal is zero-padded to the length
f the longer signal.

The CCNP showed high correlation values between peak-signals
 and 2 in ‘normal’ case. By contrast, low correlation between peak-
ignals 1 and 2 is observed in the ‘impaired’ case. The average
etween CCNP values (AvgCCNP) is computed (Eq. (3)) and used in
eature analysis as the representative feature of tapping rhythm in
he opening phases of index-finger.

vgCCNP =
∑M

m=1CCNPP1P2 (m)

M
(3)

imilarly, the valley-signals 1 and 2 are derived from the calibrated
apping signal Si so that the rhythm in closing phases of index-finger
an be analyzed separately. Cross-correlation between the valley-
ignals 1 and 2 is computed using Eq. (4). The average between
CNV (AvgCCNV) values is computed using Eq. (5).

CNVV1V2 (m) = 1
N

N−m+1∑
n=1

V1(n)V2(n + m − 1) for m = 1, 2, . . .,  N

(4)

vgCCNV =
∑M

m=1CCNVV1V2 (m)

M
(5)

here V1 and V2 are valley-signals 1 and 2 of length N, and M is
he number of correlation points. In case if V1 and V2 have different
engths, the shorter signal is zero-padded to the length of the longer
ignal.

Other tapping features extracted from the calibrated tapping
ignal Si and utilized in symptom classification are listed in Table 1.
hese features incorporate clinical symptoms visually inspected
y clinicians to rate between the UPDRS-FT levels. The ‘tapping
peed’, ‘average maximum amplitude of finger taps’ and ‘variation
oefficient (VC) in maximum amplitude’ have been investigated
reviously to detect slowed pace, amplitude reduction and fatigue

n tapping, respectively. These features were extracted using mag-
etic sensors [11] attached with the index-finger and thumb for
easurements of tapping movements, whereas here they are

omputed from the calibrated tapping signal Si produced by the
V-based system.

Some features such as total number of taps (Tn) are computed
y applying a peak-detector over the tapping signal Si where the
umber of peak locations represents the number of taps. The dif-

erence between the number of taps in time slots 1 and 2 (�Tn) can
e used to detect fatigue in the late stage of tapping (Eq. (6)).

Tn = Tn1 − Tn2 (6)

here Tn1 and Tn2 are the number of peaks in time slots 1 and 2 of
apping signal, respectively.

A maximum tap amplitude (TA) can be computed by summing up
he peak magnitude and the magnitude of valley adjacent left to the
eak. The difference between the averages of maximum amplitude
f finger taps in time slots 1 and 2 (�A) can be used to estimate
mplitude reduction caused by fatigue in the late stage of tapping
Eq. (7)).

A  =
∑n1

k=1TA1k

n1
−
∑n2

k=1TA2k

n2
(7)

here TA1k and TA2k are the maximum amplitude of taps in time
Please cite this article in press as: Khan T, et al. A computer vision framew
Med  (2013), http://dx.doi.org/10.1016/j.artmed.2013.11.004

lots 1 and 2, respectively, and n1 and n2 are number of taps in
ime slots 1 and 2.

The VC in maximum amplitude of finger taps (VA) can be used
o estimate amplitude reduction (Eq. (8)). Similarly, the difference
 PRESS
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between the VCs in maximum amplitude of finger taps in time slots
1 and 2 (�VA)  can be used to estimate the difference in amplitude
variation in the early and the later stages of tapping (Eq. (9)).

VA =

√
(1/n)

∑n
k=1(TAk − T̄A)

2

T̄A

(8)

�VA = VA1 − VA2 (9)

where T̄A is the average between maximum amplitude of taps TAk
in the tapping signal Si, and n is the total number of taps in that
signal. VA1 and VA2 are the VCs in maximum amplitude of finger
taps in time slots 1 and 2 of tapping signal, respectively.

The interval from one peak location to the adjacent peak location
represents a tap interval. Similarly, a tap distance covered by the
index-finger can be computed by summing up the absolute of the
signal values in a single tap interval. Tapping speed in a tap interval
can be computed by dividing the tap distance by the tap interval.
The average tapping speed (Ts) can be computed using Eq. (10).

Ts = 1
n

n∑
i=1

TDi

TIi
(10)

where TI is a tap interval, TD is the distance covered by the index-
finger within that interval, and n is the total number of tap intervals
in the tapping signal Si.

De-acceleration in tapping speed is a symptom of fatigue. The
VCs in tapping speed (VTs) and tapping acceleration (Ac) can be
computed to estimate fatigue symptoms (Eqs. (11) and (12)).

VTs =

√
(1/n)

∑n
i=1(TDi/TIi − Ts)

2

Ts
(11)

Ac = 1
n − 1

n−1∑
i=1

|Tvi+1 − Tvi|
TIi+1

(12)

where Tv is the speed of index finger within a tap interval TI.
Other pace-related tapping features such as the opening velocity

of index-finger can be computed by summing up the peak and val-
ley magnitudes (adjacent left to the peak) and dividing the summed
magnitude by the time interval between peak and valley locations.
The average opening velocity (OT) can be computed using Eq. (13).

OT = 1
n

n∑
i=1

(pi + |v∗
i
|)

TOIi
(13)

where p is the peak magnitude, v* is the magnitude of valley adja-
cent left to the peak, n is the total number of tap intervals, and TOI
is the time interval between the peak and valley locations. Sim-
ilarly, the closing velocity can be computed by summing up the
valley magnitude with the magnitude of adjacent peak to the left
and dividing the summed magnitude by the time interval between
their locations. The average closing velocity (CT) can be computed
using Eq. (14).

CT = 1
n

n∑
i=1

(|vi| + p∗
i
)

TCIi
(14)
ork for finger-tapping evaluation in Parkinson’s disease. Artif Intell

where v is the valley magnitude, p* is the magnitude of peak adja-
cent left to the valley, n is the total number of tap intervals, and TCI
is the time interval between the peak and valley locations.

dx.doi.org/10.1016/j.artmed.2013.11.004
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Table 1
The tapping features. Features incorporate clinical symptoms (i.e. slow paced, amplitude reduction between index-finger and thumb, fatigue and arrhythmia) visually
inspected by clinicians to rate between the UPDRS-FT levels.

Symbol Feature description Related symptom (based on UPDRS-FTa)

1.Tn Total number of taps Slowed pace
2.  �Tn Difference between number of taps in time slots 1 and 2 Fatigue
3.  Ts Average tapping speed Slowed pace
4.  VTs Variation coefficient (VC) in tapping speed Fatigue
5.  �A Difference between the average maximum amplitude of finger taps in time slots 1 and 2 Fatigue and amplitude reduction
6.  VA VC in the maximum amplitude of finger taps Fatigue and amplitude reduction
7.  �VA Difference between the VCs in maximum amplitude of finger taps in time slots 1 and 2 Fatigue and amplitude reduction
8.  OT Average opening velocity of index-finger Slowed pace
9.  CT Average closing velocity of index-finger Slowed pace
10.  Ac Tapping acceleration Fatigue
11.  TZ Average zero-crossing rate Slowed pace
12.  TE Signal energy Slow pace and amplitude reduction
13.  AvgCCNP Mean of cross-correlation between the normalized peaks Arrhythmia
14.  AvgCCNV Mean of cross-correlation between the normalized valleys Arrhythmia
15.  FS Standard deviation of face-rectangle centroid during tapping –
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a UPDRS-FT [16] (patient taps thumb with index finger in rapid succession). 0, n
efinite and early fatiguing. May  have occasional arrests in movement (i.e. mild arr
ngoing movement (i.e. severe arrhythmia).

Further assessments are made on spectral variability of tapping
ignal using the signal energy (TE) and average zero-crossing rate
TZ) given in Eqs. (15) and (16), respectively.

E =
∑N

i=1S2
i

N
(15)

here S1,. . .,N is the calibrated tapping signal of length N.

z =
M∑

m=1

Z(m)/M; Z(m) = fs
2N

(
n∑

i=1

|sign(Sm(i)) − sign(Sm(i − 1))|

)
(16)

here M is the total number of signal blocks, fs is the sampling rate
i.e. 25 fps), n is the window size (kept as n = 5), Sm is the windowed
art of the signal S1,. . .,N, and Z (m)  is the zero-crossing rate in the
indowed signal Sm of block m.  For a signal length of 150 frames,
here n is kept as 5, the number of signal blocks M is 150/5 = 30.

An important consideration in feature extraction is the move-
ent of the head during RFT which is motivated from the fact that

ead mobilization correlates well with the dominant hand index-
nger tapping [24]. In a previous study, it was revealed that head
rifts up to 1.6 mm during tapping in normal controls. Since face-
ectangle is readily computed during face detection step, variations
n head position are estimated by computing the Euclidean distance
d between the face-rectangle center in the first video frame and
he face-rectangle center in the other video frames. The standard
eviation between fd (FS) in the total video frames N (Eq. (17)) is
omputed and used in the feature analysis.

S =

√√√√ 1
N − 1

N−1∑
d=1

(fd+1 −
−
fd)

2

(17)

.7. Feature selection and analysis

The UPDRS based finger-tapping assessments are subjective and
he raters may  differ in opinion when identifying the symptom
evel. For instance, rater-1 identified 123 videos as level ‘0’, 163
ideos as ‘1’, 78 videos as ‘2’ and 23 videos as ‘3’, whereas rater-2
Please cite this article in press as: Khan T, et al. A computer vision framew
Med  (2013), http://dx.doi.org/10.1016/j.artmed.2013.11.004

dentified 77 videos as ‘0’, 184 videos as ‘1’, 101 videos as ‘2’ and
5 videos as ‘3’. The inter-rater agreement between the two raters

s analyzed using Spearman pair-wise correlation and is computed
s rho = 0.74.
; 1, mild slowing (in pace) and/or reduction in amplitude; 2, moderately impaired.
ia). 3, severely impaired. Frequent hesitation in initiating movements or arrests in

An appropriate feature validation approach would be to cor-
relate the tapping features with the target ratings provided by the
two raters. The choice of correlation model however is complicated
because a human rater has to follow a range of tapping symptoms
in discriminating between the severity levels. Sometimes two RFT
samples are rated similar by a clinician yet have a different type of
anomaly. For example, strong symptoms of fatigue in one sample
may  exist weakly in another sample rated similar but which has
severe symptoms of arrhythmia. Another important consideration
for choosing an appropriate correlation model is that the target
(UPDRS-FT) classes exhibit a monotonic rank-order, i.e. ‘0’ (nor-
mal) to ‘3’ (‘severe impairment’). The situation demands a highly
structured and hierarchical correlation model for feature analysis.

The Guttman correlation model [25] fits the ranked nature of
the tapping dataset where an expert examines a range of differ-
ent symptoms to rate between the severity levels. The Guttman
scale is appropriate for non-parametric analysis of a clinically rated
dataset as it can provide a hierarchical rank-order structure for a set
of symptoms representing a single severity level. In the Guttman
scale, a variable y (i.e. a human rater) with m distinct ordered values
(i.e. UPDRS-FT classes) is said to be a function of variable x (a com-
puted tapping feature) with n distinct ordered values, if for each
value of x there is one and only one target value of y. The converse
needs not to be hold, i.e. for the same target value of y, there may  be
two or more values of x. Moreover, on a Guttman scale, an agree-
ment to one target class implies an agreement with the lower-order
target classes. The clinical ratings from the two raters have been
used as the target variables in Guttman correlation analysis. The
Guttman monotonicity coefficient (�2) is utilized to map  the tap-
ping features with target variables. The formula for computing �2
is given in Eq. (18). Jackknifing has been used as a cross-validation
method to estimate the precision of �2. The jackknifing estimates
of �2 are listed in Table 2.

�2 =
∑n

h=1

∑n
i=1(xh − xi)(yh − yi)∑n

h=1

∑n
i=1|xh − xi||yh − yi|

(18)

Nearly all the tapping features showed strong monotonic corre-
lations (or anti-correlations) with the clinical ratings provided by
rater-1 (Table 2). The features representing arrhythmia and fatigue
symptoms (i.e. AvgCCNP, VTs, �VA and VA) were very strongly
ork for finger-tapping evaluation in Parkinson’s disease. Artif Intell

anti-correlated (�2 < −0.8) and they decreased monotonically with
increasing symptom severity. These correlations were statistically
significant (p < 0.0001). The features representing pace and ampli-
tude reduction showed comparatively moderate correlations (or

dx.doi.org/10.1016/j.artmed.2013.11.004
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Table 2
Jackknifing estimates of Guttman monotonicity coefficient (�2). Estimates in bold represent strong absolute correlation (�2 > 0.5 or �2 < −0.5) between the clinical ratings
and  the respective tapping feature (p < 0.0001).

Tn �Tn Ts VTs �A  �VA VA OT CT Ac TZ TE AvgCCNP AvgCCNV FS

Tn 1
�Tn 0.70 1
Ts 0.29 0.05 1
VTs −0.39 −0.49 0.83 1
�A  −0.69 −0.54 0.92 0.87 1
�VA  −0.62 −0.59 0.77 1 0.91 1
VA −0.38 −0.47 0.82 1 0.87 1 1
OT 0.01 −0.26 1 0.83 0.96 0.81 0.83 1
CT −0.01 −0.28 1 0.84 0.95 0.82 0.84 1 1
Ac 0.61 0.05 0.93 0.57 0.60 0.45 0.57 0.91 0.96 1
TZ 0.91 0.71 0.05 −0.72 −0.69 −0.83 −0.71 −0.11 −0.11 0.49 1
TE −0.11 −0.39 −0.06 −0.02 −0.04 −0.01 −0.02 −0.02 −0.01 0.01 −0.42 1
AvgCCNP −0.51 −0.56 0.93 0.97 0.94 0.97 0.97 0.93 0.92 0.62 −0.68 −0.11 1
AvgCCNV −0.16 −0.24 0.94 0.53 0.95 0.56 0.53 0.94 0.93 0.75 −0.13 0.24 0.83 1
FS  0.28 0.36 0.58 −0.08 0.36 −0.01 0.08 0.54 0.54 0.56 0.51 −0.43 0.28 0.56 1
Target 1a 0.38 0.62 −0.54 −0.84 −0.68 −0.86 −0.84 −0.59 −0.63 −0.44 0.69 −0.18 −0.80 −0.39 0.17
Target  2b 0.16 0.44 −0.38 −0.41 −0.38 −0.41 −0.41 −0.38 −0.38 −0.31 0.37 −0.31 −0.40 −0.26 0.42
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old represents strong correlation.
a Clinical ratings from rater-1.
b Clinical ratings from rater-2.

nti-correlations) than the features representing arrhythmia and
atigue. The head movements during tapping (FS) was  weakly cor-
elated (�2 = 0.17).

In comparison to rater-1, the representative feature of arrhyth-
ia  and fatigue were moderately anti-correlated with the clinical

atings provided by rater-2. The features representing pace and
mplitude reduction were weakly correlated (or anti-correlated).
t can be noticed that the head movements (FS), which was mod-
rately correlated (�2 = 0.42) with Target-2 (Table 2), may  have
reated bias in assessing tapping disabilities resulting in coarser
cores by rater 2.

Despite the differences between the raters, the fatigue and
rrhythmia representative features were either very strongly
nti-correlated with Target-1 or moderately anti-correlated with
arget-2 (Table 2). Some of these features were perfectly correlated
etween each other. For example, tapping speed (Ts) was perfectly
orrelated with opening (OT) and closing (CT) velocities. The repre-
entative features of fatigue VTs and �VA were perfectly correlated
etween each other. Redundancies are eliminated by choosing that
eature which has the higher sum of absolute correlation values
etween Target-1 and Target-2. The step eliminates Ts, OT, VTs and
A from the list of tapping features and preserves CT and �VA.  The
emaining 11 features are utilized in tapping classification.

Apart from eliminating feature redundancies, the feature set
as further pruned using a chi-squared feature selection algo-

ithm [26]. The chi-squared statistic calculates the goodness of fit
f how well an input is correlated with the target class. The method
eturns a ranking of each feature in decreasing order by the value
f chi-squared statistic in relation to the class label. By this way  the
ncorrelated data can be discarded prior to classification, resulting

n improved classification accuracy.

.8. Tapping classification

The utilization of SVM classifiers in biomedical decision support
ystems has gained immense popularity for their ability to imple-
ent flexible decision boundaries in high dimensional feature

pace. The SVM provides a fast training algorithm that guarantees
he optimality of training results [27]. It requires only a little a priori
Please cite this article in press as: Khan T, et al. A computer vision framew
Med  (2013), http://dx.doi.org/10.1016/j.artmed.2013.11.004

nowledge, i.e. only a labeled dataset. The implicit regularization of
lassifier’s complexity avoids over-fitting and leads to good gener-
lizations. A brief introduction of SVM is given. Details can be found
lsewhere [28].
Considering an n-class classification problem and a set of
training vectors {Vi}i=1,. . .,M with corresponding label Si, the SVM
classifier assigns a new label Ŝ to a test vector T by evaluating

Ŝ =
∑

i

˛iSiK(T, Vi) + b (19)

where the weights ˛i and bias b are SVM parameters which are
maximized during SVM training using Eq. (20).∑

i

˛i − 1
2

∑
i,j

˛i˛jSiSjK(Vi, Vj) (20)

Under the constraints

0 ≤ ˛i ≤ C and
∑

i

˛iSi = 0 (21)

where C is a positive constant called the SVM complexity parameter
that weights the influence of training errors. K(;) is the SVM kernel.
A universal kernel function based on Pearson VII function (PUK)
[29] was utilized in training the SVM. PUK is generally used for the
curve fitting purposes and has a general form given in Eq. (22).

f (x) = H

[1 + ((2(x − x0)
√

21/ω − 1)/�)
2
]
ω (22)

Here H is the peak height at the center x0 of the peak and x is an
independent variable. The variables � and ω control the half-width
and the tailing factor of peak, respectively. Importantly a curve with
ω equals to 3 and � equals to 1, is comparable to a sigmoid function
used in the neural network modeling [29].

For a given set of training vectors {Vi}i=1,. . .,M, Ustun et al. [29]
modified Eq. (22) to formulate a kernel function given in Eq. (23).

K(Vi, Vj) = 1

[1 + ((2
√∣∣Vi − Vj

∣∣2√21/ω − 1)/�)
2

]

ω (23)

As can be seen, the single variable x in Eq. (22) is replaced by two
training vectors Vi and Vj. A Euclidean distance between these vec-
tors is introduced so that the two identical training vectors would
ork for finger-tapping evaluation in Parkinson’s disease. Artif Intell

have a zero distance. The peak height H is replaced by 1 and the
peak-offset x0 is removed.

If K(Vi, Vj) is a positive definite, then Eqs. (19) and (20) may  lead
to a convex quadratic programming (QP) optimization problem,

dx.doi.org/10.1016/j.artmed.2013.11.004
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or which the convergence toward global optimum can be guaran-
eed. This optimization problem can be solved using the sequential

inimal optimization (SMO) algorithm [30]. SMO decomposes the
verall QP problem into QP sub-problems. This decomposition is
erformed by solving the smallest possible QP optimization prob-

em at every step involving two Lagrange multipliers satisfying the
inear equality constraint to find local optima. At each decomposi-
ion step, SMO  finds the optimal values for these multipliers and
pdates the SVM cost function to reflect a new optimal separa-
ion between the training vectors holding one class label and the
raining vectors holding the other class labels.

The SVM classifier based on SMO  and configured with PUK ker-
el function, with ω equals to 3 and � equals to 1, was utilized

or tapping classification. A 10-fold cross validation strategy [31]
as adopted to obtain unbiased generalization estimates. The con-

usion matrices (Table 4.1a and 2a) were used to characterize the
lassification performance. Each row in the confusion matrix rep-
esents the actual class instances while each column represents
he instances in a predicted class. The diagonals represent the cor-
ectly predicted samples or the true positives in each class. In order
o improve the classification accuracy, the chi-squared algorithm
tratified by 10-fold cross validation was used for feature selection.
urther, the receiver operating characteristic (ROC) curve was  uti-
ized to analyze the feasibility of classification model independent
f the class distribution [32].

Three different classification experiments were performed on
he tapping features selected using the Guttman correlation anal-
sis and chi-squared test. In the first experiment the features were
sed to classify between UPDRS-FT levels. Due to a low agree-
ent between the two raters (Spearman’s rho = 0.74), classification

ests were performed separately for rater-1 and rater-2 using their
atings as targets. Out of the total 387 video samples, rater-1 cat-
gorized 123 videos as ‘0’, 163 as ‘1’, 78 as ‘2’ and 23 videos as ‘3’.
n the other hand, rater-2 categorized 77 videos as ‘0’, 184 as ‘1’,
01 as ‘2’ and 25 videos as‘3’. As there were very few samples cat-
gorized by the two raters as ‘3’ (severely impaired); in order to
void standard error in classification, these samples were merged
nto class ‘2’. This left behind 3 levels of symptom severities (i.e.
0: normal’, ‘1: mild’ and ‘2: moderate-severe’) for classification. In
he second experiment, classification test was performed on the
apping features to separate between PD and HC samples. Further
ests were made in the third experiment to compare between the
roposed CV-based SVM classification scheme and a sensor-based

og-linearized Gaussian mixture networks (LLGMN) classification
cheme reported by Shima et al. [33].

.8.1. Experiment 1: Classification between UPDRS-FT levels
Two classification matrices of dimensions 11 (selected fea-

ures) × 387 (samples) were formed based on the targets provided
y rater-1 and rater-2, respectively. The features were normalized
n a scale of 0 to 1. A chi-squared value is yielded for each tapping
eature fitting the test, and 0 for features failing the test. It was
oticeable that the features that showed strong correlations with
he clinical ratings in Guttman correlation analysis also produced
igh chi-square values (Table 3). It was further noticed that FS was
anked second-last for the targets provided by rater-1, whereas it
as ranked 5th for the targets provided by rater-2. TE failed the

hi-squared test and was discarded. FS was removed from the list of
eatures used in tapping classification as it was not directly related
Please cite this article in press as: Khan T, et al. A computer vision framew
Med  (2013), http://dx.doi.org/10.1016/j.artmed.2013.11.004

o the index-finger movements. The remaining features were used
o classify between the levels of symptom severities using the SVM
lgorithm. Also, the SVM complexity parameter C was  set to 1 for
lassification experiments. The results are discussed in Section 3.1.
 PRESS
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2.8.2. Experiment 2: Classification between PD and HC samples
A further classification test was  performed on the tapping fea-

tures to separate between 387 PD and 84 HC samples. The same
tapping features which were previously used in classifying the
UPDRS-FT levels (given in Table 3) were used to classify between
the HC and PD samples. The SVM complexity parameter C was tuned
to improve the generalization performance. The best classification
results were achieved at C = 13. The kernel configuration was kept
the same, i.e. ω = 3 and � = 1. For feature selection, the goodness of fit
of each feature was evaluated using the chi-squared test. According
to the test (Table 5a), the representative features of ‘slowed pace’
and ‘amplitude reduction’, TZ, TE and Tn, were the top ranked fea-
tures, followed by the arrhythmia features AvgCCNV and AvgCCNP.
The fatigue features �VA,  �A  and Ac were ranked low. �Tn and CT

could not pass the fitness test and were discarded. The remaining
8 features were used in classification. The results are discussed in
Section 3.2.

2.8.3. Experiment 3: Comparison between SVM and LLGMN
schemes

A comparative analysis was made between the proposed
CV-based SVM classification scheme and a sensor-based log-
linearized Gaussian mixture networks (LLGMN) classification
scheme reported by Shima et al. [33]. This LLGMN scheme utilized
magnetic sensors. The magnetic coils were attached to the distal
parts of index-finger and thumb. A total of 65 RFT samples, 33 PD
patient and 32 HC, were acquired. The patient samples were cate-
gorized by a clinician between mild (UPDRS-FT ‘1’) and moderate
(UPDRS-FT ‘2’) symptom levels, but only with an aim to perform a
correlation analysis between the symptom severities and feature
quantities. The features were extracted from tapping samples to
estimate pace, amplitude and fatigue. Out of the 11 tapping fea-
tures, 5 features (VA, OT, CT, TZ and TE) were similar to the features
used in the CV-based system (Table 1). Other 6 features were (1)
total tapping distance, (2) average maximum amplitude, (3) aver-
age finger tapping interval, (4) VC of finger tapping interval, (5) VC
of opening velocity, and (6) VC of closing velocity. These 11 features
categorized between 33 patients and 32 HC samples with 93.1%
accuracy. It can be noticed that this sensor-based system did not
incorporate any feature to estimate tapping rhythm.

In order to compare between the CV-based and sensor-based
classification schemes, we  performed three further experiments to
discriminate between HC and PD samples. Since the sensor-based
scheme utilized the samples rated ‘mild’ and ‘moderate’ to rep-
resent the patient groups, in the same way, we selected patient
samples rated ‘mild’ (UPDRS-FT ‘1’) and ‘moderate’ (UPDRS-FT ‘2’)
in our dataset to form three different patient groups. In the first
experiment, the samples rated ‘1’ and ‘2’ were combined to repre-
sent the first patient group. In the second experiment, the samples
rated ‘1’ were selected to represent the second patient group. Sim-
ilarly, in the third experiment, the samples rated ‘2’ were chosen
to represent the third patient group. Due to the difference in opin-
ion between the two raters in identifying UPDRS-FT levels, each
classification experiment was  performed separately for rater-1 and
rater-2, respectively. The SVM complexity parameter and the ker-
nel configuration was kept the same, i.e. C = 13, ω = 3 and � = 1. The
tapping features listed in Table 5a were used. The results are given
in Section 3.3.

3. Results
ork for finger-tapping evaluation in Parkinson’s disease. Artif Intell

3.1. Experiment 1: Classification between UPDRS-FT levels

Two different classification tests were performed on the tapping
features using the clinical ratings from rater-1 and rater-2 as targets

dx.doi.org/10.1016/j.artmed.2013.11.004
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Table 3
Chi-squared evaluation of tapping features.

Rater 1 Rater 2

Rank Feature Average merit Rank Feature Average merit

1 �VA 199.4 ± 0.92 1 AvgCCNP 84.12 ± 8.25
2  AvgCCNP 169.44 ± 9.13 2 �VA 77.56 ± 14.55
3  �A  147.64 ± 10.8 3 TZ 77.84 ± 5.98
4  CT 134.89 ± 10.3 4 �A  66.06 ± 4.73
5  TZ 131.45 ± 4.93 5 FS 59.61 ± 6.27
6  Tn 62.56 ± 11.33 6 �Tn 50.25 ± 6.50
7  AvgCCNV 64.73 ± 11.79 7 CT 46.48 ± 3.47
8  �Tn 40.15 ± 3.925 8 AvgCCNV 38.16 ± 6.71
9  Ac 36.416 ± 2.71 9 Tn 31.26 ± 8.11
10  FS 34.716 ± 5.91 10 Ac 28.07 ± 2.82
11  TE 0 11 TE 22.03 ± 2.5

Table 4
Post classification analysis.

i
i
s
p
a
R
f
c
R
r

n test-1 and test-2, respectively. An accuracy of 88% was  achieved
n test-1 for classification of tapping features between 3-symptom
everity levels using 10-fold cross validation (Table 4.1). High true
ositive rates (TPR) were achieved for classes ‘0’ (90%), ‘1’ (89%)
nd ‘2’ (85%), respectively. It can be observed in Table 4.1b that the
OC curves for all symptom severity levels are protruding upwards

rom the diagonal threshold showing that the samples were effi-
iently distinguished in each symptom class. The area under the
Please cite this article in press as: Khan T, et al. A computer vision framew
Med  (2013), http://dx.doi.org/10.1016/j.artmed.2013.11.004

OC curves in symptom class ‘0’, ‘1’ and ‘2’ was 95%, 88% and 97%,
espectively. The averaged ROC area was 93%.

Table 5
Classification between PD and HC samples.
In contrast to test-1, the classification accuracy was low in test-
2 (76%). Despite of the fact that the averaged area under the ROC
curves was  high (83%), a low TPR (53%) was observed for classifica-
tion in the symptom class ‘0’. One possible reason for a low TPR in
‘0: normal’ class could be that rater-2 might have been influenced
by the head movements of patients during tapping, supported by
the fact that rater-2 ratings were moderately correlated (�2 = 0.42)
with FS and that FS was ranked 5th in the chi-squared test for the
ork for finger-tapping evaluation in Parkinson’s disease. Artif Intell

ratings provided by rater-2. The other possible reason could be that
rater-2 rated the samples in the knowledge that the patients were
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Table 6
Comparative analysis between LLGMN [33] and SVM.
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n the advanced stage of PD and with a low expectation that they
ould perform well in the tapping test.

.2. Experiment 2: Classification between PD and HC samples

An accuracy of 95.8% was achieved for classification between PD
nd HC samples (Table 5b). The TPRs were high for both HC (83%)
nd patient group (98%) (Table 5c). There were a total of 14 false
ositive samples in the HC group. This could be due to the fact that
ome of the samples in the patient group were rated ‘0: normal’
y both the clinicians, and that the features computed from the HC
amples matched with the features computed from the ‘normal’
amples in the patient group.

It is important to observe the variation between chi-squared test
esults for the features used in discriminating between HC and PD
amples (Table 5a) and the features used in discriminating between
PDRS-FT levels (Table 3). In case of UPDRS-FT, the representative

eatures of fatigue and arrhythmia were ranked higher by the chi-
quared test whereas the features representing pace and amplitude
eduction were placed in the lower ranks (Table 3). On the other
and, when classifying between HC and PD patients, the pace and
mplitude reduction features were ranked higher comparatively
o the arrhythmia and fatigue features (Table 5a). One reason for
his difference is that the arrhythmia and fatigue symptoms are
valuated by the clinicians in the 2nd (moderate) and 3rd (severe)
Please cite this article in press as: Khan T, et al. A computer vision framew
Med  (2013), http://dx.doi.org/10.1016/j.artmed.2013.11.004

ymptom levels in the UPDRS-FT (see Table 1) [16]. A clinician,
ollowing the UPDRS-FT, would mark a sample as ‘moderately’ or
severely’ impaired only if he detects fatigue and arrhythmia symp-
oms in tapping. Besides, the pace is only confined to the 1st (mild)
symptom level of the UPDRS-FT and is ignored in other symptom
severity levels.

On the other hand, when separating between the HC and patient
group, the representative features of pace, TZ, TE and Tn were
ranked top by the chi-squared test. The Guttman correlation analy-
sis (Table 2) showed that TZ increases with the increasing symptom
severity. Moreover, the group means for TZ were 0.14 ± 0.005 for
HC and 0.23 ± 0.004 for the patient group within the 95% confi-
dence interval. These mean values were different with statistical
significance (p < 0.0001). One reason for the increasing value of TZ

is that the muscular rigidity in PD restricts the patients to stretch
their index-finger away from the thumb. When trying to tap with
lower amplitude and with an intention to tap as fast as possible,
the zero-crossings TZ as well as the number of taps Tn increases.
Besides, the signal energy TE reduces due to low amplitude in quick
tap successions. This is supported by the fact that the group means
for TE were higher for HC (0.24 ± 0.007) and lower for the patient
group (0.15 ± 0.002) within the 95% confidence interval. Impor-
tantly, the mean values were different with statistical significance
(p < 0.0001). Moreover, the Guttman correlates showed a decreas-
ing trend for TE (Table 2) with an increasing symptom severity.

3.3. Experiment 3: Comparison between SVM and LLGMN
schemes

In the first experiment to discriminate between HC and the
ork for finger-tapping evaluation in Parkinson’s disease. Artif Intell

first patient group, for rater-1, the CV-based tapping features cate-
gorized between 241 patients (TPR = 97%) and 84 HC (TPR = 82%)
samples with an accuracy of 93.5% in 10-fold cross-validation
(Table 6a). For rater-2, the same classification scheme categorized

dx.doi.org/10.1016/j.artmed.2013.11.004
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etween 285 patients (TPR = 97%) and 84 HC (TPR = 86%) samples
ith an accuracy of 94.3% (Table 6b).

In the second experiment to discriminate between HC and
he second patient group, for rater-1, the SVM classification
cheme categorized between 163 patients (TPR = 98%) and 84 HC
TPR = 90%) with 95.1% accuracy (Table 6a). For rater-2, the same
cheme categorized between 184 patients (TPR = 95%) and 84 HC
TPR = 84%) with 91.42% accuracy (Table 6b).

Lastly, in the third experiment to discriminate between HC and
he third patient group, for rater-1, the SVM classification scheme
ategorized between 78 patients (TPR = 95%) and 84 HC (TPR = 95%)
amples with 95.1% accuracy (Table 6a). For rater-2, the same
cheme categorized between 101 patients (TPR = 100%) and 84 HC
TPR = 95%) with 97.8% accuracy (Table 6b).

In all these classification experiments (Table 6), the proposed
V-based SVM scheme discriminated between HC and patient
roup with an average 94.5% accuracy which is comparable to
he 93.1% classification accuracy of sensor-based LLGMN sys-
em [33]. Since both these classification schemes, CV-based and
ensor-based, utilized more or less the same tapping features, the
xperiments determine the efficacy of features in producing high
lassification rates irrespective of the type of method being used to
roduce the tapping signals.

. Discussion

In this paper we have introduced a novel CV framework for
bjective assessment of rapid finger tapping. The uniqueness of this
ethod is the utilization of facial features to normalize the tapping

ignal and to cope with camera calibration. Besides, the method
s able to adjust and quantify tapping signals that are affected
y involuntary movements of hands. Importantly, the extracted
apping features showed strong statistically significant correlation
ith the experts’ opinion on tapping impairment. The described

ramework exhibited good classification performance in separat-
ng symptom severity levels based on clinical ratings, as well as in
dentifying PD patients and HC.

The method has advantages compared to other technologies
magnetic sensors [10,11,33], accelerometers [2,5,8,9,12]) that
ave been developed for PD evaluation to support subjective judg-
ent of raters. It does not require expensive setups and expertise

n operating the software. Rather it only requires a computer with
 webcam, which are low cost and are normally used in the house-
old. The subjects can perform the tapping task naturally in the
ame manner as instructed by the movement disorder expert.

It may  be further argued if it is necessary to perform face detec-
ion for tapping signal normalization since the present day RGB-D
Microsoft Kinect [34]) sensor allows computing the real distance
etween index-finger tip position and camera. However, the cur-
ent studies on motion detection [35–42] agree that kinect sensor
s not capable to detect fine body movements, although it can be
sed to detect gross motion of the body. It is primarily due to
he reason that the depth data provided by kinect presents sev-
ral noise-related problems such as holes in the depth image [39],
isalignment in the image and the lack of sharp object boundaries

40], which suggests that kinect is unfeasible to be used for track-
ng fine motion details such as finger movements. To comprehend
he problem of holes, studies have used morphological dilation and
rosion filters [41] that are again not suitable to be used for tracking

 moving index-finger, which is thin. These morphological filters
an cause incorrect readings due to the dilated and eroded pixels
f index-finger top position.
Please cite this article in press as: Khan T, et al. A computer vision framew
Med  (2013), http://dx.doi.org/10.1016/j.artmed.2013.11.004

Instead, the proposed methodology can be optimized with high
esolution video recordings which may  allow constructing a hand
odel to measure biomechanics such as joint angles and flex-

ons of fingers and thumb. Another alternative is to use a recently
 PRESS
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introduced technology called leap motion [43], which is capa-
ble to compute exoskeleton of human hand. Current research is
now combining leap motion and kinect sensors to perform fin-
ger tapping analysis [44]. However, there are drawbacks in leap
that needs further work [45]. For instance, one of the leap’s prob-
lems is inconsistency in the quality and behavior of its application
‘Airspace Home’, which uses a 3d vertical virtual plane to register
input. According to users [46], this framework works ineffectively
in practice because there is no physical feedback for when the fin-
ger has crossed the plane. In case if leap is utilized to track finger
motion in PD, this will require repeated experiments only because
the patients are unaware of the placement of their hands and the
feedback about their hands’ position is not given. This will further
complicate the symptom analysis because the repeated experi-
ments will cause exaggeration and fatigue for the patients that
will affect the accuracy of measuring symptom severity. Another
problem reported by the leap users is that, it is difficult to control
drawings on computer screen and it is very frequent that things
may  get clicked accidently. This suggests that leap is very sensitive
to motion and this lack of precision can produce great amount of
noise if it is used for finger motion analysis. Given that these prob-
lems are solved in the future leap updates, the technology can be
effective in estimating finger tapping symptoms in PD.

There were some limitations associated with this work. First,
the agreement between the clinical ratings provided by the two
raters was  not very strong (Spearman’s rho = 0.74). One possible
extension would be to utilize clinical ratings from another expert to
validate the classification performance. The second limitation was
the unavailability of enough video recordings which were marked
‘3’ (severely impaired) by the clinicians. Further, there were no
cases which were marked ‘4’ (unable to perform tapping) by the
clinicians based on the UPDRS-FT.

The plan now is to accommodate the described CV framework
into a recently developed test-battery system for PD symptom
assessment [47]. This system has the potential to generate a com-
prehensive symptom profile by quantifying a variety of fine motor
tests (spiral drawing and self-assessed symptoms) through statis-
tical and machine learning algorithms. The inclusion of RFT into
this system would enhance the coverage in symptom profiling. The
system would be able to process patient-recorded tapping videos
uploaded to a central server through a web  interface. It could pro-
vide a feasible solution for clinicians to track disease progression
and evaluate treatment interventions as well as benefit the patients
having physical restrictions by allowing at-home monitoring.

In summary, the high classification accuracies achieved in sepa-
rating between the UPDRS-FT symptom severity levels as well as in
separating between the HC and patient group support the feasibil-
ity of tapping features and SVM classification model to be used for
tapping symptom classification. Importantly, the tapping features
which were previously estimated by the sensor-based methods can
now be estimated by a non-invasive CV-based algorithm.
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