

Proceedings

Workshop on

Component-based Software Engineering

COMPOSING SYSTEMS FROM COMPONENTS

Editors:

Ivica Crnkovic, Stig Larsson and Judith Stafford

<<imp>>
ComAIComA

<<imp>>
ComBIComB

<<imp>>
ComCIComC

<<imp>>
SysXISysX

<<imp>>
ComYIComY

<<subsystem>>
ComAIComA

<<subsystem>>
ComBIComB

<<subsystem>>
ComCIComA

Conceptual
Architecture

Implementation
Architecture

Deployment
Architecture

:ComB:SysX :ComC

:ComA :ComB

Server DataServer

9th IEEE Conference and Workshops on

Engineering of Computer-Based Systems

April 8-11 2002 at Lund University, Lund, SWEDEN

Contents

Workshop Overview
Ivica Crnkovic, Stig Larsson, Judith Stafford
Workshop on Component-Based Software Engineering: Composing Systems from Components

Component-Bases Software engineering Process
Antonia Bertolino, Andrea Polini
Re-thinking the Development Process of Component-based Software
Jonas Hörnstein, Håkan Edler
Test Reuse in CBSE Using Built-in Tests

Software Architecture and CBSE
Iain Bate, Neil Audsley
Architecture Trade-off Analysis and the Influence on Component Design
Hans de Bruin, Hans van Vliet
The Future of Component-Based Development is Generation, not Retrieval
Ioana Sora, Pierre Verbaeten, Yolande Berbers
Using Component Composition for Self-customizable Systems
Frank Lüders, Andreas Sjögren
Case Study: A Component-Based Software Architecture for Industrial Control

Predictable composition
Ralf H. Reussner, Heinz W. Schmidt
Using Parameterised Contracts to Predict Properties of Component Based Software Architectures
E.M. Eskenazi, A.V. Fioukov, D.K. Hammer, M.R.V. Chaudron
Estimation of Static Memory Consumption for Systems Built from Source Code Components
Yu Jia, Yuqing Gu
The Representation of Component Semantics: A Feature-Oriented Approach

Dynamic Configuration of Component-based Systems
Ahmed Saleh
A Component-based Environment For Distributed Configurable Applications
Ian Oliver
Quality of Service Specification in Dynamically Replaceable Component Based Systems
Ronan Mac Laverty, Aapo Rautiainen, Francis Tam
Software Component Deployment in Consumer Device Product-lines

CBSE and Formal Methods
Rebeca P. Díaz Redondo, José J. Pazos Arias, Ana Fernández Vilas
Reusing Verification Information of Incomplete Specifications

Invited Talk
Peter Ericsson
Industrial experience of using a component-based approach to industrial robot control system
development.

Workshop on Component-Based Software Engineering:
Composing Systems from Components

Ivica Crnkovic
Mälardalen University, Sweden

ivica.crnkovic@mdh.se

 Stig Larsson
ABB, Sweden

 stig.bm.larsson@se.abb.com

Judith Stafford
Software Engineering Institute, USA

jas@sei.cmu.edu

1. Introduction

Component-based Software Engineering (CBSE) is
concerned with the development of systems from reusable
parts (components), the development of components, and
system maintenance and improvement by means of
component replacement or customization.

Building systems from components and building
components for different systems requires established
methodologies and processes not only in relation to
development/maintenance phases, but also to the entire
component and system lifecycle including organizational,
marketing, legal, and other aspects. In addition to
objectives such as component specification, composition,
and component technology development that are specific
to CBSE, there are a number of software engineering
disciplines and processes that require methodologies be
specialized for application in component-based
development. Many of these methodologies are not yet
established in practice, some have not yet been developed.

The progress of software development in the near
future will depend very much on the successful
establishment of CBSE; this is recognized by both industry
and academia. The growing interest in CBSE is also
reflected in the number of workshops and conferences with
CBSE tracks [2-5].

2. The workshop

The goal of this workshop is to bring together
researchers and practitioners to share experience and
research results, both of works in progress and practical
experience, on topics relevant to building systems from
components. Systems attributes in relation to component
attributes and the composition process are the primary
subjects of the workshop.

Suggested areas of interest include, but are not
restricted to:

− Software architecture as related to CBSE
− Analysis/design methods for building component-

based systems

− Selection/evolution criteria for components and
assemblies of components

− Predictability of component compositions
− Configuration management of components and

component compositions
− Verification of systems based on component attributes

 The workshop will open with a statement defining the
goals and objectives of the workshop, followed by a
presentation by a guest speaker from industry, reporting on
an industrial experience of using a component-based
approach to system development. The workshop will
continue as a combination of presentations of the most
interesting and relevant papers and resultant discussions.
The workshop will focus on the discussions pertaining to
topics addressed by the highest percentage of accepted
papers.

3. References

[1] Bachman, et. al. , K. C., Technical Concepts of
Component-Based Software Engineering, report
CMU/SEI-2000-TR-008, Software Engineering Institute,
Carnegie Mellon University, 2000.

[2] 4th and 5th ICSE Workshops on CBSE: Component
Certification and System Prediction, Benchmarks for
Predictable Assembly, http://www.sei.cmu.edu/pacc

[3] 27th and 28th Euromicro Conferences: CBSE track,
http://www.idt.mdh.se/ecbse

[4] First International Working Conference on Component,
http://swt.cs.tu-berlin.de/cd02/

[5] ICSR7 2002 Workshop on CBD Processes,
http://www.idt.mdh.se/CBprocesses

Re-thinking the Development Process of Component-based Software

Antonia Bertolino, Andrea Polini
IEI-CNR, Area della Ricerca di Pisa, Italy

{bertolino, a.polini}@iei.pi.cnr.it

Abstract

This paper contribution to the ECBS workshop is a

position statement that a wide gap exists between the
technologies for Component-based Software Engineering
and the scientific foundations on which this technology
relies. What is mostly lacking is a revised model for the
development process. We very quickly outline a skeleton
for re-thinking the models that have shaped the software
production in the last decades, and we start to make some
speculations, in particular for what concerns the testing
stages. As a working example, we take in consideration
the Enterprise Java Beans framework. However, our
research goal is to draw generally valid conclusions and
insights.

1. Position statement

Since its early moves in the 60’s, the history of

software engineering has seen on the user’s side the
progressive growth of expectancies and reliance placed on
the software services, and on the producer’s side a
strenuous attempt to master the consequent escalation of
products dimensions and complexity.

To make software production more predictable and
less expensive the research efforts have been driven by
the two keywords of “discipline”, in the form of process
models to control the development cycle, and of “re-use”,
favouring the adoption of OO paradigms. However,
despite the efforts, the implementation of a new system
“from scratch” involves each time long development
times, high production costs and difficulties in achieving
further evolution and adaptations to new demands.

A component-based approach to software engineering,
similarly to what is routine practice in any traditional
engineering domain, seems to provide finally "the
solution" to all problems inherent in traditional methods,
and we assist today to a sort of revolution in the ways
software is produced and marketed.

In Component-based Software Engineering (CBSE), a
complex system is accomplished by assembling simpler
pieces obtained in various manners. In principle, CBSE
perfectly combines the two leading SE principles of

“discipline” and “re-use”: in fact, only forcing a rigorous
discipline on how components are on one side developed,
and on the opposite side utilized, a component-based
system can be successfully obtained. Moreover, in CBSE
re-use of components is one of the leading concerns, and
is pursued since the early inception phases.

Ideally, by adopting a component-oriented approach,
production times can be reduced, more manageable
systems can be obtained, and, above all, such assembled
systems can be easily updated by substituting one or more
elements in the likely event that future market offerings
provide functionalities deemed better than those of the
components currently implemented in the system.

It is our concern, though, that current results are not
sufficient: the rapid technology advances (e.g., .Net, EJB)
are not backed by adequate parallel progress on the
theoretical side. In the absence of a reference scientific
framework, the proposed technological solutions appear
fragmented and unrelated, and their adoption remain
difficult and expensive. A software developer is provided
with technologies to use and combine components, but is
puzzled by the proliferation of partial solutions: a
paradigm in which to use them, and criteria to follow in
the selection of components and frameworks, are lacking.
Paradoxically, the technologies are there, but the
conceptual foundations to employ them must still be built.

It is clear that component-based software production
requires a major and urgent revision of both the processes
and the methods to be adopted in the development of
software products. The classical life cycle models are no
longer adequate, and also the professional figures that are
involved in the software production and business change.

To see why, and what need to be done on the research
side, we make some speculations in the following
sections. To make the discussion more concrete we
specifically focus this position paper on the testing stage
and on the EJB framework. However, it is our future
research aim to revisit the various stages of the traditional
development process, and to develop concrete example
within EJB as well as in other popular frameworks.

2. Considerations on the development process

for the component-based age

The “standard way” in software production is a phased
model in which essentially a phase starts where the
previous one finishes. Let us sort out for instance what is
typically found in the Table of Content of a traditional
textbook in software engineering. There will certainly be
a chapter dealing with the requirement analysis stage, a
following chapter dealing with design, a chapter dealing
with verification and testing, and finally a chapter dealing
with maintenance, plus a part putting all these pieces
together within a coherent process model. How well and
how much does this base structure, that came out from
decades of progress, fits within CBSE? The answer is
obviously not so well and not so much.

The point is that, even though iterations and concurrent
activities may be foreseen among the phases, a “partial
order” is always imposed or assumed between the various
stages above mentioned. Considering the opportunity of
using components requires a totally different process that
permits to manage the “non-determinism” introduced by
the new approach. We bring in this notion of a non-
deterministic process to highlight that, in this context, the
various development activities are no longer carried out in
any necessary sequence. In fact in the early phases of the
development you cannot know if you will find the
components already implemented or will have to develop
them internally. Also, the specification of the overall
architecture may depend on the adoption of certain
components. Then, in a certain sense, we need generic
process models that can account for the different
consequences induced by the use of components produced
externally or internally and that establish some
“synchronization” points among all the involved
stakeholders.

Besides, it is generally recognized that a condition to
increase the adoption of components is to design
components “for reuse”, and therefore to produce
adjustable components not too much shaped to fit within a
specific context. That is right, but it guarantees only a
part: the possibility. For successfully achieving reuse in
practice, it is necessary not to early commit to a fixed
system architecture independently from its constituent
components, but to consider the components features as
well since the early specification and design stages. In this
sense we think to an incremental process, whose various
phases are concurrent activities focused on recovering and
tailoring components or groups of components.

More specifically, in the development of a component-
based application we must initially focus on identifying
that or those components that provide the basic
functionalities. That is to say, we must elicit the
functional and non functional requirements for these
“basic” components. When candidate components are
found, we can test them, against the specified
requirements, and choose the best for our objectives.
After having identified the first basic components we can

go towards the expansion of the application
functionalities, in several directions, and look for new
components. The specifications for the new searched
components must now derive from considerations that
include the features of the components already acquired.
This cycle is repeated until all the application
functionalities are covered.

Perhaps sometimes the search task, for a component,
can fail. In this case you can choose to implement the
component or you can reduce the required functionalities
and retry the search.

Obviously this iterative search-and-refine process is a
preliminary idea yet, and it does not want to be complete
or definitive, it wants only to illustrate a possible path. In
the next section we concentrate the attention on a
particular point of the picture showed above, and explain
in more detail the testing phase as we imagine it might be
expanded in the component development model.

As said, we focus our investigation within the EJB
architecture, which has been conceived as a component-
based technology to develop server-side applications,
particularly in the commercial domain. The EJB platform
specification was defined by Sun [1], which has also
implemented a reference realization that is freely
available for download from the Sun web site [2].

The EJB architecture relies on a complex middleware
that manages all the aspects relative to concurrency,
security, persistence, and distribution. The management of
this complex task by the middleware permit the
implementation of simpler components and reduce the
risk of error, then the amount of testing.

3. Revising the testing process: a proposal

The distributed component approach makes many
traditional testing techniques inadequate or inappropriate,
and thereby calls for defining new processes, methods and
tools to support testing activities. Weyuker [3] claims that
in a component approach the testing performed by the
component developers is insufficient to guarantee the
component behaviour in new contexts and then underlines
the necessity of a retesting made by the component user.

Regarding the costs of production, the advent of true
CBSE presupposes the creation of a components market
that can make it economically viable to develop software
pieces for subsequent assembly. The success of the
component approach to development requires therefore
thinking in terms of system families, rather than single
systems. Consequently, testing procedures must also be
refocused: rather than on the definition and maintenance
of test suites for single applications, attention must be
directed to the development of test patterns for product
families. The need for Software Architecture models in
the development of component systems is widely
recognized [4]. In the stages of testing, such formal

models can also be used to generate test cases, either
automatically or assisted in some way.

One further complicating factor of the testing activities
is represented by components whose source code is
unavailable. Such components, in fact, require
verification, not only that the features declared by the
producer are fulfilled as expected, but also that no
undeclared hazardous features are present.

The practical approach that we are going to illustrate
seems to be well shaped to the component-based
production, and maybe it can reduce the problems
mentioned above. It originates from the considerations
made in the previous section and is strongly based on the
use of the reflection feature [5] of the selected language;
for this reason the easy choice for us was the Java
language.

In accordance with the process model sketched in the
previous section, we suppose to have a first phase in
which we establish the features that a certain component
must have. In our framework this specification must be
given in the form of a “virtual component” codified as a
class, henceforth named Spy, whose required interfaces
are established (so the methods and relative signatures).
The only duty of every method of this class is to pack the
parameters and invoke the method
executeMethod(String name, Object[] param) of a
Driver object (that we will illustrate afterwards), passing
also to the latter its own name.

From this specification, we can put at work several
teams with two different targets:

1. Developing test cases from the specification. If there
are more than one team on this target, each of them
can focus its attention on a particular feature;

2. Searching suitable components in the organization
repository or on the market.

The test cases will be developed on the basis of the
methods defined in the class Spy, and in a preliminary
version the test cases are progressively numbered, for
example, TestCase7, and each will form a class. All the
test cases classes must be collected in a package together
with the Spy class. Obviously the generated tests are
functional/black-box and independent from a real
implementation.

The test case and the Spy classes must extend
respectively the abstract class TestCase and
InformationSwap, both contained in the package
it.sssup.testing. These classes contain methods that
permit to set objects for the re-addressing of method
invocation.

The searching of a suitable component is not a trivial
task, in fact a real component can look very differently
from that defined by the Spy class. In particular, we can
list five different levels of accordance that, anyhow,
guarantee the possible usefulness of a component in the
particular application:

1. the methods name are different, but the related
names have equal signatures.

2. as above, but with different parameters order
3. virtual methods have less parameter (we must set

default values for the real parameter)
4. the parameters have different types, but we can

make them compatible, through suitable
transformations

5. the functionality of one virtual method is provided
collectively by more than one method.

It is however indispensable that these differences are
overtaken and for this reason we require that the searching
team draw up an XML file to be used by the Driver
object to drive the testing. In fact after the test packages
are developed and at least one component is identified, a
team can start the testing of it to verify that it is really
compliant with the specifications.

To clarify we can provide a simple example on how
we think the approach could work. The example is only
declarative and obviously trivial, but we think it can be
useful for the purpose.

Suppose that an Italian software house needs a simple
software component to manage a bank account, and for
this purpose it codifies the following Spy class:
package bankaccount.test;
import it.sssup.testing.*;
public class Spy extends InformationSwap{
 …
 public void versamento(String cod,int sum){}
 public void prelievo(String cod,int sum){}
 public int bilancio(String cod){}
}
From this Spy class, the testing teams can produce the
test case class as below:
package bankaccount.test;
import it.sssup.testing.*;
public class TestCase6 extends TestCase{
 public runTest(){
 int before=spy.bilancio(“123”);
 spy.versamento(“123”,500);
 spy.prelievo(“123”,300);
 if (spy.bilancio(“123”)!=(before+200)){
 System.out.println(“KO”);
 } else { System.out.println(“OK”); }
 } }

In the meantime let us assume that the searching team
has found a suitable component, but with different method
names (deposit, withdrawal, balance) and also with
different parameters order. This team produces the
corresponding XML file that specifies the mapping from
the virtual object to the real object.

Within the EJB framework, then, we can run the
following client, passing to it the name of the package
containing the test and the name of the XML file.
import it.sssup.testing.*;
public class ClientEJB {
 public static void main(String[] args) {
 try {
 Context initial = new InitialContext();
 Object objref =initial.lookup(

 "java:comp/env/ejb/TrivAcc");
 AccHome home =
 (AccHome)PortableRemoteObject.narrow(
 objref, AccHome.class);
 Driver dr =
 new Driver(args[0],args[1],home);
 dr.execuTests();
 } catch (Exception e) {}
}

Obviously the core of the approach is the package
it.sssup.testing that contains the specifications of the
class Driver and of the two abstract classes
InformationSwap and TestCase, that must be extended
by, respectively, the Spy and the test case classes. The
scope of Driver is to re-direct the invocation of the
virtual methods in Spy to the real methods in the
component, based on the information contained in the
XML file. It is important to note that, in our framework,
the implementation of Spy, of test cases and of test client
classes is sufficiently simple and must follows the various
specification above outlined.

This model is particularly suited to the context of a
complex middleware, such as EJB, because it might solve
many questions relative to component integration. In the
EJB framework the testing can be performed running a
simple tester client. EJB advantage is a strong
standardization, or, said in other terms, the “discipline”
that we mentioned above, which is the basic philosophy
of EJB. Each user-developed bean must comply to the
“bean-container contract”, which imposes the realization
of precise interfaces.

4. Research directions

The component-based approach opens up several new
areas for research. Before all, to permit the growth of
CBSE it is necessary to realize more suitable development
environments. A first effort in this sense can be found in
[6], where seven principal features that a development
environment must satisfy are also identified.

A component-oriented world then calls for determining
methodologies that can allow component builders and
users to agree on the tasks to be carried out by a given
component. Research in this field suggests that a
component must be endowed with a series of additional
information (apart from that making up its interface) that
allows it, in a certain sense, to be framed semantically.
This information can be used by the customer in the
different phases of a development cycle [7], [8]. This line
of investigation is particularly important in relation with
our approach, mainly regarding the searching task. We
have already outlined the difficulties concerning this task;
it is desirable, then, to identify information that must
reside in the specifications and in the component
definition, and that can aid the searching team.

Also in the perspective of establishing an agreement
between the customer and the seller, it has been

investigated the opportunity that a “certification
authority” is established [9]. The goal of this organization
is to certify components submitted by the developers.
Perhaps, also in this context the approach above depicted
can be useful. In fact, the SCL (Software Certification
Laboratories [9]) can define “virtual standard
components” and provide, for them, benchmarks for
several contexts in the form of a package containing the
Spy and the test cases classes. The developers can then
verify their components against these tests, after
downloading the package and compiling the XML file.
Perhaps this “modus operandi” can simplify the
standardization in the production of components. In fact
the SCL could define classes of components in the form
of the functionality that they must provide.

Regarding more specifically the approach depicted,
two directions mainly emerge as possible lines of
investigation. The first is a more conceptual work, and is
referred to the necessity to develop and clarify in more
detail the various phases of the incremental approach. In
particular we need to establish methods for extracting test
case from the specifications. Besides, by way of real case
studies, we want to value the real benefits that the
proposed approach can produce in the component-based
production.

The second line of investigation, instead, is more
practical and concerns the development of tools that assist
the different teams implied in the testing activities above
mentioned. We refer to the development of tools to aid the
drawing up of the XML file, for the searching phase and
for test cases extraction.

5. References

 [1] B. Shannon, “Java™ 2 Platform Enterprise Edition
Specification” http://java.sun.com/j2ee/download.html
[2] J2EE reference implementation.
http://java.sun.com/j2ee/sdk_1.3/index.html
[3] E.J. Weyuker, “Testing Component-Based Software: A
Cautionary Tale”, IEEE Software, Sept./Oct. 1998, pp. 54-59.
[4] D. Garlan, “Software Architecture: a Roadmap”, in
A.Finkelstein (Ed.) The Future of Soft. Eng., ICSE 2000.
[5] The Java Tutorial, Reflection,
http://java.sun.com/docs/books/tutorial/reflect/index.html
[6] C. Lüer and D. Rosemblum, “WREN – An Environment for
Component-Based Development”, in Proc. ESEC/FSE 2001,
ACM Sigsoft Vol. 26, N.5, September 2001, pp. 207-217
[7] A. Orso, M.J. Harrold, and D. Rosenblum, “Component
Metadata for Software Engineering Tasks”, EDO2000, LNCS
1999, pp. 129-144.
[8] J.A. Stafford and A.L. Wolf, “Annotating Components to
Support Component-Based Static Analyses of Software
Systems”, Proc. the Grace Hopper Celeb. of Women in
Computing 2001.
[9] J. Voas, “Developing a Usage-Based Software Certification
Process”, IEEE Computer, August 2000, pp. 32-37.

http://java.sun.com/j2ee/download.html
http://java.sun.com/j2ee/sdk_1.3/index.html
http://java.sun.com/docs/books/tutorial/reflect/index.html

Test Reuse in CBSE Using Built-in Tests

Jonas Hörnstein, Håkan Edler
IVF Industrial Research and Development Corporation

Mölndal, Sweden
{jonas.hornstein, hakan.edler}@ivf.se

Abstract

Component-based software engineering (CBSE) is
expected to drastically reduce the time spent on
developing software through the use of prefabricated
components. However, some of the time gained on reusing
components instead has to be spent on testing that
components work as specified the new environment. The
Component+ project aims at solving this by using built-in
tests. This paper presents an architecture for the
integration of built-in tests in software components that
makes it possible to reuse tests and hence minimize the
time spent on testing.

1. Introduction
The vision of Component-based Software Engineering

(CBSE) is to allow software systems to be assembled
from reusable components. This vision has already been
realized in other engineering disciplines like mechanical
and electronic, while software systems are still largely
built from scratch every time.

CBSE is expected to drastically reduce the time spent
on developing software as the components can be
prefabricated in-house or even bought from a third party
vendor on the open market. However, CBSE also
introduces some challenges that must be solved in order
to realize the true benefits of software reuse. One of these
challenges is to verify that the components fit in the new
environment when they are reused. Traditionally the
different software parts were integrated within the
development environment to form a single application.
Hence, the compatibility of the different parts and the
functionality of the resulting application could be
validated at development time.

Components on the other hand, are designed to be
reused in a variety of applications and by other people
than those who developed the components. Even though
the component developer can, and should, test their
components thoroughly at development time they have no
possibility to verify that the component will work when it
is deployed in a new environment. Each time the context

in which the component is placed changes, the component
has to be tested again.

The benefits of CBSE are therefore dependent on how
much work that is needed in order to verify that the
components work correctly in their deployment
environment. If the components cannot be applied without
extensive rework or retesting in the target domains, the
time saving becomes questionable [1]. Unfortunately
components exhibit certain characteristics that make them
difficult to test. They often contain state variables which
means that the result obtained when calling an operation
is dependent on the history of previous calls. Moreover
components have to be considered black boxes as they are
often delivered as binary code where the internal
mechanisms are unknown to the user. The same holds for
electronic components, which are literally delivered as
black boxes and the same problem of low testability has
been identified for complex integrated circuits. In order to
increase the testability of these components they often
have built-in tests (BIT).

BIT can also be used to increase the testability of
software components [2]. Some work has been done in
order to apply BIT to software components. Wang et. al.
[3] put the complete test suite inside the components. This
way the tests are constantly present and reused with the
component. While this strategy might seem attractive at
first sight, it is generally not a feasible solution. The tests
are constantly occupying space while most tests will only
be used once when the component is deployed. Another
approach to BIT has been taken by Martins et. al. [4].
They put a minimal number of tests, like assertions, inside
the components, which are reused together with a test
specification. However, specific software has to be used
in order to transform the test specification into real tests.

This paper presents a flexible architecture for the
integration of BIT in software components, which makes
it possible to reuse tests without additional software. The
architecture was developed within the European project
Component+ [5].

The rest of the paper is organized as follows. In section
2 we discuss how verification and validation of software
is affected by the introduction of CBSE, and why we have
to build in test facilities in order to solve the problems

arisen. In section 3 we explain the Component+
architecture that allows for tests to be built in. Section 4
gives specific examples on how the architecture can be
used in order to reuse tests. Conclusions and future work
are discussed in section 5.

2. Verification and validation of components
Verification and validation (V&V) of software has

always been an important and difficult task in software
engineering. With the introduction of CBSE it has grown
even more important, and unfortunately also more
difficult since the components have to deal with a large
number of contexts that are essentially unknown when the
components are developed. The final testing cannot be
done until the component is deployed, i.e. taken in use, in
the target domain.

This is challenging, since the testing then has to be
performed by other people than those who developed the
component. During development time white box testing
can be used, which takes the internal structure of the
component under consideration. However, one of the
main ideas behind CBSE is that the internals of the
components are hidden once they are developed.
Therefore techniques for black box testing have to be
used. Testing components using only traditional black box
techniques is difficult though. Most components
encapsulate both data and functionality and are therefore
state machines. Since traditional black box testing
techniques are only concerned with detecting failures at
the border of the component, they will not detect errors in
the internal state of a component. The difference between
errors and failures can be described as [6].

Error: Manifestation of a fault in a system
Failure: Deviation of the delivered service from
compliance with the specification

Errors may only show up as failures after certain

sequences of calls or after repeatedly executing the same
test case, hence the difficulty to find them with traditional
techniques. Built-in testing is aimed at overcoming this
problem.

2.1. Built-in tests

Since built-in tests are put inside the components they
are able to detect errors. This is important since errors can
be hidden for long time before they are exposed as
failures. Techniques that can be used to find errors in
software components include assertions [7][8] and control
flow checking [9][10].

It is also possible to include test cases that verify the
component’s functionality. However, to thoroughly test a
component, lots of test cases have to be included in the
component. This add a lot of overhead to the component,
while many of the test cases, like most functional tests,
does not add any value to the component once executed in

the context where the component has been deployed.
Significantly less over-head has to be added to the
component if the test cases are placed outside the
component and the built-in tests provide the information
needed in order to test it. Since most components are
state-machines, they are typically tested using state-based
testing. Doing this effectively without being able to set
and read the states is a practical impossibility [2]. Built-in
tests can be used for setting and reading the component’s
state.

If these built-in tests are provided through well-defined
interfaces, as in the Component+ architecture, they
significantly increase the testability of the components.

2.2. Built-in testing

To be used for verification and validation the tests
built-in have to be executed. A test is the execution of one
or many test cases. For state-based testing, a test case
consists of.

1. The initial state of the component
2. Test data that will be used when calling the

component’s operations
3. The expected output value and the expected final

state according to the specification.
Built-in testing makes use of the built-in tests in order

to set the component to an initial state before calling its
operations, and to verify that the component ended up in
the expected final state without any errors.

3. Component+ BIT architecture
The Component+ architecture is built from three types

of software components: BIT components, Testers, and
Handlers. In order to define those we first define what we
mean by a component. In Component+ we have chosen to
base our component model on the KobrA development
model [11]. The component definition given below is
therefore taken from KobrA, which in turn has been
adapted from the definition in [12]:

Software component:

A software component is a unit of composition with
contractually specified interfaces and context
dependencies only. A software component can be
deployed independently and is subject to composition by
third parties.

This component model does not put any constraints on

the technology used to develop the component.
Technologies like CORBA, EJB, and COM, all fit in the
architecture, and even traditional APIs can be viewed as
components.

3.1. BIT components

In the Component+ architecture, the component under
test must be a BIT component, i.e. have built-in test
mechanisms.

BIT component:

A BIT component is a software component with built-in
test mechanisms, which are provided through one or more
interfaces, BIT interfaces.

Figure 1. BIT component

In figure 1, a BIT component and its provided BIT
interfaces are shown. IBITQuery is the only mandatory
interface and has to be provided by all BIT components. It
is used to determine what test facilities a component
supports. The actual tests are provided by a number of
interfaces called IBITX, where X can be either some
standardized interface for a given test, such as for
deadlock testing and timing testing, or some tailor-made
interface for that specific BIT component. IBITError
provides information about detected errors.

3.2. Testers

To be useful, the BIT components have to be
connected to some other component that exercises the
built-in tests and evaluates the information provided by
the BIT interfaces. Such a component is called a tester
component.

Tester component:

A component that uses one or more BIT interfaces.

It is the tester that does the actual testing and verifies

that the component is working according to the
specification. In the same way as there exists both
standardized and tailor-made BIT interfaces, there also
exists both standardized and tailor-made Testers.
Standardized testers are used to detect, for example,
deadlock situations. It is important that these are
standardized since they need information from many
different BIT components, which could be developed by
independent vendors. Other testers, such as testers for
state-based testing has to be customized in order to fit the
state-model of a specific BIT component.

Figure 2. Tester component

A tester component, figure 2, provides IBITNotify to
which BIT components can report for example state
changes, and IBITError that provides information about
detected failures.

Since the Testers are separated from the BIT
components they can be changed at any time in order to
best suite the context in which the component operates,
and various Testers can be combined in order to obtain a
more thorough testing.

3.3. Handlers

The architecture also includes handlers. They provide
an IBITErrorNotify, figure 3, to which both BIT
components and Testers can signal errors. Handlers do
not contribute to the verification and validation, but can
be used to obtain fault-tolerant systems.

Figure 3. Handler component

4. Test reuse
The introduction of BIT components, with their

increased testability is an important step towards reducing
the time spent on testing. However, it is by reusing
testers, as well as the BIT components, that the true
benefits are accomplished.

We feel that there is a need for reusing tests at several
stages of the component’s life cycle, when the component
is deployed, during normal execution, and in
maintenance.

4.1. Test reuse at deployment-time

In the typical scenario for CBSE a component can be
bought off-the-shelf and inserted into a new system. That
way the same component can be used in a variety of
systems, thus realizing the vision of code reuse. In the
Component+ project, this vision is extended to include
also the code used to test the components. A BIT
component is therefore delivered together with one or
more suitable testers that can be used to verify that the
component is able to correctly provide its services in its
deployment environment.

The relationship between components can be
formalized as a contract, expressing the rights and
obligations for the involved components [7]. The vendor
of the BIT component should supply a tester that checks
that the BIT component is able to abide by its side of the
contract after it has been deployed in the new
environment, figure 4. The tester typically does some kind
of state-based testing, and the IBITContract therefore
provides means to set and read the component’s state.

Handler

IBITErrorNotify

BIT
Component

IBITX

IBIT Query

IBITError

Tester

IBITNotify IBITError

Figure 4. Contract testing

4.2. Test reuse at run-time

At run-time, it is difficult to use complete test cases
without interfering with the normal execution. Instead the
built-in test mechanisms are used to monitor the execution
and to signal detected errors.

Figure 5. Deadlock testing done at run-time

Apart from the test mechanisms built-in, which are

automatically reused with the component, there is a
possibility to reuse testers that perform some kind of
monitoring on system level. These testers gather
information from several BIT components in order to
detect for example deadlocks, figure 5. Standardized
testers for deadlock testing and timing testing are being
developed within the Component+ project.

4.3. Test reuse at maintenance

If the developer changes the BIT component, e.g. to
remove some fault or add some functionality, the
component has to be tested again. This can be done with
the same tester as is delivered with the component, or
even with a white-box tester as the testing is done by the
developer. This is identical to today’s regression testing.

5. Conclusions and future work
The architecture proposed by Component+ offers the

possibility to reuse tests for CBSE. This might lead to
substantial timesaving when assembling a system from
components. Future work within the Component+ project
includes trying the technology in industry and to measure
the impact on development time.

6. Acknowledgement
This work has been done within the Component+

project (IST-1999-20162) and all partners within the
consortium have contributed to the result.

7. References
[1] Guindi, D. S., Ligon, W. B., McCracken, W. M., Rugaber,

S., “The impact of verification and validation of reusable
components on software productivity”, Proceedings of the
Twenty-Second Annual Hawaii International Conference
on System Sciences, 1989, pp. 1016-1024

[2] Binder, R. V., “Design for Testability in Object-Oriented
systems”, Communications of the ACM, Vol. 37, no. 9,
September 1994, pp. 87-101

[3] Wang, Y., King, G., Fayad, M., Patel, D., Court, I., Staples,
G., Ross, M., “On Built-in Test Reuse in Object-Oriented
Framework Design”, ACM Journal on Coputing Surveys,
Vol. 32, No. 1, March 2000

[4] Martins, E., Toyota, C. M., Yanagawa, R. L., “Constructing
Self-Testable Software Components”, Proceedings of the
2001 International Conference on Dependable Systems and
Networks, Göteborg, Sweden, July 2001, pp. 151-160

[5] EC IST-1999-20162, Component+, www.component-
plus.org, February 2002

[6] Laprie, J. C., (ed.) Dependability: Basic Concepts and
Terminology, Springer-Verlag, Wien, 1992

[7] Meyer, B., Object-oriented software construction, Prentice
Hall, 1997

[8] Binder, R. V., Testing Object-Oriented Systems: Models,
Patterns and Tools, Addison Wesley Longman, 1999

[9] Mahmood, A., McCluskey, E. J., “Concurrent Error
Detection Using Watchdog Processers – A Survey”, IEEE
Transactions on Computers, Vol. 37, no 2, 1988

[10] Miremadi, G., Karlsson, J., Gunneflo, U., Torin, J., ”Two
Software Techniques for On-line Error Detection”, Twenty-
Second International Symposium on Fault-Tolerant
Computing, 1992

[11] Atkinson, C., et. al., Component-Based Product Line
Engineering with UML, Addison-Wesley, 2001

[12] Szyperski, C., Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, 1999

Tester

BIT
component

IBITContract

Server

BIT
component

BIT
component

Tester

IBITDeadlock IBITDeadlock

IBITDeadlockNotify

Server

Architecture Trade-off Analysis and the Influence on Component Design
Iain Bate and Neil Audsley

Department of Computer Science
University of York, York, YO10 5DD, UK.

{iain.bate, neil.audsley}@cs.york.ac.uk

1 Introduction
The production and assurance of systems that are
safety-critical and/or real-time is recognised as being
costly, time-consuming, hard to manage, and difficult
to maintain. This has lead to research into new methods
whose objectives include:
• Modular approaches to development, assurance and

maintenance to enable:
 Increased reuse;
 Increased robustness to change and reduced

impact of change.
• Integration strategies that allow systems to be

procured and produced by multiple partners, and
then efficiently integrated;

• Ways of determining the approach likely to be the
“best” (the best can only be found with hindsight);

• Techniques for identifying and managing risks.
Many of the component-based engineering techniques
are considered relatively mature for developing
dependable components and ensuring correctness
across their interfaces when combined with other
components, e.g. approaches based on rely-guarantees
[1]. This paper addresses the following key remaining
issues:
• how the system’s objectives should be decomposed

and designed into components (i.e. the location and
nature of interfaces); and

• what functionality the components should provide
to achieve the system’s objectives.

The paper develops a method for:
1. derivation of choices – identifies where different

design solutions are available for satisfying a goal.
2. manage sensitivities – identifies dependencies

between components such that consideration of
whether and how to relax them can be made. A
benefit of relaxing dependencies could be a reduced
impact to change.

3. evaluation of options – allows questions to be
derived whose answers can be used for identifying
solutions that do/do not meet the system properties,
judging how well the properties are met and
indicating where refinements of the design might
add benefit.

4. influence on the design – identifies constraints on
how components should be designed to support the
meeting of the system’s overall objectives.

Our approach satisfies the objectives by building on

existing approaches, i.e. Goal Structuring Notation
(GSN) which is used for safety arguments [2], and
UML which is used for modelling systems [3].
However, a key fact is that the methodology proposed
is not dependent on the specific techniques advocated.
The approach only needs a component -based model of
the system’s design with data flow coupling between
the components and there being a way of reasoning
about properties (and their inter-relationships),
constraints, and assumptions associated with the
coupling. (A coupling is considered as a connection
between components.) The approach we are proposing
would be used within the nine-step process of the
Architecture Trade-Off Analysis Method (ATAM) [4].
The differences between our strategy and other existing
approaches, e.g. ATAM, include the following.
1. the techniques used in our approach are already

accepted and widely used (e.g. nuclear propulsion
system and missile system safety arguments) [2],
and as such processes exist for ensuring the
correctness and consistency of the results obtained.

2. the techniques offer strong traceability and the
ability to capture design rationale.

3. information generated from their original intended
use can be reused, rather than repeating the effort.

4. the method is equally intended as a design technique
to assist in the evaluation of the architectural design
and implementation strategy as it is for evaluating a
design at a particular fixed stages of the process.

The method is described further in section 2. This is
followed by a demonstration of the approach through
the case study presented in section 3. Section 4
considers how the architecture trade-off analysis can be
used to influence the way in which components are
designed.

2 Trade-Off Analysis Method
2.1 Overview of the Trade-Off Analysis Method
Figure 1 provides a diagrammatic overview of the
method. Stage (1) of the trade-off analysis method is
producing a model of the system to be assessed. This
model should be decomposed to a uniform level of
abstraction. Currently our work uses UML for this
purpose, however it could be applied to any modelling
approach that clearly identifies components and their
couplings. Arguments are then produced in stage (2)
for each coupling to a corresponding (but lower so that
impact of later choices can be made) abstraction level

than the system model. (An overview of GSN is given
in section 2.2.) The arguments are derived from the
top-level properties of the particular system being
developed. The properties often of interest are lifecycle
cost, dependability, and maintainability. Clearly these
properties might be broken down further, e.g.
dependability may be decomposed to reliability, safety,
timing etc.. In practice, the arguments should be
generic or based on patterns where possible. Stage (3)
then uses the information in the argument to derive
options and evaluate particular solutions. Part of this
activity uses representative scenarios (e.g. what
happens when change X is performed) to evaluate the
solutions. The use of scenarios is not discussed in this
paper.
Based on the findings of stage (3), the design is
modified to fix problems that are identified – this may
require stages (1)-(3) to be repeated to show the
revised design is appropriate. When this is complete
and all necessary design choices have been made, the
process returns to stage (1) where the system is then
decomposed to the next level of abstraction using
guidance from the goal structure. Components reused
in other context could be incorporated as part of the
decomposition. Only proceeding when design choices
and problem fixing are complete is preferred to
allowing trade-offs across components at different
stages of decomposition because the abstractions and
assumptions are consistent easing the multiple-criteria
optimisation problem.

Stage 1 – Modelling
the system

Stage 2 – Arguing about key
properties

Stage 3(b) - Extracting
questions from the arguments

Stage 3(c) – Evaluating
whether claims are satisfied

Stage 3(a) – Elicitation
and evaluation of choices

Mak
e D

es
ign

Cho
ice

s

By M
ult

ipl
e-C

rite
ria

Opti
misa

tio
n Improve

Design

Refine

Design

SCENARIOS

Figure 1 - Overview of the Method

2.2 Background on Goal Structuring Notation
The arguments are expressed in the GSN [2] that is
widely used in the safety-critical domain for making
safety arguments. In brief, any safety case can be
considered as consisting of requirements, argument,
evidence and definition of bounding context. GSN - a
graphical notation - explicitly represents these elements
and (perhaps more significantly) the relationships that
exist between these elements (i.e. how individual
requirements are supported by specific arguments, how
argument claims are supported by evidence and the
assumed context that is defined for the argument).
The principal symbols in the notation are shown in
Figure 2 (with example instances of each concept). The
principal purpose of a goal structure is to show how
goals (claims about the system) are successively
broken down into sub-goals until a point is reached

where claims can be supported by direct reference to
available evidence (solutions). As part of this
decomposition, using the GSN it is also possible to
make clear the argument strategies adopted (e.g.
adopting a quantitative or qualitative approach), the
rationale for the approach (assumptions,
justifications) and the context in which goals are
stated (e.g. the system scope or the assumed
operational role). Further details are found in [2].

System tolerates
single failures

Sub-systems
independent

Fault
Tree for
Hazard

H1

A

Goal Solution

Assumption

All Identified
System
Hazards

Context

Undeveloped Goal
(to be developed)

Solved
By

In Context
OfChoice

Figure 2 - Principal Elements of GSN

3 Case Study – Simple Control System
The example being considered is a continuous control
loop that has health monitoring to check for whether
the loop is complying with the defined correct
behaviour (i.e. accuracy, responsiveness and stability)
and then takes appropriate actions if it does not.

Sensor
-value
-health

+read_data()
+send_data()

Calculations
-sensor_data
-actuator_data
-health
+read_data()
+send_data()
+transform_data()

Actuator
-value
-health

+read_data()
+send_data()

Health Monitoring
-system_health
+read_data()
+calculate_health()
+perform_health()
+update_maintainenance_state()

Figure 3 - Class Diagram for the Control Loop
At the highest level of abstraction the control loop (the
architectural model of which is shown in Figure 3)
consists of three elements; a sensor, an actuator and a
calculation stage. It should be noted that at this level,
the design is abstract of whether the implementation is
achieved via hardware or software. The requirements
(key safety properties to be maintained are signified by
(S), functional properties by (F) and non-functional
properties by (NF), and explanations, where needed, in
italics) to be met are:
• the sensors have input limits (S) (F);
• the actuators have input and output limits (S) (F);
• the overall process must allow the system to meet

the desired control properties, i.e. responsiveness
(dependent on errors caused by latency (NF)),
stability (dependent on errors due to jitter (NF) and
gain at particular frequency responses (F)) [6] (S);

• where possible the system should allow components
that are beginning to fail to be detected at an early
stage by comparison with data from other sources
(e.g. additional sensors) (NF). Early recognition
would allow appropriate actions to be taken
including the planning of maintenance activities.

In practice as the system development progresses, the

component design in Figure 3 would be refined to
show more detail. For reasons of space only the
calculation-health monitor coupling is considered.
Stage 2 is concerned with producing arguments to
support the meeting of objectives. The first one
considered here is an objective obtained from
decomposing an argument for dependability (the
argument is not shown here due to space reasons) that
the system’s components are able to tolerate timing
errors (goal Timing). From an available argument
pattern, the argument in Figure 4 was produced
reasoning that “Mechanisms in place to tolerate key
errors in timing behaviour” where the context of the
argument is health monitor component. Figure 4 shows
how the argument is split into two parts. Firstly,
evidence has to be obtained using appropriate
verification techniques that the requirements are met in
the implementation, e.g. when and in what order
functionality should be performed. Secondly, the health
monitor checks for unexpected behaviour. There are
two ways in which unexpected behaviour can be
detected (a choice is depicted by a black diamond in
the arguments) – just one of the techniques could be
used or a combination of the two ways. The first way is
for the health-monitor component to rely entirely on
the results of the internal health monitoring of the
calculation component to indicate the current state of
the calculations. The second way is for the health-
monitor component to monitor the operation of the
calculation component by observing the inputs and
outputs to the calculation component.
In the arguments, the leaf goals (generally at the
bottom) have a diamond below them that indicates the
development of that part of the argument is not yet
complete. An argument is complete when all leaves
have been fully developed such that they are
terminated by solutions. The solutions are typically
requirements for the evidence to be provided. The
evidence provided is normally quantitative in nature,
e.g. results of timing analysis to show timing
requirements are met.

Timing
Mechanisms in place to

tolerate key errors in
timing behaviour

G0015
Timing

requirements are
specified

appropriately

G0016
System

implemented in
a predictable

way

G0017
Verification

techniques available
to prove the

requirements are met

C0009
Appropriate =

correct, consistent
and completeness

G0020
Sufficient information
about the bounds of

expected timing
operation is obtained

G0021
Operation is monitored

and unexpected
behaviour handled

C0010
Expected temporal

behaviour concerns when
and the order in which

functionality is performed

G0022
Health monitor
relies on health

information
provided to it

G0023
Health monitor

performs checks
based on provided

information

A

A0004

Appropriate steps taken
when system changes

C0010
Mechanism = Health-

monitoring
component

Figure 4 - Timing Argument

Next an objective obtained from decomposing an
argument for maintainability (again not shown here due
to space reasons) that the system’s components are
tolerant to changes is examined. The resultant

argument in Figure 5 depicts how it is reasoned the
“Component is robust to changes” in the context of the
health-monitor component. There are two separate
parts to this; making the integrity of the calculations
less dependent on when they are performed, and
making the integrity of the calculations less dependent
on the values received (i.e. error-tolerant). For the first
of these, we could either execute the software faster so
that jitter is less of an issue, or we could use a robust
algorithm that is less susceptible to the timing
properties of the input data (i.e. more tolerant to jitter
or the failure of values to arrive).

G0011
Make operations integrity
less susceptible to time

variations

G0002
Component is

robust to changes

G0012
Make operations

integrity less
dependent on value

A

A0002

The integrity is related to
frequency, latency and

jitter

G0013
Perform functionality

faster than the
plant's fastest

frequency

G0014
Make calculations

integrity less
dependent on input

data's timing
properties

C0008
Robust

algorithms e.g.
H-infinity

C0007
Plant = system
under control

C0012
Component = health

monitoring

Figure 5 – Minimising Change Argument

The next stage (stage 3(a)) in the approach is the
elicitation and evaluation of choices. This stage
extracts the choices, and considers their relative pros
and cons. The results are presented in Table 1.

Content Choice Pros Cons
Goal G0022 -
Health monitor
relies on health
information
provided to it

Simplicity since
health monitor
doesn’t need to
access and
interpret another
component’s
state.

Can a failing/failed
component be
trusted to interpret
error-free data.

Goal G0021 -
Operation is
monitored and
unexpected
behaviour
handled

Goal G0023-
Health monitor
performs
checks based
on provided
information

Omission failures
easily detected
and integrity of
calculations
maintained
assuming data
provided is
correct.

Health monitor is
more complex and
prone to change due
to dependence on
the component.

Goal G0013 –
Perform
functionality
faster than the
plant’s fastest
frequency.

Simple
algorithms can be
used.
These algorithms
take less
execution time.

Period and deadline
constraints are
tighter.
Effects of failures
are more significant.Goal G0011 -

Make
operations
integrity less
susceptible to
time variations

Goal G0014 -
Make
calculations’
integrity less
dependent on
input data’s
timing
properties.

Period and
deadline
constraints
relaxed.
Effects of failures
may be reduced.

More complicated
algorithms have to
be used.
Algorithms may
take more execution
time.

Table 1 - Choices Extracted from the Arguments
Stage 3(b) then extracts questions from the argument

that can then be used to evaluate whether particular
solutions (stage 3(c)) meets the claims from the
arguments generated earlier in the process. Table 2
presents some of the results of extracting questions
from the arguments for claim G0011 and its
assumption A0002 from Figure 5. The table includes
an evaluation of a solution based on a PID
(Proportional Integration Differentiation) loop.

Question Importance Response Design Mod. Rati-
onale

Goal G0011 - Can
the integrity of the
operations be
justified?

Essential More design
information
needed

Dependent
on response
to questions

N/A

Assumption A0002 -
Can the dependency
between the
operation’s integrity
and the timing
properties be relaxed?

Value
Added

Only by
changing
control
algorithm
used

Results of
other trade-
off analysis
needed

N/A

Table 2 – Evaluation Based on Argument
Table 2 shows how questions for a particular coupling
have different importance associated (e.g. Essential
versus Value Added). These relate to properties that
must be upheld or those whose handling in a different
manner may add benefit (e.g. reduced susceptibility to
change). The responses are only partially complete
(design modification and rationale not at all) for the
solution considered due to the lack of other design
information. As the design evolves the level of detail
contained in the table would increase and the table
would then be populated with evidence from
verification activities, e.g. timing analysis.

4 Influence on Component-Based Design
The content of the arguments presented in section 3
can be used to influence the way components in the
system are designed and the way in which the
architecture is decomposed. This section discusses the
influences from some of the goals and in doing so
demonstrates the links between the architecture trade-
off analysis and component-based design.
From Table 1 it can be seen that some of the choices
that need to be made about individual components are
affected by choices made by other components within
the system. Two cases of influence are given below:
1. On Component’s Functionality – In Figure 5 goal

G0014 leads to a design option of having a more
complicated control algorithm that is more resilient
to changes and variations in the system’s timing
properties. However goal G0014 is in opposition to
goal G0023 from Figure 4 since it would make the
health-monitoring component more complex.

2. On Abstractions and Interfaces – Goal G0021 in
Figure 4 leads to a choice over where health
monitoring functionality is situated. These are;
entirely in the health monitor component, or
partially in the calculation component and the rest
in the health monitor component. The choice alters
the abstractions and interfaces between the two

components since all relevant data needs to be
passed between the components if the health
monitor component is entirely responsible. In
contrast if it is only partially responsible, then a
health level would be passed and maybe some data
to allow limited validation to be performed in the
health monitor component. The choice therefore
affects the components’ design as well as how
achievable objectives such as reuse and
maintainability are.

Other choices made may not influence the abstractions
and interfaces but may affect the components’ design.
This can be demonstrated through the choice
originating from goal G0011. Independent of how
calculations are performed, the health monitoring is
still based on whether the control loop meets the
requirements given in section 3. This requires data
concerning current sensor inputs and actuator outputs
to be passed from the calculation components to the
health monitoring. With this data it can be checked
whether the inputs and outputs are within limits as well
as determining the responsiveness and stability criteria
are being met [6]. Hence the abstraction and interface
is not affected, but the design of the calculation
component and the checks performed are affected.

5 Conclusions
This paper has addressed a method to support
architectural design and implementation strategy trade-
off analysis, one of the key parts of component-based
development. Specifically, the method presented
provides guidance when decomposing systems so that
the system’s objectives are met, deciding what
functionality the components should fulfil in-order to
achieve the remaining objectives, and showing how
this influences the design of components.
Further work could include performing different case
studies, to show how argument and design patterns can
be used to increase the efficiency of applying the
technique, to understand better the relationship
between system architecture and component design,
and to establish a means by reusing existing work for
performing the multiple-criteria optimisation.

6 References
[1] B. Meyer, Applying Design by Contract, IEEE

Computer, 25(10), pp. 40-51, October 1992.
[2] T. Kelly, Arguing Safety – A Systematic Approach to

Safety Case Management, DPhil Thesis, YCST-99-05,
Department of Computer Science, Univ. of York, 1998.

[3] B. Douglass, Real-Time UML, Addison Wesley, 1998.
[4] R. Kazman, M. Klein, P. Clements, Evaluating Software

Architectures – Methods and Case Studies, Addison
Wesley, 2001.

[5] J.-C. Laprie, Dependable Computing and Fault
Tolerance: Concepts and Terminology, in Proceedings
of the 15th International Symposium on Fault Tolerant
Computing (FTCS-15), pp. 2-11, 1985.

[6] R. Harbor and C Phillips, Feedback Control Systems, 4th
Edition, Prentice Hall, 2000.

The Future of Component-Based Development is Generation, not
Retrieval

Hans de Bruin Hans van Vliet
Vrije Universiteit, Amsterdam

Mathematics and Computer Science Department
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

e-mail: {hansdb,hans}@cs.vu.nl

Abstract

Component-Based Development (CBD) has not re-
deemed its promises of reuse and flexibility. Reuse
is inhibited due to problems such as component re-
trieval, architectural mismatch, and application speci-
ficness. Component-based systems are flexible in the
sense that components can be replaced and fine-tuned,
but only under the assumption that the software ar-
chitecture remains stable during the system’s lifetime.
In this paper, we argue that systems composed of com-
ponents should be generated from functional and non-
functional requirements rather than being composed out
of existing or newly developed components. We pro-
pose a generation technique that is based on two pil-
lars: Feature-Solution (FS) graphs and top-down com-
ponent composition. A FS-graph captures architectural
knowledge in which requirements are connected to so-
lution fragments. This knowledge is used to compose
component-based systems. The starting point is a refer-
ence architecture that addresses functionality concerns.
This reference architecture is then stepwise refined to
cater for non-functional requirements using the knowl-
edge captured in a FS-graph. These refinements are
the architecture-level counterpart of aspect weaving as
found in Aspect-Oriented Programming (AOP).

1 Introduction

Component-Based Development (CBD) is con-
cerned with the development of systems from reusable
parts, that is, components. Unfortunately, CBD has
not lived up to its expectations yet (see for instance
[1, 3, 12]). To be successful with CBD as a reuse
technology, components have to be retrieved from a
kind of repository based on a set of criteria to judge

whether components are fit for the job or not. The
criteria not only include functional requirements, but
non-functional requirements, such as performance and
footprint, as well. The current state of affairs is that
not many components can actually be reused. The
problem is partially caused by incomplete component
specifications that do not tell the whole story. Yet
another cause is architectural mismatch [10]; a com-
ponent may function perfectly well in one setting, but
may fail in a different setting due to making (possibly
undocumented) assumptions on the environment. De-
spite these problems, we believe that there are more
fundamental problems to be solved before components
can be reused. True, we have no difficulty with reusing
domain independent components such as user interface
and database connectivity components. However, it is
less obvious to reuse application specific components,
not only across application domains, but in the same
application domain as well. Typically, components are
too rigid as far as its functional and non-functional
properties are concerned to be adapted to (slightly)
different settings.

For the aforementioned reasons, some researchers
and practitioners do not longer view CBD as a means
for reuse (see for instance [5]). They view CBD as a
development method for constructing flexible software
in which the main driver is change. A system should
be designed in such a way that components exhibit
cleanly defined interfaces and that they do not depend
strongly on the support offered by surrounding com-
ponents. If designed as such, components are eligible
for change by means of component replacement or cus-
tomization. Unfortunately, CBD is not the final answer
for managing change. The underlying assumption is
that a software architecture, composed of components,
can be developed that remains relatively stable dur-
ing the lifetime of a system. This assumption is not

1

Requirements

Functional Non-Functional

Flexibility

Performance

AND

AND

Low Medium high

Low Medium high

EXOR

EXOR

...

Client-Server
Architecture (UCM)

Security Communication

AND

(R)PC (UCM)

EXOR

Observer Design
Pattern (UCM)

Firewall (UCM) Encryption/
Decryption (UCM)

OR

Permanent (UCM) Message (UCM)

EXOR

Security

Low Medium high

EXOR

Feature
Space

Solution
Space

Figure 1. Feature-Solution graph for the Client-Server system.

valid in general. Systems evolve over time, and many
times in rather unpredictable ways. At some point in
time, we might find that a software architecture can not
longer accommodate evolutionary changes, and hence
the CBD approach falls in pieces. Also, some changes
are not localized, but affect multiple components. Ex-
amples of such crosscutting effects are typically caused
by imposing new or changed non-functional require-
ments on a system. Consider, for example, shifting the
emphasis from performance to footprint, or vice versa.
This will likely have an impact on a large number of
components, and might even require a different soft-
ware architecture.

We have reached the conclusion that CBD does not
deliver its promises of reuse and flexibility. This leaves
us with the question which alternative methods and
techniques can be used instead. Our answer is that
component-based systems should be generated. We are
not alone in this view, generative programming tech-
niques are gaining more and more interest these days
[6]. We propose a generation technique that gener-
ates systems from functional as well as non-functional
requirements. The generation technique technique is
based on two pillars:

Feature-Solution (FS) graphs. A FS-graph cap-
tures architectural knowledge in the form of de-
sired features (e.g., functional and non-functional
requirements) and solutions that realize these fea-
tures (e.g., architectural and design patterns).

Top-down component composition. We envis-
age a quality-driven approach to generating
component-based systems in which the FS-graph

plays a crucial role. This process ia akin to the
process described in [2]. The first step in this
process is the derivation of a reference architec-
ture that meets the functional requirements set.
Next, the attention focuses on non-functional
requirements by iteratively applying known design
solutions as codified in the FS-graph. Typically,
this requires several iterations. These iterations
might also involve backtracking steps because we
usually have to deal with conflicting requirements.

The impact of quality aspects, such as performance
and security, is typically not restricted to a single com-
ponent only, but may affect a large number of compo-
nents. In a FS-graph, we can capture all the knowledge
that is required to refine multiple components simulta-
neously in a consistent manner. This type of refinement
may be called Aspect-Oriented Programming (AOP)
[11] at the architectural level.

2 Component Generation Techniques

In this section, we discuss the generation techniques
in more detail. At the heart of the iterative, quality
driven approach for generating component-based sys-
tem is the FS-graph. Consider as an example a Client-
Server (CS) system in which a client component re-
quests a server component to perform one of its duties.
A FS-graph for the CS system is shown in Figure 1.
Two spaces are recognized in the FS-graph. The Fea-
ture (F) space contains the requirements, whereas the
Solution (S) space contains solutions addressing these
requirements. Features as well as solutions are decom-
posed in AND-(EX)OR decomposition trees. An AND

2

decomposition of a node in either the feature or the
solution space means that all its constituents must be
available, an OR requires an arbitrary (≥ 0) number
of constituents, and an EXOR requires precisely one
constituent. The key idea is that a feature in the F-
space may select a solution in the S-space as defined by
directed selection links between nodes (indicated by a
solid line). It is also possible to explicitly rule out a par-
ticular solution. This is done by connecting a feature
to a solution with a negative selection link (indicated
by a dashed line).

In the example, we focus on non-functional require-
ments, in particular flexibility, security and perfor-
mance requirements. If a high flexibility level is de-
sired, the FS graph dictates that we should use the
Observer design pattern, because of its properties of
reducing the coupling between peers and supporting
multiple observers. On the other hand, if we want high
performance, the FS graph selects a direct invocation
style in the form of (remote) procedure calls. It is in-
teresting to observe that a high level of flexibility and a
high level of performance cannot be obtained simulta-
neously since these requirements select solutions that
rule out each other, as implied by the EXOR decom-
position of the communication node. Thus, a FS graph
contains trade-off information as well. Typically, sev-
eral design process cycles are required to arrive at a de-
sign that satisfies all non-functional requirements. The
process is shown in Figure 2 and is described in detail
in [8].

Figure 2. The process of generating and eval-
uating architectures.

The generator generates the components on the ba-
sis of requirements and architectural solutions captured
in the FS-graph. The generator uses the FS-graph
to refine the given CS architecture. Next, the gen-
erated system is evaluated against all functional and
non-functional requirements set. Now suppose that a
certain requirement has not been met in the current
system. By consulting the FS-graph, we might come
up with several solutions that can be applied to rem-
edy the shortcoming. Thus, in principle, the outcome
of the evaluation phase can be used to drive the archi-
tecture generation process in the next iteration. That
is, the generator selects a solution and then generates
a refined system, which is evaluated in its turn. This
process is repeated until all requirements are met or we
run out of potential solutions.

We use Use Case Maps (UCM) [4] for representing
component-based systems. UCM is a diagrammatic
modeling technique to describe behavioral and, to a
lesser extent structural, aspects of a system at a high
level of abstraction. UCM provides stubs (i.e., the
hooks or variability points) where the behavior of a
system can be varied statically at construction time
as well as dynamically at run time. The advantage of
UCM is that it focuses on the larger, architectural is-
sues, and its support of plug-ins and stubs, both static
and dynamic. Further details can be found in [9].

3 Component Generation in Practice

We are currently putting our approach in practice in
the QUASAR (QUAlity-driven Software Architecture)
project. The goal is to generate real systems in real
application domains using the techniques described in
this paper. Although it is too early to draw definite
conclusions, the approach looks promising.

As a starting point, we use a reference architecture
that is composed of components that implement the
required functionality. The components are identified
through a domain engineering process capturing the
commonalities and variabilities of a domain. What sets
our approach apart from a standard CBD approach is
that we do not treat a component as a black-box that
can be adapted to a certain extent. Instead, we use a
grey-box approach [7] in which the behavior of compo-
nents is described in terms of UCMs with stubs. The
stubs provide the means to refine components recur-
sively. The FS-graph plays a central role in this pro-
cess. It contains all the knowledge that is required to
tailor components in order to meet non-functional re-
quirements such as performance and security require-
ments. A refinement operation is not necessarily re-
stricted to a single component only but may crosscut

3

several components. The knowledge of how and where
the system has to be adapted can be captured in a
FS-graph as is illustrated in Figure 1. Effectively, the
FS-graph ensures that all refinements needed to satisfy
particular requirements are effectuated.

Our current experiences show that the goal of gen-
erating component-based systems from functional and
non-functional requirements is not (yet) feasible. The
limitations of our approach are the following. A fairly
developed reference architecture is needed before the
iterative generation process can start. In order to ar-
rive at a reference architecture, obviously some design
decisions need to be made. In principle, the generation
process should be a closed-loop process without requir-
ing human (software architect) intervention. This is
hard to achieve since the evaluation of certain quality
attributes requires an expert eye.

4 Concluding Remarks

CBD as a black-box assembly technique is in our
opinion a dead-end street, because of its inherent prob-
lems of lack of reuse and flexibility. Instead of compos-
ing a system out of existing or newly developed compo-
nents, we propose to compose a component-based sys-
tem from functional and non-functional requirements
and design solution fragments captured in a FS-graph.
In this approach, reuse assets stem from two sources.
Firstly, from a domain engineering process we can iden-
tify a set of reusable (grey-box) components. Secondly,
reusable solution fragments (e.g., architectural and de-
sign patterns) can be connected to domain and appli-
cation specific functional and non-functional require-
ments in a FS-graph. These solution fragments can
then be used for component adaptation.

In conclusion, the keywords for characterizing the
CBD future are domain engineering and component
generation/adaptation. The FS-graph and the top-
down composition techniques described in this paper
show how this future can be realized, although there is
plenty of room for improvement.

References

[1] Paul G. Basset. Framing Software Reuse: Lessons from
the Real World. Prentice Hall, Upper Saddle River,
New Jersey, 1996. Yourdon Press.

[2] Jan Bosch. Design and Use of Software Architec-
tures: Adopting and Evolving a Product-Line Ap-
proach. Addison-Wesley, 2000.

[3] Alan W. Brown and Kurt C. Wallnau. The current
state of CBSE. IEEE Software, 15(5):37–46, Septem-
ber 1998.

[4] R.J.A. Buhr. Use Case Maps as architecture entities
for complex systems. IEEE Transactions on Software
Engineering, 24(12):1131–1155, December 1998.

[5] John Cheesman and John Daniels. UML Compo-
nents: A Simple Process for Specifying Component-
Based Software. Object Technology Series. Addison-
Wesley, Reading, Massachusetts, 2000.

[6] Krzysztof Czarnecki and Ulrich W. Eisenecker. Gener-
ative Programming: Methods, Tools, and Applications.
Addison-Wesley, Reading, Massachusetts, 2000.

[7] Hans de Bruin. A grey-box approach to component
composition. In Krzysztof Czarnecki and Ulrich W.
Eisenecker, editors, Proceedings of the First Sympo-
sium on Generative and Component-Based Software
Engineering (GCSE’99), Erfurt, Germany, volume
1799 of Lecture Notes in Computer Science (LNCS),
pages 195–209, Berlin, Germany, September 28–30,
1999. Springer-Verlag.

[8] Hans de Bruin and Hans van Vliet. Scenario-based
generation and evaluation of software architectures.
In Jan Bosch, editor, Proceedings of the Third Sym-
posium on Generative and Component-Based Software
Engineering (GCSE’2001), Erfurt, Germany, volume
2186 of Lecture Notes in Computer Science (LNCS),
pages 128–139, Berlin, Germany, September 10–13,
2001. Springer-Verlag.

[9] Hans de Bruin and Hans van Vliet. Top-down compo-
sition of software architectures. In Per Runeson, ed-
itor, Proceedings of 9th International Conference and
Workshop on the Engineering of Computer-Based Sys-
tems (ECBS’2002), Lund, Sweden, pages 1–10, April
8–11, 2002.

[10] David Garlan, Robert Allen, and John Ockerbloom.
Architectural mismatch: Why reuse is so hard. IEEE
Software, 12(6):17–26, November 1995. Carnegie Mel-
lon University.

[11] Gregor Kiczales, John Lamping, Anurg Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-oriented program-
ming. In M. Askit and M. Matsuoka, editors, Proceed-
ings of 11th European Conference on Object-Oriented
Programming (ECOOP’97), Finland, volume 1241 of
Lecture Notes in Computer Science (LNCS), pages
220–242, Berlin, Germany, June 9–13, 1997. Springer-
Verlag.

[12] Hafedh Mili, Ali Mili, Sherif Yacoub, and Edward
Addy. Reuse-Based Software Engineering: Techniques,
Organization, and Controls. John Wiley and Sons,
New York, 2002.

4

Using Component Composition for Self-customizable Systems
���������	�

ora Pierre Verbaeten Yolande Berbers
Katholieke Universiteit Leuven, Department of Computer Science

Celestijnenlaan 200A, 3001 Leuven, Belgium
Ioana.Sora@cs.kuleuven.ac.be

Abstract

Self-customizable systems are equipped with
mechanisms to automatically adapt themselves to a set of
user requirements or to their environment. We address this
customization problem through component composition.

 Our approach is based on hierarchically decomposed
component systems, deploying composed components as a
means of abstracting details. Composition is performed in a
stepwise refinement manner, which allows to handle the
complexity of the system and to realize very fine-tuned
compositions even when composition decision is made
automatically. The composition strategy is driven by
anonymous dependencies established between components
by their requirements. Our goal is to perform unanticipated
customizations with as few user interventions as possible.

We evaluate and prove our composition approach by
building customized network protocols.

1.Introduction

Component-based development is a proven approach
to manage the complexity of software and its need for
customization. The self-customization problem is a complex
one, raising research questions about: the factors that trigger
customization, how the composition decision is made and
what infrastructure is needed to implement the changes.
The focus of this paper is on the decisional question: what
components will be deployed and what collaborations will
be between them. This decision must be automatically made
by a composition strategy implemented in the system.

The issue here is to be able to do as much
unanticipated customizations as possible while still
guaranteeing a correct composed system. Many approaches
for automatic synthesis address only layered architectures
for their simplicity [1], [2]. This limitation does not allow a
fine tuned composition of more complex systems. Other
approaches [3] rely on the criteria-driven selection of a right
implementation for the defined components of a system.
This limits the possibility of unanticipated customization.

We address the problem of the composition of a whole
system according to a set of requirements by dividing it
into subproblems of layered compositions on each flow of
the system. In our approach, fine-tuned compositions and
managing the complexity of the system are possible by

deploying composable components. Our composition
strategy is driven mainly by the anonymous dependencies
established between components by their requirements.
Unanticipated customizations are feasible in this strategy.

We evaluate and prove our composition approach by
building customized network protocols. We integrate an
automatic composition module in DiPS (Distrinet Protocol
Stack framework) [4], a component framework for
developing open protocol stacks, that ensures the needed
infrastructure for composition.

The remainder of this paper is organized as follows.
The next section presents the architecture and component
model. Section 3 covers our correct composition strategy.
We illustrate our approach by a protocol stack composition
in Section 4 and summarize our results in Section 5.

2. Component model

2.1. Architecture

We work with a flow-based architecture using fine-
grained components as the basic building blocks. A system
is defined by a number of flows on which components are
plugged one after the other. Components communicate by
means of an anonymous interaction model, which limits
mutual communication dependencies between components
and allows individual components to be reused.

In our model, a system is built from components and
connectors. Components may be simple or composed. A
simple component is the basic unit of composition that is
responsible for a certain behavior, and has one input and
one output port. Composed components appear as a
grouping mechanism and may have several input and output
ports. The internal structure of a composed component is
aligned on a number of flows connecting input with output
ports.

Each component provides a set of services and may
require that a certain set of services is available for it. When
composing services together, the composed component
gains own added value, and, as a whole, provides new
services at a higher abstraction level than its parts.

2.2. Component descriptions

A component is described by a set of ports for the
interaction with the rest of the system (input ports and

output ports) and a specified functionality. The functionality
of a component is described by a set of provides-requires
clauses. Requires clauses are associated with ports. In the
case of simple components, provides clauses are associated
with the component as a whole. In the case of composed
components, provides clauses can also be associated with
ports, reflecting the internal structure of the component. The
composed component as a whole is always defined by its
own provides clause, which expresses the higher-
abstraction-level features gained through the composition of
the subcomponents. The vocabulary used to describe the
own provides of a composed component is distinct from the
vocabulary deployed for describing the provides of its
subcomponents. This abstraction definition must be done by
the designer of the composed component. In the case of
composed components, the existing flows must be specified,
to allow establi shing input-output relationships.

By default, it is suff icient that requirements are met by
some components that are present in the flow connected to
that port. One can specify immediate requirements, which
apply only to the next component on that flow.

In our approach, the provides-requires clauses are
expressed through li sts of properties. A property is a rather
abstract feature (a name). This enables the definition and
implementation of our composition algorithm in a domain-
independent manner. It is possible that a property is further
specified with a list of subproperties, which describe fine-
tuning attributes of the global property.

2.3. Structure of composed components

We use hierarchical relationships between components
as a means of structuring and of providing fine-grained
composition. In our model, the composed components do
not have a fixed implementation. In this approach lies a
powerful part of the customization capability: the full
implementation of the component wil l be composed as a
result of customization options. Fixed elements are these
specified in the component description (ports, internal
flows, general provides-requires clauses) and a set of
structural constraints. These constraints do not full y
determine a structure. The structural constraints comprise:
basic structural constraints, structural context-dependent
requirements for components and inter-flow dependencies.
The basic structural constraints must be specified by the
developer of the composed component. These describe the
minimal properties that must be assembled on certain flows
for the declared provides of the composed component to
emerge and may define a “skeleton” of the composed
component. The structural context-dependent requirements
express requirements of other components when deployed
here as subcomponents. These requirements wil l be added
by the developer of these subcomponents. The inter-flow
dependencies specify relationships between the flows.

We consider as an example the REL component, a
component that realizes a reliability protocol. It has two
flows, corresponding to the downgoing and upgoing paths
through the protocol stack. Different types of reliability may
be realized, but the REL component has a set of structural

constraints imposed by its basic functionality. The basic
functionality that contributes to all reliability protocols is
quite simple: in order to recover from packet loss, the
sending part wil l resend the data until an acknowledgement
from the receiver has arrived. The basic structural
constraints thus state that on the downgoing flow a
retransmission strategy has to be provided, followed by a
headerconstruction. On the upgoing flow, there has to be a
headerparsing, a dispatching element that routes differently
data and feedback packets, creating a flow ramification, and
on these two flows, there has to be an acknowledgement
receiving respectively an acknowledgement sending. These
basic structural constraints imply a “skeleton” like that
depicted in figure 1.

Retransmission
Strategy

Header
Constructor

Header
Parser

GenericACK
Sending

GenericACK
Receiving

datafeedback

datafeedback

IN1

IN2

OUT2

OUT1

PROVIDES:
rel

Figure 1. Example: basic structural constraints represented
as a composed component skeleton

Between the two flows, the downgoing and upgoing
flow, there is a “continuation” relationship. Over these basic
structural constraints, a series of customizations wil l be
possible. Different retransmission and acknowledgement
strategy components wil l actually get deployed. For
example, one choice can be to use positi ve or negative
acknowledgements - that will reflect in deploying an
ACKSending or a NAKSending component.

An important strength of our approach is that we do
not limit the customization of composed components to
fill ing in the given structure with right implementations. It
should be possible that new components, which can provide
further enhancements or customizations for the composed
component, are discovered. The insertion of these new
components is permitted anywhere on the existing flows, as
long as their component descriptions do not contradict
existing requirements (structural constraints of the
composed component or requirements of the already present
components on that flow).

In the case where new components are defined and
implemented, there might appear situations where the
existing requirements (own requirements of component and
structural constraints of composed component) are not
enough to exclude bogus compositions (are not able to

prevent the new component to be placed in inappropriate
places). In this case, the provider of the new component
must also specify a set of structural requirements to be
added to the structural constraints of the composed
components in which this new one could be deployed.

3. Correct composition

Our criteria for a correct composition is “matching all
requires clauses with provides clauses, on all flows in the
system” . This criteria is used as well for validating a
composition as for determining the right composition of a
system with a set of given desired properties.

We introduce the mechanism of propagation of
requirements as an essential element of our strategy. This
mechanism works like delegating the responsibil ity for
requirements posed to a component to other components. In
a composition where a simple component B is connected to
an outgoing port of component A while not fulfilling (all)
requirements associated with that outgoing port of A, these
unfulfill ed requirements are virtuall y propagated to the
outgoing port of B. In the case of composed components
(with multiple input and output ports), the propagation of
requirements follows the “intracomponent pathways” [5]
originating in that input port. The internal flows of the
composed component are used to determine which output is
reall y affected by one particular input. A similar
phenomenon of propagation appears in the case of
composing components. The requires and the provides
clauses of the subcomponents are propagated to the external
ports of the composed component. We define a propagation
mechanism in the context of components, similar to the
propagation mechanism defined by Perry [6] in the context
of formal description of program modules.

The automatic composition problem is the following:
given a set of requirements describing the desired system,
and a component repository that contains descriptions of
available components, the composition process has to find a
set of components and their interactions to realize the
desired functionality. For our composition strategy, the
requirements describing the desired system have to be
expressed as sets of required properties, defined in the same
vocabulary as used for the component descriptions. Rather
than enumerating desired system properties, requirements
should be expressed in a suff iciently high abstraction level
domain specific language. In [7] we presented our view on
deploying a translation layer for user requirements as a
front-end tool for the composition module, as an essential
element for the practical success of an automatic
composition approach.

The composition results through stepwise refinements
as depicted in Figure 2. After a composition process has
determined that it wants a certain component type in place,
a new composition problem may be launched for composing
the internal structure of that component.

The overall building process is driven by the
requirements. The required properties for the system are put
on the main flow of the system and propagated from that
point on, while adding components. The addition of new

components on the flow occurs according to the current
requirements, which are those propagated from the initial
requirements together with those of the new introduced
components. When a requirement has subrequirements (like
REQ p1 WITH p11, p12) then a component found to provide
p1 wil l have to be fine-tuned, so that its internal structure is
compliant to the set of subrequirements p11, p12. A
component is selected for the solution if it matches at least a
subset of the current requirements. A solution is considered
complete when the current requirements set becomes empty.
It is possible that for certain sets of requirements no solution
can be found.

?

REQ:
p1 (WITH p11, p12), p2, p3

P2, P3

P1

P11

P12

Figure 2. Composition in successive refinement steps

4. Case study

We have applied our composition approach to
customize network protocol stacks. Since currently protocol
stacks operate in various contexts, it is not possible to know
the required properties of a stack in advance, so stack
configuration mechanisms are needed.

We designed and integrated an automatic composition
module into DiPS (Distrinet Protocol Stack framework) [4],
a component framework for developing open protocol
stacks. DiPS ensures the run-time support for dynamic
protocol stack changes and provides the infrastructural
support for the composition of layers and components.

The following example illustrates our composition
approach. An application needs a reliable communication
link for multimedia transmissions. This translates into the
global requirement REQUIRES rel (WITH MultimediaRel),
transp, non_local.

A stack, which has as structural constraints the
existence of two flows, a downgoing and upgoing path, wil l
be constructed as a sequence of layers, following the
requirements along the downgoing flow. A similar example
is discussed in [7], but considering only coarse-grained
components. We have shown there how propagation of
requirements leads to the selection and ordering of the
components on one flow. The composition of the stack
could result in two solutions, TCP on IP or REL on UDP on
IP, both combinations providing reliable transport.

In the case study presented in this paper we go an
important step further: the reliability property has to be fine-
tuned, i.e. for multimedia transmissions, which requires a
special retransmission poli cy. This fine-tuning is not

possible when composing only monoli thic coarse-grained
components. Our current work permits fine-tuning through
the deployment of composable components. The REL
component will be composed according to the requirement
MultimediaRel applied over its structural constraints. The
TCP reliability retransmission strategy is not suitable, thus
TCP on IP will be rejected.

For the composition of the REL component (figure 3),
the MultimediaRel requirement is forwarded to the
downgoing flow of the component, leading to the selection
of the MultimediaRelStrategy component for providing
the right retransmission strategy. The component
MultimediaRelStrategy requires further support for
readjustment of the retransmission timeout – this leads to
inclusion of a RoundTripTimeCalculator, placed,
according to its own and structural requirements, on the
upgoing flow. The RoundTripTimeCalculator needs time
stamps to be attached on its incoming flow – so a
TimeStampAttacher component is placed on the downgoing
flow after the retransmission strategy. Acknowledgement
sending and receiving has to be handled, according to the
skeleton of the composed component. Since no preference
for the acknowledgement strategy exists, positive
acknowledgements are chosen (the AckReceivingUnit and
AckSendingUnit components). AckSendingUnit is a generic
composed component that has to be composed. A Filter is
needed, and component NextSequenceFilter wil l be
chosen, since it is compatible with multimedia
retransmission strategy on its incoming flow.

Multimedia
RelStrategy

CRPHeader
Constructor

PacketType
Rout

CRPHeader
Parser

ACK
Receiving
Unit

data

feedback

data
feedback

IN1

IN2

OUT2

OUT1

ACKSending
Strategy

NextSequence
Filter

TimeStamp
Attacher

RoundTrip
Time
Calculator

PacketType
Rout

ACKSending
Unit

Multiple
Sending
Attacher

REQ RTTCalc

REQ TimeStamp

REQ
MultimediaStrat

Figure 3. Composition of a reliability layer component

To make it clearer how our approach may handle
unanticipated customizations, suppose that a new
component, MultipleSending, is developed and could be

used to enhance the performance of the Reliabil ity layer.
The requirements of this component impose that it is used
on an outgoing flow of a retransmission strategy. This
implies that, when multiple sending is required, such a
component is deployed li ke in figure 3.

The reuse of existing components is possible in
different contexts. For example, a Fragmenter or a
RoundTripTimeCalculator may be used in different
contexts, use guided by the structural constraints of the
components where they are going to be deployed.

5. Conclusions

This paper addresses automatic composition of
component-based systems. We discuss our composition
strategy, that finds the set of components and their
interactions to compose a system starting from a given set
of required properties for the system.

 Our ongoing work, presented in this paper, is
generalizing our composition approach for layered systems
presented in [7] to cope with more general flow-based
architectures and to permit very fine-tuned customizations
of large systems. Another strength of our approach is that it
is open to unanticipated customizations, being able to
include new component types in compositions, along with
the reuse of existing components.

Using the networking domain as application domain
example, we il lustrate how our composition strategy works
on building a protocol stack that complies to client-specific
requirements. Developing a prototype that integrates an
automatic composition module into the DiPS [4] component
framework, we have validated our approach.

6. References

[1] D. Batory, G. Chen, E. Robertson, T. Wang, “Design Wizards
and Visual Programming Environments for GenVoca
Generators”, IEEE Transactions on Software Engineering,
Vol.26, No. 5, May 2000.

[2] K. Czarnecki, U. Eisenecker, “Synthesizing Objects” , in
Proceedings ECOOP'99, Lecture Notes in Computer Science
1628, Springer, Lisbon, Portugal, June 1999, pp. 18-42.

[3] E. Truyen, B.N. Joergensen, W. Joosen, "Customization of
Object Request Brokers through Dynamic Reconfiguration",
in Proceedings TOOLS Europe 2000, June 2000, France.

[4] F. Matthijs, “Component Framework Technology for
Protocol Stacks”, PhD Thesis, Katholieke Universiteit
Leuven, December 1999.

[5] J.A. Stafford, A.L. Wolf, “Architecture-Level Dependence
Analysis for Software Systems”, International Journal of
Software Engineering and Knowledge Engineering, Vol.11,
No.4, August 2001, pp. 431-452.

[6] D.E. Perry, “Software Interconnection Models” , Proceedings
of the 9th International Conference on Software Engineering,
Monterey CA, March 1987, pp. 61-69.

[7] ��� � ora, F.Matthijs, Y.Berbers, P.Verbaeten, “Automatic
composition of systems from components with anonymous
dependencies specified by semantic-unaware properties”, in
Proceedings TOOLS EE 2001, Sofia, Bulgaria, March 2002.

Case Study: A Component-Based Software Architecture for Industrial Control

Frank Lüders
ABB Automation Technology Products

frank.luders@mdh.se

Andreas Sjögren
Mälardalen University

andreas.sjogren@mdh.se

Abstract

When different business units of an international com-
pany are responsible for the development of different
parts of a large system, a component-based software ar-
chitecture may be a good alternative to more traditional,
monolithic architectures. The new common control sys-
tem, developed by ABB to replace several existing control
systems, must incorporate support for a large number of
I/O systems, communication interfaces, and communi-
cation protocols. An activity has therefore been started to
redesign the system’s architecture, so that I/O and com-
munication components can be implemented by different
development centers around the world. This paper re-
ports on experiences from this effort, describing the sys-
tem, its current software architecture, the new compo-
nent-based architecture, and the lessons learned so far.

1. Introduction

Increased globalization and the more competitive cli-
mate make it necessary for international companies to
work in new ways that maximize the synergies between
business units around the world. Interestingly, this may
also require the software architecture [1] of the developed
systems to be rethought. In a case where different devel-
opment centers are responsible for different parts of the
functionality of a large system, a component-based archi-
tecture may be a good alternative to more traditional,
monolithic architectures, usually comprising a large set of
modules with many visible and invisible interdependen-
cies. Additional, expected benefits of a component-based
architecture are increased flexibility and ease of mainte-
nance [2,3].

This paper reports on experiences from an ongoing
project at ABB to redesign the software architecture of a
control system to make it possible for different develop-
ment centers to incorporate support for different I/O and
communication systems. The remainder of the paper is
organized as follows. In Section 2, the ABB control
system is described with particular focus on I/O and
communication. The software architecture and its trans-
formation are described in more detail in Section 3. In
Section 4, we analyze the experiences from the project
and try to extract some lessons of general value. Section 5

reviews some related work in this area. Section 6 present
our conclusions and outlines future work.

2. The ABB control system

Following a series of mergers and acquisitions, ABB
now has several independently developed control systems
for process, manufacturing, substation automation and
related industries. The company has decided to continue
development of only a single, common control system for
these industries. One of the existing control systems was
selected as the starting point. The software has two main
parts, the ABB Control Builder, which is a Windows
application running on a standard PC, and the system
software of the ABB controller family, running on top of
a real-time operating system on special-purpose
hardware. The latter is also available as a Windows
application called the ABB Soft Controller.

Figure 1. The ABB Control Builder

The Control Builder is used to specify the hardware
configuration of a control system, comprising one or
more controllers, and to write the programs that will exe-
cute on the controllers. When the configuration and the
control programs, called a control project, are
downloaded to the control system via the control network,
the system software of the controllers is responsible for

interpreting the configuration information and for sched-
uling and executing the control programs. Figure 1 shows
the Control Builder with a control project opened. It
consists of three structures showing, the libraries used by
the control programs, the control programs themselves,
and the hardware configuration, respectively. The latter
structure is expanded to show a configuration of a single
AC800M controller, equipped with an AI810 analogue
input module, a DO810 digital output module, and a
CI851 PROFIBUS-DP communication interface.

To be attractive in a wide range of industry sectors, the
common control system must incorporate support for a
large number of I/O systems, communication interfaces,
and communication protocols. In the current system, there
are two principal ways for a controller to communicate
with its environment, I/O and variable communication.
When using I/O, variables in the control programs are
connected to channels of I/O modules using the program
editor of the Control Builder. Figure 2 shows the editor
with a small program, declaring one input variable and
one output variable. Notice that the I/O addresses for the
two variables correspond to the position of the two I/O
modules in Figure 1.

Figure 2. The Control Builder program editor

Variable communication is a form of client/server
communication. A server supports one of several possible
protocols and has a set of named variables that may be
read or written by clients that implement the same proto-
col. A controller can be made a server by connecting
program variables to so-called access variables in the
Control Builder. A controller can act as a client by con-
necting to a server and reading and writing variables via
the connection.

3. Componentization

3.1. Current software architecture

The software of the ABB control system consists of a

large number of source code modules, each of which are
used to build the Control Builder or the controller system
software or both. Figure 3 depicts this architecture, with
emphasis on I/O and communication. Many modules are

also used as part of other products, which are not dis-
cussed further here. This architecture is thus a product-
line architecture [4], although the company has not yet
adopted a systematic product-line approach. The boxes in
the figure represent logical components of related func-
tionality. Each logical component is implemented by a
number of modules, and is not readily visible in the
source code.

Control
Builder

Controller
System
Software

User Interface

I/O
Access

I/O
Status

Com.-
muni-
cation
Server

OS & HW Abstraction, Device Drivers

Com-
muni-
cation
Client

HW
Con-
figur-
ation

Figure 3. The current software architecture
The main problem with this architecture is related to

the work required to add support for new I/O modules,
communication interfaces, and protocols. For instance,
adding support for a new I/O system may require source
code updates in all the components except the User Inter-
face and the Communication Server, while a new com-
munication interface and protocol may require all
components except I/O Access to be updated. As an ex-
ample of what type of modifications may be needed to the
software, we consider the incorporation of a new type of
I/O module.

To be able to include a device, such as an I/O module,
in a configuration, a hardware definition file for that type
of device must be present on the computer running the
Control Builder. For an I/O module, this file defines the
number and types of I/O channels. The Control Builder
uses this information to allow the module and its channels
to be configured using a generic configuration editor.
This explains why the user interface does not need to be
updated to support a new I/O module. The hardware
definition file also defines the memory layout of the
module, so that the transmission of data between program
variables and I/O channels can be implemented in a
generic way.

For most I/O modules, however, the system is required
to perform certain tasks, for instance when the configura-
tion is compiled in the Control Builder or during start-up
and shutdown in the controller. In today’s system, rou-
tines to handle such tasks must be hard-coded for every
type of I/O module supported. This requires software de-
velopers with a thorough knowledge of the source code.
The limited number of such developers therefore consti-
tutes a bottleneck in the effort to keep the system open to

the many I/O systems found in industry. The same is true
for communication interfaces and protocols.

3.2. Component-based software architecture

To make it much easier to add support for new types

of I/O and communication, it was decided to split the
components mentioned above into their generic and non-
generic parts. The generic parts, commonly called the
generic I/O and communication framework, contains code
that is shared by all hardware and protocols implementing
certain functionality. Routines that are special to a par-
ticular hardware or protocol are implemented in separate
components, called protocol handlers, installed on the PC
running the Control Builder and on the controllers. This
component-based architecture is illustrated in Figure 4.
To add support for a new I/O module, communication
interface, or protocol to this system, it is only necessary to
add protocol handlers for the PC and the controller along
with a hardware definition file. The format of hardware
definition files is extended to include the identities of the
protocol handlers.

Control
Builder

Controller
System
Software

User Interface

Gen.
I/O

Access

Gen.
I/O

Status

Gen.
Com.-
muni-
cation
Server

Gen.
Com-
muni-
cation
Client

Gen.
Con-
figur-
ation

OS & HW Abstraction, Device Drivers

Protocol Specific Components

 Protocol Specific Components

Figure 4. The component-based architecture

Essential to the success of this approach, is that the
dependencies between the framework and the protocol
handlers are fairly limited, and even more importantly,
well specified. One common way of dealing with such
dependencies is to specify the interfaces provided and
required by each component. ABB’s component-based
control system uses Microsoft’s Component Object
Model (COM) [5], since it provides suitable formats both
for writing interface specification, using the COM Inter-
face Definition Language (IDL), and for run-time inter-
operability between components. For each of the generic
components, two interfaces are specified: one that is pro-
vided by the framework and one that may be provided by
protocol handlers. Interfaces are also defined for interac-

tion between protocol handlers and device drivers. The
identities of protocol handlers are provided in the hard-
ware definition files as the Globally Unique Identifiers
(GUIDs) of the COM classes that implement them.

COM allows several instances of the same protocol
handler to be created. This is useful, for instance, when a
controller is connected to two separate networks of the
same type. Also, it is useful to have one object,
implementing an interface provided by the framework, for
each protocol handler that requires the interface. An
additional reason that COM is the technology of choice is
that it is expected to be available on all operating systems
that the software will be released on in the future. In the
first release of the system, which will be on a platform
without COM support, the protocol handlers will be
implemented as C++ classes, which will be linked
statically with the framework. This works well because
the Microsoft IDL compiler generates C++ code
corresponding to the interfaces defined in an IDL.

When a control system is configured to use a particular
protocol, the Control Builder uses the information in the
hardware definition file to load the protocol handler on
the PC and execute the protocol specific routines it
implements. During download, the identity of the
protocol handler on the controller is sent along with the
other configuration information. The controller system
software then tries to load this protocol handler. If the
protocol handler is available an object is created and the
required interface pointers obtained. Objects are then
created in the framework and interface pointers to these
passed to the protocol handler. After the connections
between the framework and the protocol handler has been
set up through the exchange of interface pointers, a
method will be called on the protocol handler object that
causes it to continue executing in a thread of its own.
Since the interface pointers held by the protocol handler
references objects in the framework, which are not used
by anyone else, all synchronization between concurrently
active protocol handlers can be done inside the
framework.

4. Lessons learned

The definitive measure of the success of the project
described in this paper will be how large the effort re-
quired to redesign the software architecture has been
compared to the effort saved by the new way of adding
I/O and communication support. At the time of writing,
the specification of generic interfaces and the implemen-
tation the framework are largely completed, and it seems
safe to conclude that the efforts are of the same order of
magnitude as the work required to add support for an
advanced I/O or communication system the old way, i.e.
by adding code to the affected modules. From this we
infer that, if the new software architecture makes it sub-

stantially easier to add support for such systems, the effort
has been worthwhile. We therefore find that the experi-
ences with the ABB control system supports our hypothe-
sis that a component-based software architecture is an
efficient means for supporting distributed development of
complex systems.

A lesson of general value is that it seems that a com-
ponent technology, such as COM, can very well be used
on embedded platforms and even platforms where run-
time support for the technology is not available. Firstly,
we have seen that the overhead that follows from using
COM is not larger than what can be afforded in many
embedded systems. In fact, used with some care, COM
does not introduce much more overhead than do virtual
methods in C++. Secondly, in systems where no such
overhead can be allowed, or systems that run on plat-
forms without support for COM, IDL can still be used to
define interfaces between components. Thus, the same
interface definitions can be used with protocol handlers
implemented as dynamically linked COM components
and statically linked C++ classes or C modules.

Another interesting experience from the project is that
techniques that were originally developed to deal with dy-
namic hardware configurations have been successfully
extended to cover dynamic configuration of software
components. In the ABB control system, hardware defini-
tion files are used to specify what hardware components a
controller may be equipped with and how the system
software should interact with different types of compo-
nents. In the redesigned system, the format of these files
has been extended to specify which software components
may be used in the system. The true power of this com-
monality is that existing mechanisms for handling hard-
ware configurations can be reused largely as is. The idea
that component-based software systems can benefit by
learning from hardware design is also aired in [2].

5. Related work

The use of component-based software architecture in
real-time, industrial control has not been extensively
studied, as far as we know. One example is documented
in [6], which describes work not based on industrial ex-
periences, but from the construction of a prototype, devel-
oped in academia for non-real-time platforms with input
from industry. A research project focusing on tools end
techniques for ensuring correct composition of compo-
nents in embedded systems is described in [7]. An exam-
ple of a commercial system for component-based devel-
opment of real-time control systems is ControlShell [8],
which supports construction from re-usable components
using a graphical editor and automatic code generation.

6. Conclusions and future work

The initial experiences from the effort to redesign the
software architecture of ABB’s control system to support
component-based development are promising. We have
already claimed that the experiences recorded in this pa-
per support our hypothesis that component-based soft-
ware architectures is a good alternative to monolithic ar-
chitectures for complex systems developed in distributed
organizations. It will be a primary goal of our future work
to strengthen this claim by presenting data that verifies
that the development of I/O and communication support
is made substantially easier by the new architecture.

In addition, we plan to study in more detail how non-
functional requirements are addressed by the software
architecture, since the architecture of a system is often
seen as a primary means for meeting such requirements
[1]. We will, for instance, look at reliability, which is an
obvious concern when externally developed software
components are integrated into an industrial system.
Other goals are to investigate the additional expected
benefits of increased flexibility and ease of maintenance
and to compare the performance of the system after the
redesign to that of the current system.

7. References

[1] L. Bass, P. Clements, R. Katzman, Software

Architecture in Pracice, Addison-Wesley, 1998.

[2] C. Szyperski, Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, 1997.

[3] H. Hermansson, M. Johansson, L. Lundberg, “A
Distributed Component Architecture for a Large
Telecommunication Application”, Proceedings of
APSEC ’00, December 2000.

[4] J. Bosch, Design and Use of Software Architectures
– Adopting and Evolving a Product-Line Approach,
Addison-Wesley, 2000.

[5] Microsoft Corporation, The Component Object
Model Specification, Version 0.9, October 1995.

[6] A. Speck, “Component-Based Control System”,
Proceedings of ECBS ’00, April 2000.

[7] T. Genssler, C. Zeidler, “Rule-Driven Component
Composition for Embedded Systems”, Proceedings
of the ICSE ’01 Workshop on CBSE, May 2001.

[8] S. A. Schneider, V. W. Chen, G. Pardo-Castellote,
“ControlShell: Component-Based Real-Time Pro-
gramming”, Proceedings of RTAS ’95, May 1995.

Using Parameterised Contracts to Predict Properties of Component Based
Software Architectures

Ralf H. Reussner
CRC for Enterprise Distributed Systems

Technology Pty Ltd
Monash University

900 Dandenong Road,
Caulfield East, VIC 3145, Australia

reussner@dstc.com

Heinz W. Schmidt
Center for Distributed Systems

and Software Engineering
Monash University

900 Dandenong Road,
Caulfield East, VIC 3145, Australia

hws@csse.monash.edu.au

Abstract

This position paper presents an approach for predict-
ing functional and extra-functional properties of layered
software component architectures. Our approach is based
on parameterised contracts a generalisation of design-by-
contract. The main contributions of the paper are twofold.
Firstly, it attempts to clarify the meaning of “contractual
use of components” a term sometimes used loosely – or
even inconsistently – in current literature. Secondly, we
demonstrate how to deploy parameterised contracts to pre-
dict properties of component architectures with non-cyclic
dependencies.

1. Introduction

In the recent past, two successful areas of software en-
gineering, namely software architecture and software com-
ponents moved closer together. In fact, we believe they
are just two sides of the same coin, given the intertwin-
ing of architectural and detailed design and the need to
connect both system-level and component-level reasoning
about software.

One of the major motivations of software architecture,
the aim to reason explicitly about extra-functional prop-
erties during software-design, benefits from focusing on
component based software architectures. While current
research in that area mostly concentrates on component
interoperability checks within software architectures and
component adaptation in case of incompatibility, predicting
properties of the overall architecture from known compo-
nent properties has gained attraction [2, 11].

From a conceptual point of view, one can consider soft-
ware architectures as structuring principles and methods for

component assemblies. Software architecture and compo-
nent (re-)configuration are also closely connected. Based on
this strong connection, architecture promises help in com-
positional reasoning, i.e., predicting system properties and
qualities from component properties by using the architec-
tural structuring mechanisms in the reasoning process and
without recourse to the component internals.

To be able to predict overall architectural properties, lo-
cal interaction must be correct in terms of the interface
model. This means no errors should occur by calling meth-
ods with wrong parameters or by calling methods in the
wrong order. Due to that necessity of local correctness, we
discuss contracts for components first (in section 3). Such
contracts specify conditions for correct local interaction.
Beyond traditional contracts, in section 4 we present a gen-
eralisation called parameterised contracts [7, 6]. These deal
with the prediction of properties of composite components
based on the properties of their basic components. In ad-
dition, parameterised contracts depend on the environment
in which components are deployed. Some of the environ-
ment properties become parameters to these contracts. The
importance of this parameterisation becomes clear, when
looking at extra-functional properties like timing behaviour
or reliability. Here, the timing behaviour (reliability) of the
component clearly depends on the timing behaviour (relia-
bility, resp.) of environmental services used by the compo-
nent.

2. Example

As an example, Figure 1 shows a composite component
(MobileMailViewer) which offers the service of dis-
playing mails of various formats on a mobile personal or-
ganiser. Internally, the MobileMailViewer consists of
a Controler (handling the selection of mails, connec-

tion to an address book, formatting of strings, etc.) and a
MailServer (delivering the mails) and a ViewerSoft-
wareServer, which provides the Controlerwith the a
viewer appropriate to the format of the actual email. Since
memory is limited on mobile devices, we assume the device
cannot store viewers for all formats. Also the programmer
of the controler cannot foresee all future mail or attachment
formats. To the Controler component, both servers are

MailServer

ViewerSofwtare-
Server

MobileDevice-
Mgr

MobileMailViewer

Controler

Checks performed by classical contracts

Computations performed by parameterised
contracts

Figure 1. Configuration of a mobile viewer

remote. Nevertheless, the personal manager program on
the mobile device considers the MobileMailViewer as
a single local component.

In our figure, rectangles denote components and trian-
gle denote interfaces. Interfaces are objects themselves not
just (meta-)descriptions. Components have two kinds of in-
terfaces: provides- and requires-interfaces. The former de-
scribe services offered by a component, the latter services
required by the component. Components connected to a
components interfaces form the environment of the compo-
nent. In our example, the Controler component requires
the MailServer and the ViewerSoftwareServer
and offers services to the MobileDeviceManager. Al-
though the need of requires-interfaces is obvious for inter-
operability and substitutability check (and well-known in
literature [13, 4]), current component models like Sun’s EJB
or Microsoft’s .NET only contain provides interfaces. (One
notable exception is CORBA 3.0).

3. Contractual Use of Components in Software
Architectures

Much of the confusion regarding ”contractual use” of a
component derives from the double meaning of the term
”use”. It can refer to

1. the run-time use, when the methods of a component
are called. For example, displayMessage of the
Controler component is used in this way.

2. the composition-time use, when a component is placed
into a new context or environment. This includes the

development time but can also happen when an opera-
tional system is reconfigured.

Depending on the above case, contracts play a different
role. Before actually defining contracts for components, we
briefly review the design-by-contract principle. According
to [5, p. 342] a contract between the client and the supplier
consists of two obligations for each service or method:

� The client must satisfy the precondition of the supplier.

� The supplier has to fulfil its postcondition, provided
the precondition was met be the client.

Each of the above obligations can be seen as the benefit to
the other party. In a nut shell:

If the client fulfils the precondition of the sup-
plier, the supplier will fulfil its postcondition.

It is clear, that a used component plays the role of a supplier.
But to formulate contracts for components, we also have
to identify the pre- and postconditions and the client of a
component.

Considering the run-time use first, the clients of a com-
ponent

�
are all components connected to

�
’s provides in-

terface(s). The precondition for run-time use is the collec-
tion of preconditions of the component’s services. Likewise
the run-time use postcondition is the collection of postcon-
ditions of the provided services. This is still close enough to
the traditional design-by-contract. Hence we consider this
kind of contract the service contract.

The composition-time use or reuse occurs in the archi-
tectural design or reconfiguration of a system. From an ar-
chitectural viewpoint the component

�
depends on its en-

vironment through its requires interfaces. Its correct func-
tioning does not only depend on the preconditions of its pro-
vided services. Hence we regard the the requires interfaces
as a kind of abstract preconditions at the component con-
tract level. Similarly, from an architectural viewpoint, the
provided services are the promised benefits to the (run-time)
user. Therefore, we consider those provides interfaces the
postconditions of the component-level contract. From the
perspective of logical specifiation the story is a little more
complex in that each of these conditions is a conditional
specification – for instance, the required environment be-
haviour is only delivered if the component itself satisfies
the preconditions of the requires interface services.

Putting it all together we formulate the architecture-by-
contract principle as follows:

If the user of a component fulfils the components’
required interface (i.e., the precondition) by of-
fering the right environment the component will
offer its services as described in the provided in-
terface (i.e., its postcondition).

2

Note that checking the satisfaction of a requires interface in-
cludes checking whether the contracts of required services
(the service contracts specified in the requires-interface(s))
are sub-contracts of the service contracts stated in the pro-
vides interfaces of the required components. The notion of
a subcontract is described in [5, p. 573] and generalised in
[9] using contravariant typing for methods but importantly
including invariants as conditions for distributed and hence
typically concurrent environments.

For checking the correct contractual use of the Con-
troler component in our example we check whether the
services specified in the requires interface of Controler
are included in the provides interface of MailServer and
whether the contracts of requires services are subcontracts
of provides services. Similarly we check the binding be-
tween the other requires and provides interfaces.

More generally, when architecting systems (i.e., intro-
ducing new components), we have to check the bindings
of their requires interfaces to the used environmental pro-
vides interfaces in addition to checking the use of the com-
ponent’s providees interfaces. When replacing a compo-
nent with a newer one, we not only have to check their
contract (i.e., the bindings of their requires-interfaces to
the used components, like mentioned above), but also the
contracts of the using environmental components (i.e., the
bindings from the provides-interfaces), because one has to
ensure, that by a replacement non of the existing local con-
tracts have been broken. In our example, if we replace
the Controler component we have to (a) check the con-
tractual use of Controler, i.e., we check the precon-
dition of the Controler (i.e., the interoperability with
MailServer and ViewerSoftwareServer), and (b)
we have to check whether the precondition of MobileDe-
viceMgr is still fulfilled (i.e., checking the contractual use
of MobileDeviceMgr).

There is a range of formalisms used for specifying pre-
and postconditions, defining a range of interface models for
components (see for extensive discussions and various mod-
els e.g., [3, 12, 6]). This leads naturally to different kinds of
contracts for components [1].

Another degree of freedom in the abstract principle of
design-by-contract and our extension to architecture-by-
contract is the time of component deployment. Component
contracts as discussed here describe the deployment of com-
ponents at composition-time. This stresses the importance
of contracts which are statically checkable. When a system
is architected or reconfigured, errors are common. There-
fore, the direct feedback regarding correct component de-
ployment is very helpful in practice, because it can assure
the absence of composition errors. In contrast, the run-time
checks can detect contract violations at run-time only. In
many classes of distributed systems, such late detection of
composition errors is unsatisfactory from a quality of ser-

vice point of view. The problems and costs of late composi-
tion error discovery are compounded as the person running
the system and triggering the error usually is not the system
architect or maintainer, which may now have difficulties re-
producing the error or obtaining sufficient information to
locate and correct it. Additionally the high costs of hard-
ware component recalls and replacements are well known
in other industries. Similarly cost explosions can be ex-
pected in a component software industry despite the benefit
of electronic recall and delivery.

4. Parameterised Contracts

A component rarely fits directly into a new reuse context.
For a component developer it is hard to foresee all possible
reuse contexts. Hence, it is also hard for a developer to pro-
vide components with reasonable configuration options to
fit into future reuse contexts. Coming back to our discus-
sion about component contracts, this means, that in practice
one single pre- and postcondition of a component will not
be sufficient, because of the following common cases:

1. the precondition of a component is not satisfied by a
specific environment while the component itself would
be able to provide a meaningful subset of its func-
tionality. In the example, the ViewerSoftware-
Server might fail or even be absent, but the Con-
troler could still present standard text emails, al-
though perhaps not display certain attachments.

2. a weaker postcondition of a component is sufficient in
a specific reuse context. For example, the component
user might not require all functions. Hence the compo-
nent will itself require less functionality vis its requires
interfaces and hence weaken its component precondi-
tion.

To model this we need some sort of adaptive pre- and post-
conditions. We call these parameterised contracts [7, 6].
In case 1 a parameterised contract computes the postcon-
dition dependent upon the strongest precondition guaran-
teed by a specific reuse context. Hence the postcondition
is parameterised with the precondition. In case 2 the pa-
rameterised contract computes the precondition dependent
upon the postcondition (which acts as a parameter of the
precondition). For components this means, that provides-
and requires-interfaces are not fixed but are computed to
some extent taking into account the reuse context. Hence,
in contrast to classical contracts, one can say:

Parameterised contracts link the provides- and re-
quires interface(s) of the same component (see
fig. 1). They range over many possible actual
contracts (i.e., ultimately interfaces).

3

Interoperability is a special case now: if a component is in-
teroperable with its environment, its provides interface will
not change. If the interoperability check fails, the parame-
terised contract tries to compute a new provides interface.

5. Applications of Parameterised Contracts

Like classical contracts, parameterised contracts depend
on the actual interface model and should be statically com-
putable. In any case, the software developers do not have to
foresee possible reuse contexts but has to provide a bidirec-
tional mapping between provides- and requires-interfaces.
For simple interface lists (signatures a la CORBA IDL say),
this means, that for each provided service, a list of required
external services must be provided by the component de-
veloper. When computing the actual provides interface, a
service would only be included, if all its required services
are provided by the component’s environment. If inter-
faces also describe component protocols, one has to spec-
ify a mapping from the provides interface to the requires
interface protocol which also identifies the order in which
reuquires services are invoked. We have developed tools
for such models [6].

For extra-functional properties, the application of param-
eterised contracts is crucial. For example, one cannot spec-
ify the timing behaviour of a software component by some
fixed figure. For example the worst-case time of a real-time
component is always some function of the time it takes to
perform critical system services that are only provided in
the deployment environment. The same argument holds for
reliability as empirically validated in our recent paper [8].

By connecting parameterised contracts of single compo-
nents within component architectures and considering criti-
cal properties of the deployment environment, one can now
compute the overall architectural properties. Our methods
are described in [6, 10] in more detail. They necessitate
parameterised contracts and are currently limited to non-
cyclic architectures (i.e. layers of abstract machines). In
our example, we can compute the timing of the composed
component MobileMailViewer by computing the tim-
ing the Controler can provide in dependency of the tim-
ing MailServer and ViewerSoftwareServer can
provide.

6. Conclusion

This paper discussed contractual usage of software com-
ponent. We present requires interfaces as precondition of
components and provides interfaces as postconditions. Pa-
rameterised contracts then link provides and requires inter-
faces of the same component. They are motivated by the ne-
cessity of computing functional and extra-functional com-
ponent properties dependent upon deployment context. Our

methods are supported by an existing tool and discussed us-
ing a running example.

References

[1] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins.
Making components contract aware. Computer, 32(7):38–
45, July 1999.

[2] I. Crnkovic, H. Schmidt, J. Stafford, and K. Wallnau. 4th
ICSE workshop on Component-Based software engineering:
Component certification and system prediction. In Proceed-
ings of the 23rd International Conference on Software En-
geneering (ICSE-01), pages 771–772, Los Alamitos, Cali-
fornia, May12–19 2001. IEEE Computer Society.

[3] B. Krämer. Synchronization constraints in object interfaces.
In B. Krämer, M. P. Papazoglou, and H. W. Schnmidt, ed-
itors, Information Systems Interoperability, pages 111–141.
Research Studies Press, Taunton, England, 1998.

[4] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Speci-
fying distributed software architectures. In Proceedings of
ESEC ‘95 - 5th European Software Engineering Conference,
volume 989 of Lecture Notes in Computer Science, pages
137–153, Sitges, Spain, 25–28 Sept. 1995. Springer-Verlag,
Berlin, Germany.

[5] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, Englewood Cliffs, NJ, USA, second edition, 1997.

[6] R. H. Reussner. Parametrisierte Verträge zur Protokol-
ladaption bei Software-Komponenten. Logos Verlag, Berlin,
2001.

[7] R. H. Reussner. The use of parameterised contracts for ar-
chitecting systems with software components. In W. Weck,
J. Bosch, and C. Szyperski, editors, Proceedings of the Sixth
International Workshop on Component-Oriented Program-
ming (WCOP’01), June 2001.

[8] R. H. Reussner, H. W. Schmidt, and I. Poernomo. Reliability
prediction for component-based software architectures. sub-
mitted to Journal of Systems and Software – Special Issue
of Software Architecture - Engineering Quality Attributes,
2002.

[9] H. W. Schmidt. Compatibility of interoperable objects. In
B. Krämer, M. P. Papazoglou, and H. W. Schnmidt, editors,
Information Systems Interoperability, pages 143–181. Re-
search Studies Press, Taunton, England, 1998.

[10] H. W. Schmidt and R. H. Reussner. Generating Adapters for
Concurrent Component Protocol Synchronisation. accepted
for the Proceedings of the Fifth IFIP International confer-
ence on Formal Methods for Open Object-based Distributed
Systems, Mar. 2002.

[11] J. Stafford and K. Wallnau. Predicting feature interactions in
component-based systems. In Proceedings of the Workshop
on Feature Interaction of Composed Systems, June 2001.

[12] A. Vallecillo, J. Hernández, and J. Troya. Object interop-
erability. In A. Moreira and S. Demeyer, editors, ECOOP
’99 Reader, number 1743 in LNCS, pages 1–21. Springer-
Verlag, 1999.

[13] N. Wirth. Programming in MODULA-2. Springer-Verlag,
3rd Edition, 1985.

4

Estimation of Static Memory Consumption for Systems Built from Source Code
Components

E.M. Eskenazi, A.V. Fioukov, D.K. Hammer, M.R.V. Chaudron
Department of Mathematics and Computing Science, Eindhoven University of Technology,

 Postbox 513, 5600 MB Eindhoven, The Netherlands
+31 (0)40 – 247 4449

{ e.m.eskenazi, a.v.fioukov, d.k.hammer, m.r.v.chaudron }@tue.nl

Abstract
The quantitative evaluation of certain quality attributes –
memory consumption, timeliness, and performance – is
important for component-based embedded systems. We
propose an approach for the estimation of static memory
consumption of software components. The approach
deploys the Koala component model, used for embedded
software in TV sets. There are two main parts in the
method: specification of the memory demand of
components and estimation of memory demand for
systems built of these components. The proposed method
allows flexible trade-off between estimation effort and
achievable precision, yet requiring no changes in the
tools supporting the Koala component model. The method
may be extensible to include other resource attributes as
well.

1. Introduction
Nowadays, component-based engineering [4], [6]

actively enters the area of product families for resource-
constrained embedded systems. For example, Philips
Electronics is deploying a proprietary component model,
called Koala [5].

The Koala component model focuses on the following
points: (1) diversity handling to build different products
from existing components for supporting the development
of product families and (2) efficiency in resource-
constrained systems, since it is applied to the high-volume
electronics domain where product costs are the driving
factors.

Koala does not yet provide any explicit mechanism for
the quantitative assessment of the memory demand for
code and static data. The most challenging issue here is to
predict the memory demand for component compositions,
given the demands of the constituents. Since our goal is
the support of the early product creation phases
(feasibility study, architecting etc.), we choose for static

evaluation techniques. As we aim at reasoning about
quality attributes of Koala components, we concentrate on
source code components.

2. Problem analysis
This section describes the objectives of the approach,

complications to be tackled, and assumptions made.

2.1 Requirements
We formulated the following requirements for the

approach for memory consumption estimation:
1. The approach should be compositional. This means

that the memory consumption of the component
composition should be expressed in terms of the
memory demands of the constituents1.

2. The approach should be tunable with respect to the
estimation accuracy. There is a trade-off between the
estimation effort and the accuracy.

3. The approach should support budgeting. It should be
possible to take into account the estimates of memory
demands for the components that are not developed
yet.

2.2 Complications
There are some Koala language-specific features [5]

influencing the memory consumption of a component:
1. Diversity and optional interfaces. Diversity interfaces

are used to tune reusable components for specific
needs of product family members. The components
can be configured with diversity parameters via
diversity interfaces. Optional interfaces contain one
Boolean diversity parameter determining whether
interface is present in a particular product or not.

2. Function binding. It is possible to substitute a
function of an interface with an expression (a piece of
code) specified in the component description file.

1 In principle, this requirement should hold for any quality attribute. For

more detail, the reader is referred to [1], [2], [3].

Consequently, some C-language expressions are
injected into the component code, and prediction of
the code size becomes dependent on that.

3. Interface binding. During the build process, the
Koala compiler monitors the use of the provides
interfaces of the components. The component is not
reachable and excluded from building if none of its
provides interfaces are connected.

There are additional complicating factors, such as:
1. C Compiler optimizations. Modern compilers can

optimize object code to decrease the amount of the
required memory. The results of these optimizations
may be very context dependent and are consequently
hard to predict.

2. Platform dependency. The necessary amount of
memory for a component depends on target hardware
platform due to bus width and data alignment.

3. Mapping of memory regions. After compiling, the
object code can be allocated to different types of
memory, e.g. internal ROM (IROM), external ROM
(XROM), external RAM (XRAM), etc. The
allocation is defined by a locator configuration file.
As the Koala compiler cannot access this file, it is
more difficult to account for the contribution to a
particular memory region. Modification of this file
would require complete recalculation of memory
consumption for different regions.

2.3 Assumptions
The following assumptions were made:

1. Function binding is ignored.
2. Compiler options are not changed, i.e. compiler

optimizations are considered to be fixed.
3. Platform dependencies are not accounted for.
4. The distribution of memory types according to the

locator configuration is fixed.

3. Memory consumption model
This section introduces mathematical basis for the

approach and describes its implementation within the
Koala framework.

3.1 Analytical expression
In general, the size of component code and static data

can be calculated by the following formula:
() ()()

()
()

sub()

mod() reachable(,) rtsw ,

size , size ,

size , size(,),

i
i c

m c m E s c E

c E i F E

m E s E
∈

∈ ∧ ∈

= +

+ +

∑

∑ ∑
(3.1)

where E is a set of interfaces2 of component c; iE is a
set of interfaces of sub-component i; :i iF E E→ is the
function that specifies how the interfaces of sub-
component i are bound within component c (this also
includes mapping of the diversity parameters of
component c onto the ones of sub-component i); ()sub c

is the set of all the sub-components of c; ()mod c is the

set of all the modules3 of c; ()reachable ,m E is a
predicate indicating if the module m of the component c is
reachable; ()rtsw ,c E is the set of all the run-time

switches4 of a component c; ()size ,x E is the function that
calculates the size of a (sub)-component x, module x, or
run-time switch x, taking into account the interfaces E ; i
denotes a sub-component i of component c, and m denotes
a module m of the component c.

Note that formula (3.1) holds both for code and static
data size.

3.2 Specification
This section describes a method for the specification of

memory demand for a component.
We introduce an auxiliary provides interface IResource

specifying memory consumption of a component (Figure
1). The members of this interface correspond to particular
types of memory. Each component is attached with a
formula for the estimating the memory size of each type.
This formula employs constants, expressions related to
Koala features (e.g. diversity parameters), and arithmetic
operations.

interface IResource
{
 long XROMCODE_size;
 long XROMDATA_size;
 long IROMCODE_size;
 long IROMDATA_size;
 long XRAM_size;
 long IDRAM_size;
 long SRAM_size;
 long STACK_size;
 Bool iPresent();
}

component IsCmx
{
 contains

component CMgCmx mgcmx;
module m;

 provides
IResource req;

 contains
module mreq;

 connects
req = mreq;
mreq = div;

 within mreq
 {

 req.XRAM_size = 34
 + (8+((res.MaxTalos+1)/2)*2)*(res.MaxTasks + 2)
 + mgcmx.req.iPresent()? mgcmx.req.XRAM_size:0;

 }
}

Implementation

File "IResource.id": File "IsCmx.cd":

Subcomponent
presence check

Non-variable
component

code

"IResource"
interface of a

subcomponent

Diversity
parameters

Figure 1. Example of "IResource" interface.

2 E denotes the set of diversity, optional and provides interfaces. Note

that actual dependence on E may involve only a subset of E , e.g.
only component’s provides interfaces.

3 A module is a code block implementing interface functions [5].
4 A run-time switch occurs whenever a non-constant expression controls

the switch. For more detail, the reader is referred to [5].

The formula for calculation of the sizes is an
expression over diversity parameters, optional interface
connections, and sizes (similar formulas) of the sub-
components. It also can contain some constants for
denoting the sizes of the inner modules.

The component “CIsCmx” (Figure 1) includes the sub-
component “CMgCmx” and the module “m”. The
specification of external RAM (XRAM) size consists of
the following parts.
1. Contribution of the module “m”:

34 + (8 + (res.MaxTalos+1)/2)*2)*(res.MaxTasks+2)

This formula contains a constant part and a variable
part which depends on the diversity parameters MaxTalos
and MaxTasks.
2. Contribution of the sub-component “CMgCmx”:

mgcmx.req.iPresent() ? mgcmx.req.XRAM_size : 0

The expression mgcmx.req.iPresent() indicates whether
any module of “CMgCmx” is reachable. The module is
reachable if the provides interface implemented with this
module is needed for any other component. If
mgcmx.req.iPresent() is true, then the size of “CMgCmx”
is added to the size of “CIsCmx”. For the component
“CMgCmx” the similar interface “req” is specified, and
mgcmx.req.XRAM_size provides the size of “CMgCmx”
to account for in the formula for “CIsCmx”.

When using this specification technique, the memory
consumption estimates for component compositions can
be calculated automatically by the Koala compiler.

4. Memory consumption estimation
This section describes two approaches for memory

consumption estimation, based on the specification
technique from the previous section. Both approaches are
illustrated with the experimental results.

4.1 Two possible approaches
Three types of components can be distinguished in the

Koala model [5]: (1) basic components that do not contain
other components, (2) compound components that may
contain other components, forming a hierarchy (see Figure
2), and (3) configurations that are top-level components
without any provides and requires interfaces. The
configuration is a set of components assembled together to
form a product.

For estimation of the component size, two approaches
were considered: (1) an exhaustive bottom-up approach
and (2) a selective top-down one. These two approaches
trade estimation accuracy against estimation effort.

In the exhaustive approach, all diversity and optional
requires interfaces of all compound and all basic
components are taken into account (see Figure 2). The
component hierarchy is traversed in a bottom-up way,

starting from the basic components up to ones at the
defined level of the hierarchy. The formula is constructed
for each component, until a formula for the entire
configuration is determined.

The selective approach deals only with diversity and
optional interfaces of the compound components located
at some fixed level of the composition hierarchy (see
Figure 2, e.g. only components C1, C2, and C3). If it is
impossible to obtain a sufficiently accurate formula at this
level, then also the sub-components need analyzing and
constructing formulas for them. The considered degree of
nesting should be as deep as necessary for achieving a
sufficiently accurate formula.

The formula for the top-level component is a sum of
the formulas of its constituents. To define formulas
depending on the diversity parameters and optional
interfaces, the investigated component is wrapped with an
auxiliary configuration. The formulas can be built in an
empiric stepwise way: their extrapolations are obtained by
sequential compiling of the wrapper with various values
of diversity parameters and different sets of connected
optional interfaces. All relevant components5 contained in
the top-level one also need wrapping to construct their
own formulas. Building of the formulas can be facilitated
by code observation (e.g. when a diversity parameter
defines the size of an array).

Note that both approaches support budgeting, i.e. the
expected memory demands of non-existing components
can be involved into a formula.

Selective
approach

Exhaustive
approach

Configuration

C1 C2 C3

C11 C12 C21 C31 C32

C111 C112 C121 C211 C212 C311 C321 C322Basic
components

Compound
components

Compound
components

Figure 2. Approaches at different levels of

component hierarchy.
The main differences between these approaches are the

estimation accuracy and annotation effort.
The exhaustive approach ensures the required level of

accuracy for the entire composition if all components are
annotated with sufficiently accurate formulas (in the
general case). However, this implies huge amount of
effort.

The selective approach may not ensure the defined
level of accuracy. Achieving the appropriate level of
accuracy may require analysis of deeper levels of the
component hierarchy, while considering only selected
components may reduce the amount of effort needed for
annotation.

5 For the exhaustive approach, all components are relevant.

4.2 Estimation examples
To demonstrate both memory estimation approaches,

we applied them to two different component
configurations taken from the existing software stack for
TV sets. The first configuration consisted of seven
components was used for checking the exhaustive
approach, while the second one consisted of 22
components was used for checking the selective approach.

The software stack for the case study was implemented
for a 16-bit derivative of the popular Intel 8051 micro-
controller. This micro-controller differentiates several
types of memory. For each type of memory, the estimates
were compared with the actual sizes, considering different
sets of diversity parameters and connections of different
optional requires interfaces (see Table 1 and Table 2).

Table 1. Estimates and actual sizes for
exhaustive approach.

Type of memory Real size
(bytes)

Estimated
size (bytes)

Relative
error (%)

XROM Data 166 166 0,00
XROM Code 19429 19477 0,25
IROM Code 3363 3425 1,80
IROM Data 379 379 0,00
IDRAM 572 572 0,00
SRAM 145 145 0,00
XRAM 2123 2123 0,00

Table 2. Estimates and actual sizes for
selective approach.

Type of memory Real size
(bytes)

Estimated
size (bytes)

Relative
error (%)

XROM Data 12379 12479 0,81
XROM Code 70996 71409 0,58
IROM Code 21353 21401 0,20
IROM Data 1705 1703 0,12
IDRAM 796 796 0,00
SRAM 544 544 0,00
XRAM 84471 84607 0,15

5. Conclusions
We have proposed a method that allows estimating the

memory consumption for Koala component compositions.
The proposed method is illustrated with examples taken
from the existing software stack.

We have described the mechanism for specification of
the component memory demand for code and static data.
This mechanism employs standard constructions of the
Koala component definition language.

The suggested specification mechanism is
compositional and hierarchical: the memory demands of a
compound component are specified in terms of memory
requirements of its constituents, and each component can
be used in another context without changing the
specification of its memory consumption. When using this

technique, the memory consumption estimates for
component compositions can be calculated automatically
by the Koala compiler.

This mechanism also supports budgeting; i.e. the
expected sizes of the components being developed can be
incorporated into the specification.

Two approaches for the estimation were proposed:
exhaustive and selective. Each approach was validated
with a case study. High estimation accuracy can be
achieved for both approaches.

Further research will be directed towards additional
validation and generalization of the proposed technique.
Firstly, the thorough validation of the approach with more
experiments will be performed. Secondly, the possibility
to generalize and apply this approach to other component
models will be considered. Finally, the different ways to
specify the memory consumption and other resource
attributes (particularly, in XML-based description
language) will be investigated.

6. Acknowledgements
We are grateful to Rob van Ommering and Chritiene

Aarts for a valuable contribution in this work. We also
thank Marc Stroucken for constructive suggestions and
critical feedback.

7. References
[1] M.R.V. Chaudron, E.M. Eskenazi, A.V. Fioukov,

D.K. Hammer. A Framework for Formal Component-
Based Software Architecting. In Proceedings of
Specification and Verification of Component-Based
Systems Workshop, OOPSLA Conference 2001,
Tampa, USA, October 2001.

[2] D. K. Hammer and M.R.V. Chaudron, Component
Models for Resource-Constraint Systems: What are
the Needs?, Proc. 6th Int. Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS),
Rome, January 2001.

[3] D.K. Hammer, Component-based architecting for
distributed real-time systems: How to achieve
composability?, in Mehmet Aksit (ed.), Software
Architectures and Component Technology, Kluwer,
2002

[4] G.T. Leavens, M. Sitaraman, Foundations of
component-based systems, Cambridge University
Press, 2000.

[5] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee, The Koala Component Model for
Consumer Electronics Software. Computer 33, 3
(2000), pp 33-85, 2000.

[6] C. Szyperski, Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, 1998.

The Representation of Component Semantics:
A Feature-Oriented Approach

Yu Jia† Yuqing Gu‡
Institute of Software, Chinese Academy of Science

Beijing(100080), China.
Email: †jia_yu@263.net ‡ guyq@sinosoftgroup.com

Abstract: In this paper a semantic model for
component is proposed which is structured in three
parts called Domain Space, Definition Space and
Context Space. We also argue that the
feature-oriented method is an effective and practical
approach to fulfill the semantic model.
Keywords: CBD, Semantics, Feature-Oriented

1. Introduction

In CBD, one of the most critical issues is how to evaluate
the reusability of a component [1, 2]. Generally speaking,
the reusability of components comprises of two aspects -
the syntax and the semantics. Recently, the amount of
efforts focuses on the syntactic reusability to achieve
connection other than the semantic reusability to describe
the function and extra-function of components. For
instance, CORBA CCM [5] cannot well exhibit the
services it provides. We think such a drawback will
greatly hinder the engineering practice in CBD.

Different from the traditional developing paradigms, in
CBD the user requirements (viz. problem domain) need to
be directly matched to the third party components (viz.
solution domain), which reduces some traditional
developing phrases for increasing efficiency and quality.
Ideally, if there exists a semantic representation approach
which has an invariable form in both the problem domain
and the solution domain, the difficulties in model
converting activities via semantics (including components
retrieval, adaptation, composition etc.) will be overcome
radically. In fact, the Feature-Oriented Reuse Method
(FORM) [4] is regarded as such a satisfying and
promising approach [9].

In FORM a logical entity called feature model is
suggested to “develop domain architectures and
components.” However, we think that the feature model
can be a good means to describe the component semantics
if properly analyzed and designed. So this paper is to use
and extend FORM addressing component semantics. We
name our approach as FORM for Component Semantic

(FORM/CS).
The kernel of FORM/CS is the theory of two models,

the semantic model of component, which is composed of
domain, definition and context; and the feature model,
which is well organized into a hierarchy called Feature
Space. This paper is arranged as follows: Section 2 and 3
discuss the component model and the semantics model
respectively. Section 4 is to define the feature-oriented
component semantics by Feature Space. Finally, a
semantic stream in the CBD process is illustrated in
principle of FORM/CS.

2. The Conceptual Model of Component
Semantics

In the research community of software reuse, “3C model”
[2, 8] is a generally accepted reusable component model,
which separates the component into three distinct facets
as concept, content, and context. However, the 3C model
is not formally and well defined. Hence, below a
comprehensive and concrete 3C model is represented in
notation of the formal specification method - language Z
[7]; then the semantic model of component is given based
on it.
DEFINITION 2.1 (Component Model) A component is
a identifiable software unit in an explicit context with
contractually specified semantic interfaces that are
reasonable in a domain as well as syntactic interfaces that
are supported by component frameworks.

)4.2(__
)3.2(

)2.2(__
)1.2(

DOMAINCONFIGSYNCONFIGSEMCONTEXT
TIONIMPLEMENTACONTENT

INTERFACESYNINTERFACESEMCONCEPT
CONTEXTCONTENTCONCEPTComponent

××==
==

×==
××==

Where, (2.1) CONCEPT : “Abstract functionality that the
component provides.”; CONTENT : “The implementation
of that abstraction.”; CONTEXT : “What is needed to
complete the definition of a concept or content within a
certain environment.” [8]

(2.2) SEM_INTERFACE: The set of semantic
interfaces that describe the functional and extra-functional
properties of components; SYN_INTERFACE: The set of

connecting interfaces that are programmed in frameworks
such as CORBA IDL, COM IDL or EJB;

(2.3) IMPLEMENTATION: The set of executable
code units.

(2.4) SEM_ CONFIG: The variability of
SEM_INTERFACE depending on context; SYN_CONFIG:
The variables of SYN_INTERFACE determined by context;
DOMAIN: The specific application domain in which the
concept is defined.

The component model DEFINITION 2.1 is compatible
with the industrial standard (referring to
SYN_INTERFACE); and also the DOMAIN consists with
FORM to create the Domain-Specific Software
Architecture (DSSA). In fact, the standard DSSA is
shared by all components. So, DOMAIN is separated from
component as a standard concept set. When describing
component semantics, it is necessary to refer the
DOMAIN it belongs to.
DEFINITION 2.2 (Semantic Model) The component
semantics is the meaning and use of components in
perspective of domain-specific service in the real world.

CONFIGSEMINTERFACESEMDOMIANSemantics __ ××==

In DEFINITION 2.2 the component semantics is
appropriately constructed not only naturally deriving
from the Component Model but also deliberately
considering the reasonability, completeness and feasibility
of semantic representation. SEM_INTERFACE is the set
of service instances contracting between the providers
and the consumers of the component. All concepts in the
contracts are defined in DOMAIN with some context-
dependent parameters presenting in SEM_CONFIG. The
emphasis of “real world” indicates that the semantics
should be captured directly by business meanings.

3. The Feature-Oriented Component
Semantics

3.1 Feature

The feature is not a novel concept in computer science.
Many fields (e.g. Pattern Recognition, CAD ect.) use
feature-like concepts in similar methodologies to solve
different problems.
DEFINITION 3.1 (Feature) Features are the
constructing units of component semantics, as well as the
ontology of domain knowledge in real world.

])()(:,
| : : [

212121

;
ididid interpretid interpretIDENTIFIERidid

ONTOLOGYIDENTIFIER interpretidFeature IDENTIFIER
=⇒=•∀

↔

Where, IDENTIFIER: The set of feature names;
ONTOLOGY: The set of domain knowledge to describe
the feature, mostly expressing in natural languages;
interpret: A function to map the id to the meaning of
features in the natural language.

 A feature item is the instance of a feature normally
belonging to the basic data types (e.g. integer, string,
boolean etc). Given a set FEATUREITEM of feature items
and a function: MFEATUREITEFeatureinstance →: , a
Feature is satisfiable if following proposition is true:

)(: FeatureinstancexMFEATUREITEx =•∃ .

3.2 Feature Space

DEFINITION 3.1 (Feature Space) A Feature Space Ω
is the architecture of component semantics formed by
features fea and feature relations rel.

]:;:[FeatureFeaturerelFeaturefea ×Ω
We have identified four general relation types

underlying the Feature Space as follows: Aggregation
relationship, Generalization relationship, Dependency
relationship and Association relationship

Although the universal feature relations far exceed the
expressive ability of AND/OR graph, it might as well
informally depicting Ω as tree structure called feature
tree to make use of the visual property of tree.
Considering hierarchical structure formed by aggregation
or generalization relationship, when discarding
dependency and association relationships between
features within the same level (viz. horizontal relations),
Ω is the tree with the Feature data structure as its nodes.
The leaves denote atomic features while non-leaves
denote compound features. The root of the tree is called
root feature.

The instantiation of Ω is defined as:

)](.)()(

|:;:[
~~~ yinstancerelxinstanceyrxfinstance

MFEATUREITEMFEATUREITErMFEATUREITEf

Ω⇒∧Ω∈

×ω  

EXAMPLE 3.1 A university courses arrangement (see 
Figure 1 ). The Feature Space is defined as follows: 

Features:  
},,{UDC CoursessDepartmentUniversity==  

Relations:  
),(includes sDepartmentUniversity==  

),(provides CoursessDepartment==  
  Instance functions:  

)}"",{(Univ xyzUniversity==  

 
)}""

,(),"",{(Dept
Computer

sDepartmentLanguagesDepartment==   

)}"",(
),"",(),"",{(Crs

DatabaseCourses
ChineseCoursessMathematicCourses==

  Feature items:  

)}"","",""
,"","","{("UDCItem

DatabaseChinesesMathematic
ComputerLanguagexyz==

  Relation instances:  



)}""
,"("),"","("),""

,"("),"","{("provides
)}"",""(),"",""({includes 

sMathematic
ComputerDatabaseComputersMathematic

LanguageChineseLanguage
ComputerxyzLanguagexyz

==
==

 
 
 
 
 
 
 
 
 

Figure 1 The Feature Space in Tree 
 
4. The Feature-Oriented Representation of 
Component Semantics 
 
In this section a concrete semantic model will be 
discussed in principle of FORM/CS. In order to distinct it 
from the general model, we rewrite the form of 
DEFINITION 2.2 to be what is called d2c semantic 
model:  
         Ω×Ω×Ω== condom defcd 2  

Where Domain Space DOMAINdom ==Ω , Definition 
Space INTERFACESEMdef _==Ω and Context Space 

CONFIGSEMcon _==Ω . 
Domain Space is the product of Domain 

Engineering, which represents the commonality and 
variability in Feature Space to specify the DSSA of the 
software families. 
DEFINITION 4.1 (Domain Space) The Domain Space 

domΩ  is a sound and complete Feature Space that 
expresses the knowledge for a specific domain. 

Definition Space specifies the semantics for an 
individual component. FORM/CS is a kind of descriptive 
semantics, which declares the intension of the functional 
and extra-functional properties of a component without 
concerning the implementation and the state transition. 
DEFINITION 4.2 (Definition Space) The Definition 
Space defΩ  is an instance set of domΩ  that expresses 
the service provided by a component.  

The component semantics is possibly influenced by 
the context when an individual component is integrated 
into an application. The Context Space is what expresses 
the variability of an individual component when adapting 
to the context.  

DEFINITION 4.3 (Context Space) The Context Space 
Ωcon is a collection of configurable features and feature 
relations that represent the variable parts of the 
component semantics. They are set by context. 

Considered only semantic analysis, the process of CBD 
is a serial of operations to compose, decompose and 
modify the Feature Spaces [6]. Figure 2 (on end of next 
page) illustrates a simplified CBD process framework that 
shows the semantic stream.  

A. Domain Analysis: All activities in Domain 
Engineering to create a Ωdom for a specific domain. 
Ωdom is stored into a Component Depository as a 
widely accepted standard. 

B. Component Development: Either legacy or new 
software is appropriately wrapped with semantic 
interface according to the industrial standards. The 
semantic interface comprises the fixing 
function/extra-function as Ωdef and variable as Ωcom. 
The certified components are also stored into 
component repository. 

C. Retrieval: Requirements in form of Feature Space are 
used to match the components in repository 
according to the semantic similarity. A group of 
available component candidates is acquired. In 
retrieving the reasoning techniques are utilized.  

D. Evaluation: Various aspects are considered including 
technical or non-technical factors. After analyzing 
and evaluating every candidate, a most suitable 
component is selected. 

E. Adaptation: The satisfied component are modified, 
that is, the Ωdef is changed according to specific 
requirements and the context parameters are attached 
to Ωcom. Note that the Ωcon is instantiated to be ωcon 
and after adapting, the Ωdef may be changed.  

F. Composition: The qualified component is integrated 
into an application. The semantic consistency should 
be checked in the application via some reasoning 
techniques. 

G. Running: The component runs in the application. 
There is no change in semantics. 

H. Evolution: The practice-tested component is wrapped 
again according to industrial standards, and recycles 
into the component repository. Note the Ωcon is 
abstracted and separated again for changeable parts 
of the component. 

 
5. Conclusions 
 
The radical source of difficulty in component reuse may 
be the comprehension gap between the component 
providers and consumers in different contexts [2]. 
FORM/CS is one of the promising methods addressing 
this problem in theory and practice. However, our 
research just begins. There still exist lots of issues for 

XYZ 

Language Computer 

Chinese Mathematics Database 

University 

Departments 

Courses 

include 

provide 



further investigation. For example, how to obtain and 
select features in domain analysis; how to decrease the 
complexities of times and space about Feature Space.  
 
References  
 

[1] Martin Blom, Eivind J. Nordby. “Semantic 
Integrity in Component Based Development”. 
Project Report, Mälardalen University, 
Sweden, March 2000. 

[2] Stephen H. Edwards. “Toward A Model of 
Reusable Software Subsystems”. In: Steve 
Philbrick and Mark Stevens, eds. Proceedings 
of the Fifth Annual Workshop on Software 
Reuse, Larry Latour, Oct 1992. 

[3] Yu Jia, Yuqing Gu. “Representing and 
Reasoning on Feature Architecture: A 
Description Logic Approach”. Workshop on 
"Feature Interaction in Composed Systems", 
ECOOP 2001. 

[4] Kang, K.; Kim, S.; Lee, J.; Shin, E.; & Huh, 
M. “FORM: A Feature-Oriented Reuse 
Method with Domain-Specific Reference 
Architectures”. Annals of Software 
Engineering 5, 5 (September 1998): 143-168. 

[5] Object Management Group (OMG). 

“Components FTF Edited Drafts of CORBA 
Core Chapters”, Document Number 
ptc/99-10-03, URL: http://www.omg.org>, 
1999. 

[6] John Penix, Phillip Baraona, Perry Alexander. 
“Classication and Retrieval of Reusable 
Components Using Semantic Features”. In 
Proc: 10th Knowledge-Based Software 
Engineering Conf., Boston, MA: IEEE Comp. 
Soc Press, November 1995. 131-138, 

[7] Mike Spivey. The Z Notation: A Reference 
Manual. Prentice Hall International Series in 
Computer Science, 2nd edition, 1992. 

[8] Will Tracz. “Implementation working group 
summary”. In: James Baldo ed. Reuse in 
Practice Workshop Summary, Alexandria, VA, 
April 1990:10-19 

[9] C. Reid Turner, Alfonso Fuggetta, Luigi 
Lavazza, and Alexander L. Wolf. “A 
Conceptual Basis for Feature Engineering”, 
Journal of Systems and Software, Vol. 49, No. 
1, December 1999, pp. 3-15. 

 
 
 
 
 
 
 
 
 
 

Figure 2  The Semantic Stream in CBD Process 
 
 

Context 
parameters 

Legacy 

Certified    Ωdef 
Components  Ωcon 

Practice-tested 
Component 
Ωdef  ωcon 

Ωdef   
ωcon Assembled Component 
    (Application) 

Components 
Ωdef, Ωcon 

Available 
Components  
 Ωdef,  Ωcon 

Requirement 
Ωdef 

Domain 
knowledge 

DSSA 
Ωdom 

Component 
Development 

Retrieval 

Satisfied   Ωdef 
Component Ωcon Qualified 

Component 
Ωdef  ωcon 

 
Repository 

Domain  
Analysis 

Evaluation 

Adaptation Composition 

Evolution 

New  
software 

Running 

A 

B 

C D 

E F 

G H 



A Component-based Environment For Distributed Configurable Applications 
 
 

    Ahmed Saleh    George R. Ribeiro-Justo                Stephen C. Winter 
University of Westminster, UK      Cap Gemini Ernst & Young1, UK     University of Westminster, UK 

 saleha@wmin.ac.uk            George.Justo@capgemini.co.uk    wintersc@wmin.ac.uk 
  
 

                                                           
1 The views and conclusions contained in this document are those of the authors and should not be interpreted as representing official policies, either 
expressed or implied of Cap Gemini Ernst & Young. 

Abstract 
One of the basic requirements for distributed applications to run 
under different working environments is to be flexible, 
configurable, portable and extensible. Using the current 
development techniques independently falls short in supporting 
most of these requirements due to complexity of their integration 
and the conflict of their objectives. In this context this paper 
describes an integrated environment based on an interface 
description language called NCSL, an architecture description 
language called NADL, and a supporting management system 
composed of a component-based framework and an event 
management system that facilitate the process of developing and 
managing distributed configurable applications based on their 
non-functional requirements (NFRs). 
  
 
1. Introduction 
 
While computing power and network technology have 
improved dramatically over the past decade, the design 
and implementation of complex distributed configurable 
applications remain difficult and time-consuming. Also, 
the need for considering distributed applications’  non-
functional requirements (i.e. performance, reliability, 
security, etc.) has added further complexity to the process 
of developing these applications. Using traditional 
development techniques often result in static and difficult 
to understand applications that do not address the user 
requirements. Also, due to the evolving nature of 
distributed systems’  environments, applications that can 
tolerate the continuous upgrade of such environments are 
often developed on a per application basis.  
 Component-based frameworks have emerged as the new 
technology that can facilitate the development of 
distributed applications through reusable components. As 
its name suggests, a component-based framework is a 
collection of software components that have been 
developed independently but can interact and collaborate 
with each other to support the development of a group of 
applications or solve a particular type of problems. 
Unfortunately, constructing distributed configurable 
applications from pre-existing reusable components of 
such frameworks cannot be achieved without 
understanding the structure and functionality of these 

components. Despite some successful attempts, most of 
the current frameworks rely on providing reusable 
components that can be plugged in together in different 
configurations to build up the applications, but are not 
able to tackle the problem of design reuse, where the 
entire structure/architecture of the application can be 
reused to build new applications. Furthermore, very few 
frameworks have addressed the problem of integrating the 
non-functional requirements of the application’s services 
due to the difficulties of representing and controlling such 
requirements at run-time.  
This paper describes an integrated environment for 
supporting the development and control of distributed 
configurable applications through a collection of 
distributed components that collaborate within a specific 
configuration to satisfy both the developer and 
environment requirements. This environment is based on 
a framework of distributed reusable components called 
FRODICA (Framework for Distributed Configurable 
Applications). Each constituent component of the 
framework should have a well-defined interface that has 
been defined by the NCSL language (Non-functional 
Component Specification Language) that describes the 
components’  functional and non-functional requirements 
to enable their interaction regardless to their 
implementation details. The components’  interaction and 
the configuration itself is defined by an architecture 
description language called NADL (Non-functional 
Architecture description Language), which defines the 
architectural structure of the application and its run-time 
constraints, and the rules of selecting/integrating different 
components according to the application’s NFRs,. 
 
2. Related Work 
 
Many researchers have investigated the development of 
component-based frameworks to support the construction 
of configurable applications in a distributed context. For 
example, C++CL [1] is an OO (object-oriented) 
framework for developing reconfigurable distributed 
systems. It is based on the CL model where an application 
is divided into two sets of components: tasks and 
configurations. The computation is usually performed by 



 2

tasks that can interact with each other via local ports. The 
configuration is the part of the program where the system 
structure is specified and controlled. This consists of 
defining task instances, connecting them and managing 
their execution. C++CL is considered as a real attempt to 
create an object-oriented framework for developing 
dynamic distributed software architectures. However, it 
does not support the definition of NFRs at any stage of 
the development process.  
The Aster project is another attempt based on matching 
the NFRs of an application with the NFRs of selected 
components and connectors manipulated by the Aster 
framework [3]. This matching process results in 
generating a customized middleware that provides the 
NFRs of the application. Although the Aster framework 
proved to be efficient in implementing several 
transactional and non-functional properties, it does not 
cover all concepts of software architecture (e.g. 
connectors, ports, etc.) only components and some basic 
connectors are supported. In addition, it does not address 
the problem of managing NFRs during run time. 
Unlike Aster, the QuO (Quality Objects) framework [4] is 
an integrated environment for developing distributed 
applications with QoS requirements. Its main idea is 
based on the notion of contracts, delegates and system 
condition objects that negotiate an acceptable region of 
QoS prior establishing a connection between a client and 
a server. When both client and server agree upon a 
specific region, the connection is established and the QoS 
level is monitored for further developments. Although 
QuO offers more flexibility than other frameworks, it 
depends heavily on CORBA IDL to provide its code 
generator with the appropriate interface, ORB proxy and 
ORB before generating the executable code of the system.  
In addition, QuO only concentrates on the structure of the 
components and their QoS, but does not address the 
global architecture of the application and its NFRs. 
 
3. The FRODICA Framework 
 
As mentioned in the introduction, the key point to 
facilitate the development of new applications from pre-
existing reusable components is to understand the 
structure of these components and how they interact. 
Taking this into consideration, FRODICA [6] has been 
developed as a four-tier framework that can reside above 
the operating system and below the application layer. The 
layering approach adopted by FRODICA categorises the 
components into four separate layers according to their 
functionality and complexity. In this context, components 
of top layers can extend/customise the functionality of the 
corresponding lower-layer components in order to tailor 
the topmost-layer components to suit individual 
distributed applications.  

The communication layer of FRODICA is the lowest 
layer of the framework, which is responsible for handling 
the low-level communication protocols of the system. 
This layer is mainly concerned with carrying out all the 
underlying message passing, naming services, binding 
and data marshalling between distributed components. 
Accordingly, this layer comprises all platform-dependent 
software (i.e. libraries and interfaces) required to perform 
such communications.  
The general-purpose layer is the middleware layer of the 
framework that deals with low-level system operations. 
The main objective of this layer is to hide the platform-
specific software and hardware complexity from upper 
layers, hence provide platform independent environment 
for system developers to create their applications. This 
layer acts as the bridge between the application layer and 
the underlying technology infrastructure. It 
accommodates a number of management and general-
purpose components that provide the basic requirements 
to build distributed configurable applications.  
The application-oriented layer is concerned with putting 
together all the standard services required for supporting 
the development of an integrated distributed configurable 
application. Components of this layer are extensively 
used by system developers in creating their applications, 
and therefore, they tend to provide the most basic services 
for developing distributed applications, together with a 
well-defined interfaces and a clear extensibility methods 
to enable their use without exploring the complexity of 
lower layers’  components.  
Finally, the specific-application layer is the topmost layer 
that comprises the components, connectors and interfaces 
needed for running a specific application. In this layer, 
system developers can create their own new components, 
extend or specialise lower layers’  components to build 
their applications.  
 
4. NCSL Language 
 
The NCSL is a component specification language based 
on Java. It provides a set of tools for the description and 
deployment of distributed components, taking into 
consideration the restrictions and constraints (i.e. non-
functional requirements) imposed by the 
system/developer on these components’  services. At the 
design stage, components are described with the help of a 
configuration language that defines the internal 
specifications of each component in terms of the services 
provided/required by the component, as well as the non-
functional requirements associated with each service. The 
compilation of NCSL into the framework implementation 
language is achieved via a separate compiler called 
Ncsl ToJava, which examines the validity of the 
component’s interface description and generates an 



 3

executable code in the form of Java and XML files. 
Subsequently, the generated interface will be used by the 
NADL language (explained at the next section) to 
identify components’  functional and non-functional 
properties required for configuring distributed 
applications at run time. 
 
NCSL currently supports three types of non-functional 
attributes: 

• Performance: The performance is defined in 
terms of average time (measured in millisec) to 
perform a service.  

• Reliability: The reliability is measured in terms 
of the MTTF (mean time to failures). 

• Availability: The availability is measured in 
terms of the average time to restore (MTTR—
mean time to restore) a service after a failure. It 
is a function of MTTF and MTTR.  

 
The above words are regarded as keywords in NCSL. 
NCSL also provides the concept of NFR expressions that 
are Boolean and conditional expressions combining non-
functional attribute keywords and their values. For 
example, a service is required to provide a ‘performance 
= 500 Kb/sec and reliability > 500 mesc’ .  An example of 
NCSL illustrated in Figure 1. 
 
  interface Gol dBr anch {  

/ /  pr ovi ded ser v i ces / /  
     provide f l oat  checkBal ance ( i nt  cust omer I D,   

i nt  cust omer  PI N) ;  
      support {  performance && / /  suppor t ed NFRs 

   availability }  ;  
/ /  r equi r ed ser v i ces / /  

     require f l oat  get Bal ance ( i nt  cust omer I D,   
s t r i ng cust omer  name)  ;        

    with { performance >= 500 Kb/ sec && / /  r equi r ed NFRs 
 availability >= 500 mesc }  ;  

     ……… 

 
Figure 1: The NCSL specifications for a Bank 

component 

 

To reduce overheads, a component is not required to 
compute all non-functional attributes, when they are not 
related to any NFR, but only those critical ones. In this 
case, NCSL contains a ‘support’  clause that indicates 
which non-functional attributes are computed by the 
component. Remember that the interface corresponds to a 
contract, therefore if a component supports a non-
functional attribute, as described in more details later, the 
environment and an ADL (Architecture Description 
Language) script can query the value of that non-
functional attribute at runtime. 
NCSL adopts the same concepts of ACME (An 
Architecture Description Interchange Language) [2] in 
assigning general non-structural information to each 
architectural entity (i.e. component, connector, port, etc.) 
to describe its run time behaviour. However, NCSL goes 

further by defining a set of s to each service 
supported/required by each one of these entities.   
 
5. NADL Language 
 
Current ADLs allow system developers to integrate 
heterogeneous software components in a homogeneous 
way, define and locate distributed components across the 
network, and adapt their behaviour according to their 
design preferences. This kind of features is described as 
the functional requirements of the system. Most ADLs 
fall short, however, in providing support for the NFRs of 
the system, which describe its constraints and run-time 
behaviour. This is due to the fact that they hide the details 
necessary to specify, measure and control such 
requirements, and hence provide little support for 
building systems that can adapt to different levels of QoS. 
Incorporating NFRs in the design of the system requires 
the ADL to specify constraints for the QoS properties of 
the required and provided services of each component. 
Also, it requires matching techniques for determining 
whether a service satisfies non-functional requirements 
and what are the consequences if a component fails to 
satisfy the desired non-functional requirements.   
As a language that supports the description of re-
configurable distributed system according to both their 
functional and non-functional properties, NADL provides 
special constructs to deal with NFR description and 
management. An NADL description (Fig 2) is made of 
two main sections: a configuration section where 
components are selected according to their services and 
their NFRs, and a reconfiguration section where 
reconfiguration actions are taken, depending on the 
failure or changes of NFRs.  NADL also allows the 
system developer to define environment specific 
properties that must be satisfied by all components 
running the application. For example, a component must 
run within a specific type of operating system or over a 
machine with certain memory specifications. These 
properties enable the system developer to refine his 
selection to identify components that are more specific.  
The key constructor of NADL is the concept of NFR 
expressions that are extensions of those used in NCSL. In 
NADL, NFR expressions may contain services from 
different components while in NCSL they refer to the NF 
attributes of a specific service. For example, the 
expression below defines that the service video provided 
by component comp1 should support availability above 
500 msec and at the same time, the sound provided by 
component comp2 should perform above 900 Kb/sec: 
   comp1. vi deo. avai l abi l i t y  >500 msec 
&& comp2. sound. per f or mance >900 Kb/ sec 
The NADL selection of components is based on their 
interfaces, which already specify their NFRs. After the 
system identifies possible candidates components, the 



 4

configuration can be defined. In general, the selection 
should be the minimum requirement of the system. 
During the configuration, it is then possible to define 
further constraints depending on the candidate 
components that have been selected. In addition, the 
architect can specify global constraints relating the 
various components.  
The configuration is built by using the typical ADL 
constructs such as connect, and start. Observe that NADL 
also uses the concept of default connectors, which are 
implemented by the supporting middleware. For instance, 
in the case of Java components communicating using 
RMI (Remote Method Invocation), it is possible to 
connect the components directly by using an 
RMIConnector default connector. After the configuration 
has been successfully built, the reconfiguration section 
specifies conditions for monitoring and managing the 
configuration. This is done using when clauses similar to 
those used during the configuration. The when clauses are 
evaluated sequentially and the first one that satisfies the 
corresponding reconfiguration block is triggered. During 
the reconfiguration, components and connectors can be 
connected or disconnected, and new components and 
connectors can be selected to satisfy the architecture 
NFRs.  
  
 Application :  Bank {  
  select {  
   component:  Comp1 {  interface:  Mai nBank ;  
    location:  remote ( os i r i s . cpc. wmi n. ac. uk)  ;  
    properties:  {  ( get Bal ance. performance >= 500kb/ s || 

  checkBal ance. avai l abi l i t y   >= 5000 msec } ; } ;  
   connector:  Conn1 {  i nt er f ace:  Gol dConnect or  ;  
    properties:  { dat aSt r eam. availability >= 800 msec && 

         dat aSt r eam. reliability > 750 msec } ;   
             / /  End Pr oper t i es / /  
       }  ;  }  ;     / /  End Conn1 / /  End sel ect  / /  

     constraints:  {  Comp1. Per f or mance >= 4000 Kb/ sec ;  
propertiesCheckupRate >= 4000;  } ;  / /  Rat e of   

    / / checki ng NFRs i n msec/ /  
  implementation:  { Bank. Platform = j ava;  / / App pl at f or m  
 Bank. OS = Uni x; } ; / / OS f or  r unni ng t he app / /  

configuration:  {  conf1:  when ( select)  ;  
  do ( connect Comp1. get Bal ance To Conn1. dat aSt r eam;  

       connect Comp3. wi t hdr awCash To Conn2. dat aSt r eam) ;  
 conf2: when ( Comp3. checkBal ance. availability <600 ms) ;  

 do (  wait ( 3000) ;  
         reselect; )  }  ;  / /  Repeat  ‘ sel ect ’  pr ocess 

reconfiguration:  {  
  when ( Comp1. get Bal ance. performance <5000 Kb/ sec || 

       Comp1. get Bal ance. availability < 5000 msec) ;  
      do (  start ;  
      suspend ;  
      stop Comp3. checkBal ance ;  
      stop Comp3. wi t hdr awCash ;  
      resume ;  

     end)  ;  
     } ;  }  / /  End r econf i gur at i on / /  End Appl i cat i on / /  

 
 
 

Figure 2: The NADL specifications for a Banking 
Application 

 

NADL also provides the concept of (global) constraints, 
which define an NFR invariant for the architecture. The 
constraint is revaluated after every reconfiguration. 
Observe that, since NADL is service-driven, 

reconfiguration is carried out at service level, which 
means that during reconfiguration the whole component 
is not affected but only those services involved. Further 
more, component instances offering a service may run 
longer than a particular application. This means that 
existing component instances can be shared by different 
configurations. The architect may decide whether to use a 
fresh instance of a service or an existing service.  
 
6. Conclusion 
 
The environment outlined in this paper showed how 
possible it is to extend existing IDLs and ADLs to 
support the management of NFRs. It has also 
demonstrated importance of considering the distributed 
applications’  NFRs at the early stages of the design in 
order to ease their management and control at run-time. 
Although, we have decided to build our own management 
service but there is no reason why the management 
system could not use services of a middleware such as 
[5], which supports QoS management. We see these two 
technologies as complementary rather than competing. 
Also, the environment outlined in this paper showed that 
the combination of software architecture with object-
oriented frameworks and language mechanisms can lead 
to the development of a new generation of well-structured 
distributed applications that can be easily configured to 
adapt with different working environments.  
 
7. Reference 
 
1. Justo, G. R. R. and Cunha, P.R.F.: “An Architectural 

Application Framework for Evolving Distributed Systems” , 
Journal of Systems Architecture, Special Issues on New 
Trends in Programming and Execution Models for Parallel 
Architectures, Heterogeneously Distributed Systems and 
Mobile Computing, Vol. 45, No. 15, Sep. 1999. 

2. Garlan, D., Monroe, R. and Wile, D.: “Acme: An 
Architecture Description Interchange Language”. 
Proceedings of CASCON, Nov. 1997. 

3. Issarny, V. and Bidan, C.: Aster: A CORBA-Based 
Software Interconnection System Supporting Distributed 
System Customization. In Proceedings of the 3rd 
International Conference on Configurable Distributed 
Systems (ICCDS’96). Mayland, USA, May 1996. 

4. Loyall, J., Bakken, D., Schantz, R., Zinky, J., Vanegas, R., 
and Anderson, K.: “QoS Aspect languages and Their Run-
time Integration” . Proceedings of the 4th Workshop on 
Languages, Compilers and Run-time Systems for Scalable 
computers (LCR), Pennsylvania, USA, 1998. 

5. Koh, F. and Yamane, T.: Dynamic resource management 
and automatic configuration of distributed component 
system. In Proceedings of the 6th USENIX COOTS, Jan 01. 

6. A. Saleh and G. R. Ribeiro Justo. A configuration-oriented 
framework for distributed multimedia applications.  In 
Proceedings of the Fifteenth Symposium on Applied 
Computing (SAC200) Italy, ACM Press, March 2000. 



Quality of Service Specification in
Dynamically Replaceable Component Based Systems

Dr. Ian Oliver
Nokia Research Center

Itämerenkatu 11-13
Helsinki, Finland

ian.oliver@nokia.com

Abstract

When working with embedded environments that can
automatically download components on as as-needed
basis it is necessary to ensure that we do not place too
much stress (CPU overload, Memory overload etc) on
the system in order to achieve optimal performance for
the user.

In order to facilitate this one must incorporate quality
of service information into the components and per-
form suitable tests upon this information in order to
decide whether to download the component or not.
One issue here is how is this information presented,
stored and what information should be carried by the
component. There are also issues with what the infor-
mation means and from where it is collected.

In this position paper we describe our initial efforts in
specifying the quality of service information and also
explore some of the implementation issues we have
found.

1 Introduction

This paper describes an approach that we are inves-
tigating for the management of quality of service pa-
rameters in downloadable component based systems.

We have implemented the ideas expressed in [1] by

way of specifying the component characteristics in
a textual form and then using various analysis tech-
niques to test this data against current system perfor-
mance within a given component framework.

2 Architecture Overview

We use an architecture where a system may use a num-
ber of components providing specialist facilities, eg:
Video CODECs, in an on-demand environment. A
limiting factor is that in some cases the platform on
which we may be working is of limited processing
power and other resources, eg: memory. In this case
it is necessary to ensure that the system can accept
any given component without compromising the cur-
rent level of service.

At the highest level of abstraction the quality of service
framework consists of three main components:

� Admission Test

� Quality of Service Manager (QoSManager)

� Resource Manager

The QoSManager may have a number of admission
tests and resource manager components associated
with it.

The QoSManager has the responsibility for interacting
with the component to be downloaded, the admission

1



test and the resource managers. It also makes the de-
cision whether a component is downloaded or not by
performing a decision based upon the results of the ad-
mission tests. The level of sophistication of the QoS-
Manager may vary depending upon the system from
a simple Yes/No decision test to one that is capable
of load balancing and optimising the system perfor-
mance.

The admission tests are responsible for processing par-
ticular sets of QoS data. For example one may have
an admission test for memory usage where the current
memory consumption is checked against what is re-
quired. Also possible is a more complex test for CPU
utilisation in real-time systems based upon rate mono-
tonic analysis [2]. We currenly have three return val-
ues for admission tests: Yes, No and Unsure - the latter
relating to situations where the test produces an incon-
clusive result, eg: a CPU utilisations above the RMA
utilisation bound but less than 100% utilisation.

The resource monitors are responsible for collecting
data about particular aspects of the system, for exam-
ple, memory usage, CPU usage etc. Again the sophis-
tication of the resource monitors may vary depending
upon the needs and capabilities of the system.

3 Component Download Overview

A Component provides a set of functionality, for ex-
ample a video player for a certain CODEC. Each com-
ponent contains a Quality of Service Specification de-
tailing what resources that component requires the lev-
els of performance that the component needs and the
requirements (eg: memory, CPU etc) for those levels
of performance.

When a component download is initiated it is nec-
essary to ascertain whether there are enough system
resources available to execute that component with a
given level of quality of service. For example in case
of a video player the component would specify a qual-
ity of service that makes watching video tolerable to
the user, for example 1-5 frames per second would be
considered the absolute minimum, while 25 or more
frames per second be considered ideal.

This information is initially downloaded and the sys-
tem through some form of quality of service mecha-
nism. This mechanism would then analyse that data
with respect the the current (and average) system per-
formance and the currently loaded components.

Given a suitable outcome from this analysis the com-
ponent would then be downloaded. Obviously if the
outcome is negative then the component download will
be refused. However we can consider a third situa-
tion where the analysis is incomplete or inconclusive.
How we proceed in these situations would be depen-
dent upon the sophistication of the quality of service
mechanism.

The general download situation can be seen in the
UML sequence diagram [3] in figure 1 and described
below:

1. Request from the component the quality of ser-
vice specification

2. Obtain current system performance information
from the relevant resource monitoring facilities

3. Analyse the components of the quality of service
specification and return a result based upon that
analysis.

4. The analysis machines perform some calculation
and return a result based upon that calculation

5. A decision for download is made upon those re-
sults:

(a) If the decision is Yes then component down-
load proceeds

(b) If the decision is No or Unsure then the next
quality level will be read. If no new quality
level is available then the component down-
load is terminated.

Depending on the sophistication of the decision al-
gorithms, it is possible that the system may to al-
ter the performance levels of existing components in
the system to accommodate the new component at the
highest performance level possible. One heuristic we

2



:ResourceMonitor

requestQoSSpec

:QoSSpecification
return=

requestStatus

calculate

Yes/Unsure/No
return=

return=

decide

Yes/No

Control is then passed to the download mechanism
if the decision result is Yes

:QoSManager :AdmissionTest:Component

OR, the next quality level is read from the component and tested

Figure 1. Component and Quality of Service
Subsystem Interactions

have applied here is that the latest component to be
downloaded probably has the highest priority from the
user’s perspective. One may then over time attempt
to equalise the service levels of all the components in
order to balance the performance of the components
running in the system.

4 Quality of Service Specification

To afford interoperability between components and the
QoS system we have used - and are developing fur-
ther - a standardised way of communicating the ser-
vice level information between the individual subsys-
tems. Currently this is implemented using simple text
strings. A model of the QoS specification can be seen
in the class diagram in figure 2

A QoS Specification is made up of a number of indi-
vidual levels - level one being the highest quality and
lesser quality levels follow henceforth. Within each
level we define the quality parameters for certain cri-
teria.

QoSSpecification LevelSpecification

SimpleRma

levelnuber:Integer

value:Integer

processnumber:Integer
period:Integer
deadline:Integer

MinMemory

unit:{bytes,Kb}
value:Integer

AvrCPU

Level

ProcessNumber Task

<<incomplete>>

* *

*

*

1

1

1 1

Figure 2. Quality of Service Specification

We must also apply a number of rules to this specifica-
tion, primarily stating that the level numbers must start
at one and increase by values of one, ie: 1,2,3...

Each individual criteria may have its own consistency
rules, for example we may have the rule1:

context AveCPU

inv: self������ � � and self������ � ���

Again similarly for the MinMemory resource specifi-
cation and correspondingly more complex rules for the
SimpleRMA resource specification.

It must also be ensured that a level one quality of ser-
vice specification is for a higher level of quality than a
level two specification, similarly for two and three and
n and n+1.

An example specification some some component may
be:

Level 1:
AVECPU { 22% }
SIMPLERMA { 1: P=50, D=10 2: P=100, D=5}
MINMEMORY { 15Kb }

Level 2:
AveCPU { 15% }
RMA { 1: P=50, D=10 2: P=100, D=5}

From the above we can see that this component to
achieve its level one quality of service proposal it re-

1Written using OCL [3]

3



quires that the system provide on average 22% of CPU
time to the component and that for a RMA analysis the
component has two main processes one of which could
be called with period 50ms and deadline 10ms and the
other 100ms and deadline 5ms in the worst case situa-
tion.

5 Obtaining Quality of Service Values

So far we have outlined the architecture, download
procedure and quality of service specification. It how-
ever is necessary to obtain the values and the criteria
for writing the quality of service specification. This
unfortunately does prove problematical.

In [4] describes the situation where performance anal-
ysis is made upon a component and concludes with
the fact that obtaining this data is difficult and in some
cases may actually be impossible. We take the view
that it is always the case that some generalisations and
guesses can be made.

Because generally we work with embedded systems,
parameters such as memory consumption areeasily
calculated for a given component. Average CPU util-
isation and RMA figures are more problematical es-
pecially when dealing with a component that can run
across many different platforms of varying capability.
One solution we have investigated is that the compo-
nents will have to be tested and from these testing and
simulation runs we can obtain performance figures. If
we also include information about what platforms the
components have been tested on then it is possible to
extrapolate that data in order to refine the quality of
service values. For example if on a 200MHz system a
certain component requires on average 20% CPU re-
sources, then on a 400MHz system this figure will be
approximately half. The work described in [1] has also
investigated this.

These are broad and in some cases naïve generalisa-
tions but they are at present a good enough base-line
for calculating these figures. As more data is collected
upon component performance then we can both refine
the quality of service values and also the methods for
calculating and analysing those figures. Work is cur-

rently under way on investigating this, for example
we have test-bed environments simulating component
download running on both Linux and Solaris machines
with various capabilities.

6 Conclusions and Future Work

Obviously the system and method described in this pa-
per are in an early state of development, however we
have proved that the ideas do work at least in demon-
stration environments (eg: Linux/Solaris host, Java ex-
ecutables). The current performance would of course
not be acceptable in areal real-time system.

A number of issues do need to be resolved such as in-
creasing the efficient of the system so that its perfor-
mance does not impact greatly on the user-side of the
system. This is especially the case when this is im-
plemented in a real-time or embedded system and the
consequences of are described in [4].

Also we must seek to improve the set and defintion of
the quality of service attributes and parameters. This is
something that we can only refine by experience while
testing these kinds of systems. We have found so far
that generally we are getting reasonable results from
the work described here.

References

[1] A. Alonso, I. Casillas, and J. A. de la Puente.
Dynamic replacement of software in hard real-time
systems: Practical assessment. InProceedings of
the 7th Euromicro Workshop on Real-Time Systems
(EUROMICRO-RTS’95), 1995.

[2] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G.
Harbour. A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for Real-
Time Systems. Kluwer Academic Publishers, 1993.

[3] Object Management Group.OMG Unified Modelling
Language Specification (Action Semantics), version
1.4 (final adopted specification) edition, January 2002.
OMG Document Number ad/02-01-09.

[4] M. Sitaraman, G. Kulczycki, J. Krone, W. F. Ogden,
and A. L. N. Reddy. Performance specification of soft-
ware components. InProceedings of the Symposium on
Software Reusability, SSR’01, Toronto, Canada, 2000.

4



 
 

Software Component Deployment in Consumer Device 
Product-lines 

 
 

Ronan Mac Laverty, Aapo Rautiainen, Francis Tam 
Nokia Research Center, Helsinki 

{ronan.maclaverty,aapo.rautiainen,francis.tam}@nokia.com 
 
 

Abstract 
 
Effective deployment of components is imperative for 

consumer device manufacturers; these must utilize the 
resources available optimally.  For single systems this is 
a standard software engineering problem, but for 
product-lines new techniques must be devised.  These are 
needed to allow component reuse while minimizing the 
overhead from cross product components.  To achieve 
this a prototype for a tool to automatically generate and 
evaluate a deployment for a consumer device has been 
developed.  This system and the motivation behind its 
development are described below, including directions 
for its future development. 

 

1. Introduction 
 
In a component-based system the deployment of 

components dictates its characteristics.  A poor 
deployment can increase inter-component 
communications costs, memory requirements, degrade 
performance and affect a range of other properties.  
Conversely, a good deployment can optimize resource 
usage and performance.  For consumer device 
manufacturers resource usage is important, as efficient 
usage can mean reduced hardware costs. 

To streamline software generation the use of a 
product-line approach is necessary to support efficient 
component reuse across a product family.  However, this 
can lead to problems in managing the optimization of the 
end system, when large numbers of components are used.  
Another problem can stem from the focus on logical 
architecture of current product-line designs. 

To support designers of products, tools are needed to 
guide deployment.  These should allow them to check 
architectures for property-based criteria in order to choose 
the most efficient. 

The paper below describes a sample component-based 
product-line for a consumer device, which allows the 
flexible deployment of system components.  This 
provides us with a good test-bed to study the potential of 
automated deployment generation and evaluation.  The 

latter sections contain an outline of an approach for this 
and a prototype tool developed at Nokia Research Center.  
It also outlines several areas of potential development of 
this tool. 

 

2. Motivation 
 
The advantage of monolithic software construction is 

that each system can be optimized for resource usage, 
performance etc.  As the number of systems increases this 
approach begins to become inefficient, especially as the 
complexity of the system and the number of developers 
increase.  This is further exacerbated by globalization of 
software development.  The result is that developers 
cannot know all the software to a sufficient level of detail 
to allow a high level of optimization.  Additionally, when 
more systems are being produced, building each system 
from scratch becomes untenable, given the combined 
design, development and testing overheads. 

To meet these concerns software reuse must be 
explicitly supported across products.  Therefore Nokia 
has adopted a product-line approach to phone software 
development, along the lines of [1].  This involves 
identifying domain specific architectures and 
components.  These are combined into a reference 
architecture that is specialized for individual products - 
see Figure 1. 

 
Components

Ref. Arch.

Domain
Engineering

Product Arch.

identifies

provides

defines

Components

Ref. Arch.Ref. Arch.

Domain
Engineering

Product Arch.

identifies

provides

defines

 
Figure 1: Product generation inside a 

product-line 



There are several problems with implementing this 
approach in resource-constrained devices.  Some stem 
from the approach itself and others from the needs of the 
domain. 

The core problem with this approach is that it concerns 
itself with the logical composition of the system.  The 
core functionality, applications and components are 
defined, but not how they are deployed.  This results in 
systems that fulfill their functional requirements and 
certain quality attributes, but are not optimized for 
individual products.  This creates product specific 
overheads, such as memory requirements and 
performance costs. 

 

3. System Architecture 
 
To utilize the product-line approach, a basic reference 

architecture is needed that covers all the systems 
developed. The fundamental software architecture inside 
the system being developed is a layer style, as shown in 
Figure 2.  The uppermost layer contains applications that 
rely on middleware services.  The lowest layer contains 
the necessary hardware abstraction and operating system.  
The middleware layer consists of software services that 
provide access to hardware and logical services. 

From the point of view of deployment both 
applications and middleware can be considered as 
components.  The difference is that applications do not 
support other services.  This classification simplifies the 
deployment model of the system. 

Some domain constraints affect the system 
architecture.  One is that the number of threads executing 
in the system should be minimized.  This will reduce the 
needed stack memory and simplify scheduling.  Another 
is that certain services must run at the highest priority to 
meet real-time requirements.  This forces a fixed number 
of threads and dictates the software that runs within them. 
The need to reduce the number of threads means that in 
certain circumstances components shared the same thread. 

 

OS/Hardware abstraction

Applications

Middleware

 
Figure 2: System architecture 
 
Business constraints also affect this architecture.  To 

enable large numbers of different products it was decided 
to increase the flexibility of the system to support reuse.  
To increase the reuse of components in different systems 

the coupling between them was minimized.  As a result, 
components are location dependent, meaning that within 
the system a component-client cannot tell if the 
component is inside the same memory space or thread.  
This separates the logical structure of the system from the 
process structure. However, the reference and domain 
specific architectures place constraints on their 
deployment. 

 

4. System Deployment 
 
Deployment within this system, while being different 

from physical deployment, has many parallels.  Instead of 
deploying to computing nodes, components are mapped 
to threads that support their execution.  There are several 
problems associated with this deployment.  These 
primarily result from the separation of the logical 
architecture and the deployment architecture, heightened 
by the need to support many different products. 

The product-line approach, while having many 
advantages, also generates problems.  These arise from 
the number of products supported and the number of 
associated components.  For small-scale systems the 
properties of the component can be understood, and then 
best way to deploy them can be devised.  For large 
numbers the possible deployment possibilities is huge, far 
beyond a designer’s capability to optimize. 

The products developed by Nokia vary in many 
respects; this is reflected in their different software and 
hardware architectures.  A given deployment that might 
work well for one system might not work for another, if 
the underlying hardware and devices changes. 

The separation of the logical and deployment concerns 
is considered necessary for flexible product development.  
It allows designers to specify the logical content 
irrespective of the underlying process model.  However, 
as designers can use a non-optimal number of threads, 
clearly a method to guide the designer is needed.  

 

5. Automated Deployment 
 
The goal of the work presented here is to describe an 

approach to analyzing and producing an optimum 
component deployment for this system.  The approach 
needs only to be comparatively correct; if one deployment 
to analyzed to be better than another this should also be 
reflected in the real system.  This will allow designers to 
compare different deployments while allowing initial 
research work into model characteristics and 
requirements. 

In devising a placement strategy for mapping 
component onto threads, we have identified that there are 
similarities in the optimization techniques for configuring 
parallel applications to run on multiprocessor systems.  



The goal of these techniques is to find the optimum 
mapping of routines/subsystems to processors; this 
parallels our desired mapping of functional elements to 
executing entities. We have therefore examined 
processor-mapping strategies [2][3][4][5][6] in 
multiprocessor systems as a first step. 

To maximize the throughput of a multiprocessor 
system, the use of multitasking and multithreading have 
been investigated extensively with some very positive 
results.  In particular, schemes having a balanced 
combination of multitasking and multithreading have 
been most encouraging.  Both these are established 
concepts in operating systems: multitasking hides the 
latency of slow I/O devices; multithreading to hides the 
latency of slow memory operations. 

The table below shows some of the conceptual 
parallels: 

 
Processor Allocation Component 

Deployment 
Processor Thread 
Task Component 
Inter-processor 

communication time 
Inter-thread 

communication time  
Inter-task 

communication time 
Internal thread 

communication time 
Computational 

characteristics 
Computational 

characteristics 

Figure 3: Comparison of multiprocessor 
mappings and component deployment 

Other parallels exist in the goals of deployment; these 
are to improve performance, by reducing the cost of 
multi-processor deployment.  For example, in distributed 
systems the communication between nodes is much more 
expensive than inter-process interaction.  This is similar 
to our system, where inter-thread communication is much 
faster than inter-thread communication. 

Another important parallel arise from architectural 
constraints on both our system and multiprocessor 
systems.  An example is the need to handle resource 
locking between components, and the need to separate or 
co-locate components inside a deployment entity.  These 
constraints have a major impact on the end performance 
and early analysis can avoid architectural problems later 
in development. 

The initial approach taken has been to apply 
appropriate processor allocation strategies to deploying 
components, by substituting the relevant parameters in the 
algorithms.  Currently, there are two optimization 
techniques used for multi-processor mapping; model-
based and program transformation.  

Model-based techniques are normally deployed at the 
system design stage before implementation.  In general 
the model of a system design is improved upon, based on 

the resource constraints in the target system, and an 
optimal system structure, or configuration is generated for 
implementation.  This approach is static in nature, in the 
sense that all mapping decisions are made at design time. 

Program transformation is used after a system has been 
implemented.  The idea is to optimize the program code, 
based upon the resource constraints and/or application 
specific requirements.  This approach can be either static 
or dynamic.  Static transformation re-arranges the initial 
code such that during execution, the system will have 
optimal performance.  Dynamic transformation occurs at 
run time; it supports task migration and can be used for 
load balancing and fault tolerance. 

As the current goal of our work is to develop a tool to 
produce an optimal architecture for a given fixed product 
the model-based approach was chosen. 

 

6. Deployment Generation/Analysis Tool 
 
To test this approach an experimental tool was 

developed at Nokia Research Center.  This was used to 
test the potential for a deployment generation tool based 
on multiprocessor mapping strategies.  An overview of 
the tool's structure is given in Figure 4.   This structure 
aims to separate components from system properties and 
domain constraints. 

 
Components
•Logical dependencies
•Usage behaviour

Estimation
•Memory, data, code
•Execution time

Constraints
•Co-location
•Mutual exclusion
•Otbers

Suggested configuration
and mapping

Mapping
algorithmMapping

algorithmMapping
algorithm

validate results
using real

measurements

Costs
switching memory

Internal 
comm.
Inter task 
comm.

Model

 
Figure 4: Overview of the deployment 

analysis tool 
 
The components deployed are defined by the logical 

architecture of a product.  This can be viewed as a 
dependency graph, starting with applications and 
terminating at logical components or device drivers.  To 
each edge in the graph a weight is assigned based on the 
level of coupling between the components.  If one 
component only rarely uses another then this is reflected 
by a low value; similarly, if a component relies heavily on 
another a high value is assigned. 

The system information consisted of the costs of inter-
thread communication versus in-thread communication.   



As these values are used to comparatively evaluate the 
deployment only their correct ratio is important. 

Architectural constraints such as co-location mutual 
exclusion can be added as input to the model.  This 
allows some domain concerns to be reused for different 
product configurations. 

Initial studies with sample logical architectures and the 
mapping algorithm from [6] have shown that this model, 
although simple, works.  This algorithm was used to 
generate deployments for a deeply nested, a fully 
connected and a hybrid component graph.  The results all 
showed a dramatic difference in estimated performance.  
In one typical case, where there is a deep nesting of 
components, the generated mapping of the components to 
threads resulted in an estimated execution time one tenth 
of a naïve mapping. 

Considering the use of statistical data to define the 
level of component interaction the results are 
approximate.  It is the use of statistical data that is this 
models weak point, however this is unavoidable due to 
the difficulties of a complete analysis.  Therefore, we see 
this model as a good way to identify potential deployment 
architectures, prior to exhaustive testing.  

 

7. Future work 
 
The current modeling approach provides a good basis 

for further research in the areas of model development, 
integration with the product-line process and more in 
depth handling of components. 

The model used above can be improved by providing a 
richer set of choices for the developer.  It only used one 
slightly altered algorithm from the multi-processor 
domain; this could be expanded with more algorithms. To 
support a wide variety of products, the architectural 
constraints must be developed to provide more domain 
specific modeling.  This might have to be reflected in the 
component descriptions used in the model.  Finally, the 
values used to evaluate the resources used should be 
validated against a real system. 

As the movement from logical definition to 
deployment is a crucial step in the development of any 
system, this tool could be altered to assist the product-line 
process.  A designer could select the necessary 
components and this tool would generate a deployment 
and an evaluation.  In this case the simplicity of the tool's 
underlying model and its facilitation for fast analysis 
would provide immediate and effective feedback to the 
designer. 

The algorithms identified so far are a direct result of 
their application domain.  From this it can be concluded 
that there is possibility to tune, adapt and develop 

algorithms specifically for use in generating optimum 
component deployments.   As mentioned above, the static 
nature of the current software means that the model-based 
approach to optimization is feasible.  In the future, there 
might be a need for dynamic program transformations 
that respond to a user’s needs.  

Not all components are as fine-grained as the ones 
described above.  In many cases components can be 
composed of other components and objects.  The 
deployment of these entities across a set of tasks also 
needs to be tackled.  In this case the current component 
model is not sufficient and will need to be expanded to 
address the internal deployment of a larger-grained 
component. 

 

8. Acknowledgments 
 
The authors would like to thank Nokia Mobile 

Phones/SW-RTA for funding the development of the 
prototype. 

 

9. References 
[1] P. Clemens and L. Northop, Software Product 
Lines, Addison Wesley, 2002 
[2] A. Mitschele-Thiel, "Hierarchical optimization of 
parallel applications", Proceedings of the Second 
International Workshop on Software Engineering for 
Parallel and Distributed Systems, 1997 pp 222-233. 
[3] H.L. Muller, P.W.A.Stallard and D.H.D. Warren, 
"Multitasking and multithreading on a multiprocessor 
with virtual shared memory", Proceedings of the Second 
International Symposium on High-Performance Computer 
Architecture, 1996 pp 212-221. 
[4] E. Smirni, C.A. Childers, E. Rosti and L.W. 
Dowdy, "Thread placement on the Intel Paragon: 
modeling and experimentation", Proceedings of the Third 
International Workshop on Modelling, Analysis, and 
Simulation of Computer and Telecommunication 
Systems, 1995 pp 226-231. 
[5] K. Taura and A. Chien, "A heuristic algorithm for 
mapping communicating tasks on heterogeneous 
resources", Proceedings of the 9th Heterogeneous 
Computing Workshop, 2000 pp 102-115. 
[6] S. Yalamanchili, L. Te Winkel, D. Perschbacher 
and B. Shenoy, "Genie: An environment for partitioning 
and mapping in embedded multiprocessors", Proceedings 
of the Fifth IEEE Symposium on Parallel and Distributed 
Processing, 1993 pp 522-529. 

 
 

 



Reusing Verification Information of Incomplete Specifications

Rebeca P. Díaz Redondo, José J. Pazos Arias and Ana Fernández Vilas
Departamento de Enxeñería Telemática. University of Vigo. 36200 Vigo. Spain

{rebeca, jose, avilas}@det.uvigo.es

Abstract

The possibility of verifying systems during any phase of
the software development process is one of the most signif-
icant advantages of using formal methods. Model check-
ing is considered to be the broadest used formal verifica-
tion technique, even though a great quantity of computing
resources are needed to verify medium-large and large sys-
tems. As verification is present over the whole software
process, these amount of resources is more critic in incre-
mental and iterative life cycles. Our proposal focuses on
reusing incomplete models and their verification results —
which are obtained from a model checking algorithm— to
reduce formal verification costs in this kind of life cycles.

1. Introduction

Reuse is a promising way to help improving software
development and, even though it has been practiced in dif-
ferent ways over many years, it is still an emerging dis-
cipline. Although reusing material resources (basically
code) has been made ad-hoc since programming was born,
reusing more abstract level components like human re-
sources (ideas, designs, etc.) is more attractive because of
the possibility of increasing the reuse benefits. Our proposal
[3] shares this last philosophy and it offers a methodology
to reuse high abstract level components: incomplete specifi-
cations —obtained from transient phases of an iterative and
incremental development process—; and their verification
results —obtained from a model checking algorithm. These
high abstract level reusable components are specified using
a formal representation which is not only the pattern in a
specification-based retrieval, but the content of the compo-
nents, so we have a content-oriented retrieval.

The paper is organized as follows: following section
focuses on describing the software development process
where software reuse is going to be included; section 3
summarizes repository management; the process of reusing
verification efforts —including mathematical and practical
aspects— is detailed in sections 4 and 5; and, finally, sum-
mary and future work are exposed in section 6.

2. Context

Current software engineering practice addresses prob-
lems of building large and complex systems by the use of
incremental development techniques. Formal methods are
expected to be adapted to support this practice, outside their
traditional role of verifying that a model meets certain fixed
requirements. SCTL-MUS [5] is a formal methodology for
software development of distributed systems which joins
both tendencies: on the one hand, the totally formalization
of the process, combining different FDTs; and, on the other
hand, an incremental and iterative point of view. In figure
1 it is shown the first phase of this methodology, where a
complete and consistent functional specification of the sys-
tem is obtained from user’s specification.

Using the many-valued logic SCTL [5] (Simple Causal
Temporal Logic) allows the formal description of func-
tional requirements without being too far from natural lan-
guage semantic. A generic causal requirement in SCTL fol-
lows this pattern:

Premise ��� Consequence,

which establishes a causing condition (premise); a temporal
operator determining the applicability of the cause ( ��� );
and a condition which is the effect (consequence). Apart
from causation, SCTL is a six-valued logic, even though it
is only possible specifying three different values: possible
or true, non possible or false and unspecified. This concept
of unspecification is specially useful to deal with both in-
complete and inconsistent information obtained by require-
ments capture, because although events will be possible or
non possible at the final stage, in intermediate phases of
the specification process it may be that users do not have
enough information about them yet, so these events are un-
specified at this phase.

In this methodology, SCTL requirements are translated
into MUS (Model of Unspecified States) graph by incre-
mental synthesis. This state-transition formalism allows
prototyping and feedback with users, and supports the con-
sistency checking by using a model checking algorithm.
MUS graphs are based on typical labeled-transitions graph,
but including another facility: unspecification of its ele-



No

New
goals

validation
User Performance

Prototype
Problems

Requirements

Validated requirements

Yes

Initial goals

SCTL MUS

SCTL−MUS
Verification

Initial
goals

Architectural designObtain initial
architecture

Figure 1. SCTL-MUS methodology

ments.
The degree of satisfaction of an SCTL requirement is

based on causal propositions: “an SCTL requirement is sat-
isfied iff its premise is satisfied and its consequence is sat-
isfied according to its temporal operator”. As SCTL-MUS
methodology adds unspecification concept, this degree of
satisfaction must not be false (nor true), just as the Boolean
logic. In fact, it must have a degree of satisfaction related
to its unspecification (totally or partially unspecified on the
MUS model), because it can become true or false require-
ment, depending on how it is specified in future. Conse-
quently, this methodology defines six different degrees of

satisfaction, ���������
	���� ��� ��� � ���� ����� , which can be par-
tially ordered according to a knowledge level ( ��� ) (figure 2)
as follows:

– ������� � ��	�� are the highest knowledge levels. We know at
the current stage of the system the final degree of sat-
isfaction of the property. The meaning of this verifica-
tion results are the following ones: � or true means the
requirement is satisfied; 	 or false implies the require-

ment is not satisfied; and � � or contradictory means the
requirement cannot become true or false.

– ��� ���� � are the middle knowledge levels. Although at
the current stage of the system, the property is partially
unspecified, we know its satisfaction tendency. That
is, in a subsequent stage of specification, the degree of
satisfaction will be � � � �! (respectively �� � � �! ) for
the current value � (respectively �� ).

– � � � is the lowest knowledge level. The property is
totally unspecified at the current system’s stage and
we do not known any information about its future be-
haviour.

In short, the degree of satisfaction of an SCTL require-
ment varies according to its closeness to the true (or false)
degree of satisfaction —partial order according to truth
level (figure 2).

Knowledge

Truth

�

��

�	

�

� �

Figure 2. Knowledge and Truth partial order-
ings among degrees of satisfaction.

3. Lattice of reusable components

Establishing functional relationships among components
enables defining component hierarchies or lattices to clas-
sify and retrieve them in an proper way. We define four par-
tial order relationships among components and several met-
rics to quantify functional differences, which are needed to
assess the necessity of making changes to existing compo-
nents to satisfy query’s specifications. As this paper focus
on reusing verification efforts, we only describe here one of
these identified functional relationships because the verifi-
cation reuse process is based on it (the other ones are main
pieces to reuse incomplete specifications).

MUS graphs can be organized on a lattice based on a
function "!#%$ that associates with every MUS graph &'�)(
a set "!#*$,+-&�. , which is based on complete trace seman-
tics [1]. Main differences with traditional ones are that
"!#*$ takes into account both true and false events (for in-
stance /10 in figure below), in order to differentiate false
events from unspecified ones; and it includes infinite traces
in "!#*$,+-&�. . An example of "!#%$,+-&�. obtaining is shown in
figure below.

2

34
5

/10
&  "!#*$,+6&  .7�8�

5 /109� 2�3 � 2 + 4 .�: 3 �

"!# $ +-&�. constitutes the observable behaviour of & ac-
cording to "!#%$ -criteria and it allows defining the equiv-
alence relation �*$;9< �=(?>@( given by &A�B$;C< &D �E
"!#*$)+-&�.)�F"!#*$)+-&� G. , and the preorder H!$;C< ��(I>�(
by &�H�$;C< &D AEJ"!#*$,+-&�.)HK"!#*$,+-&� G. . H�$;9< provides a
partial order between equivalence classes, that is, graph sets
indistinguishable using "!#L$ -observations, so +M(N��H!$;9< . is
a partially ordered set, or poset. A subset O  �P( is called
a chain if every two graphs in O  are "!# $ -related.

Each reusable component ( # ) gathers both its functional
specification, which is expressed by the set of SCTL re-



���

��� ���

������

Figure 3. Chain of reusable components

quirements and modeled by the temporal evolution MUS
graph ( & ), and an interface or profile information, which is
automatically obtained from its functional characteristics to
classify and retrieve it from the repository ( "!#L$)+-&�. is part
of this interface). Besides this, a reusable component stores
verification information, that is, the set of properties which
had been verified on the MUS graph and their verification
results (section 4).

Each reusable component ( # ) is classified in the repos-
itory after finding its correct place in the lattice defined
by "!#*$ relation. That is, it is necessary looking for
those components "N# $ -related to # 1 such as # is "!# $ -
included on them, and those components "!#L$ -related to
# such as they are "N#*$ -included on # (figure 3).

4. Reusable verification information

In order to store interesting verification information
linked to each reusable component, we define four prop-
erties which summarize the degrees of satisfaction of an
SCTL property 	 in the states of a MUS graph & :

– 
���	 expresses that “some trace of the system satisfies
eventually 	 ” and its degree of satisfaction is denoted +�
���	 ��&�. .

– 
���	 expresses that “some trace of the system satisfies
invariantly 	 ” and its degree of satisfaction is denoted +�
���	 ��&�. .

– ����	 expresses that “every trace of the system satisfies
eventually 	 ” and its degree of satisfaction is denoted +�����	 ��&�. .

– ����	 expresses that “every trace of the system satisfies
invariantly 	 ” and its degree of satisfaction is denoted +�����	 ��&�. .

To sum up, for each property verified in the MUS graph,
we will have four derived properties whose degrees of sat-
isfaction make up the degree of satisfaction of an SCTL
property 	 in a MUS graph & , denoted

 +�	 � &�.�� + 
+�
���	 ��&�. �  +�����	 � &�. �  +�
���	 ��&�. �  +�����	 ��&�. . . This
verification information is stored in the reusable component

1Two components � and ��� are  !��" -related ( �$#%"&(' ��� or�)�*#%"&(' � ) iff their MUS graphs + and +,� are  ���" -related ( +%#%"&(' +-�
or + � # "&.' + ).

whose MUS graph is & , ready to be recovered whenever it
is necessary.

2 5

23 3
/ 5 / 3

/ 2/ 5

&

	 0/ + 2
� 5 .

 +1	  ��&�. � + ����� � � ��	�.

An example of obtaining the degree of satisfaction of a
property 	  in a graph & is shown in figure above. After
studying the degrees of satisfaction of 	  in every state of & , +1	  � &�. is extracted. Its meaning is as follows: because of +��2��	  � &�. � � , every trace of & satisfies eventually 	  ,
that is, 	  is a liveness property in & ; since

 +�
���	  � &�.7�� , 	  is partially specified in & , but regardless of future
iterations, any trace of & does not satisfy invariantly 	  ,
that is, 	  is not a safety property in & .

5. How to reuse verification efforts?

The defined classification scheme (section 3) implies
that, for instance in figure 3, #  and # � are functional parts
of # � , being the last one a functional part of #03 . The main
question in this situation is: how to know the degree of sat-
isfaction of an SCTL property 	 in # � , if we know the de-
grees of satisfaction of 	 in #  , # � and #43 ?. In this section
we resolve this question after studying some mathematical
aspects related to the ordering of degrees of satisfaction, and
by applying these results to the proposed practical environ-
ment.

5.1. Mathematical aspects

Let H05 be a simulation relation between two states 6  ,
and 6 � , denoted by 6  H05-6 � , satisfying: �76   �896 

:;
6   then 
<6 �  08=6 � :; 6 �  and 6   �H05-6 �  and if 6 

:>
then 6 � :> . Let & and &  two MUS graphs, then &  sim-

ulates & , denoted &�H 5 &  , iff 6@?7H 5 60?  , where 60? is the
initial state of & and 6@?  the initial state of &  .
Property 1. Let 6 and 6  be two states satisfying 6 H 5 6  ,
then

 +1	 �A6L. � �  +�	 �A6� G. . That is, the degree of satis-
faction of a property 	 in 6 has a lower knowledge level
than its degree of satisfaction in 6� 2.

As consequence of property 1, it is possible to extract
verification information about the degree of satisfaction of
one SCTL property 	 in a MUS graph & , that is,

 +1	 ��&�. ,
knowing

 +1	 ��&  G. and
 +1	 � &   -. , where &  �H059&�H05 &D  ,

without running the verification algorithm. We have ob-
tained different tables storing these reusable verification re-

2This property’s demonstration is based on the structure of an SCTL
requirement.



sults, but because of space reasons it is impossible to in-
clude them here.

& �
&

&   +1	 ��&  .7�8+�� � � � � � 	 . +1	 ��& � .7�8+�� � � � � � � .
 +1	 ��&�.7� + � � � ��� ��	�.

A little example of what kind of verification information
can be reused it is shown in figure above. In this example
there are three components satisfying &  H 5 & and & � H 5 & .
After studying the degrees of satisfaction of a property 	 /+ 2 � 5 . in both graphs, we can deduce that 	 is a liveness
property in & and it is not a safety property, without running
the model checking algorithm.

5.2. Practical aspects

The main problem of the solution which has been pro-
posed in the previous section is comparing MUS graphs us-
ing the H 5 relationship in an efficient way. The following
property offers a solution to this problem:
Property 2. H 5 defines a partial order between MUS
graphs, but, for deterministic graphs, it can be demonstrate
that H 5 is totally equivalent to H!$;9< .
because comparing components according to "N#L$ rela-
tionship is much more efficient and equal effective (prop-
erty 2) than comparing components according to H 5 .

So, box labeled as Verification SCTL-MUS in figure 1 —
where a set of properties � 	 � � are formally demonstrated
on a MUS prototype & — may be replaced by the following
steps:

1. Obtain the "N#*$)+6&�. information to be able to locate
in the repository the reusable components which are
"!#*$ -related to & .

2. Obtain the "!#%$ +�	 � . information in order to locate
those functional requirements which are functionally
equivalents to each 	 � .

3. Retrieve those components whose classification dis-
tance to & is as little as possible and where verifica-
tion information about functionally equivalent to � 	 � �
properties are stored.

4. Extract verification information about
 +1	 � ��&�.�� �

from the recovered components.
If the verification information obtained is not enough to

know the required verification results, it is necessary to run
the model checking algorithm, but this execution can be re-
duced depending on the available verification information.

6. Summary and future work

The work introduced in this paper focuses on reusing
verification information linked to incomplete systems in a

totally formalized, incremental and iterative software de-
velopment process with the aim of minimizing its formal
verification costs. That is, we propose reusing high ab-
stract level verification information, as difference to other
approaches like [4] where although reusing verification re-
sults is also proposed, they are less formalized proofs (sim-
ulation proofs) over code components (algorithms).

After studying different relationships among incomplete
specifications, we have identified a criteria to compare func-
tional specifications based on trace semantics and taking
advance of unspecification inherent to incomplete models.
Applying this criteria, we build a lattice of reusable compo-
nents which allows avoiding formal verification tasks in the
retrieval process. This entails a fast retrieval which is accu-
rate enough to reuse verification information and it makes a
difference between other proposals [2, 6, 7] where specifi-
cation matching is based on theorem proving. We have also
identified what verification information can be reused and,
consequently, how to minimize formal verification tasks.

In order to continue this proposal, we are working on
reusing verification results of functional similar properties
with the given one; and with the possibility of dividing the
given property into several properties. Both lines share the
same goal: increasing the possibility of finding interesting
verification information in the repository.

References

[1] Handbook of Process Algebra, chapter The Linear Time -
Branching Time Spectrum I: The Semantics of Concrete, Se-
quential Processes. Elsevier Science.

[2] B. H. C. Cheng and J. J. Jeng. Reusing Analogous Com-
ponents. IEEE Trans. on Knowledge and Data Engineering,
9(2), Mar. 1997.

[3] R. P. Díaz-Redondo and J. J. Pazos-Arias. Reuse of Verifi-
cation Efforts and Incomplete Specifications in a Formalized,
Iterative and Incremental Software Process. In Proceedings
of International Conference on Software Engineering (ICSE)
Doctoral Symposium, Toronto, Ontario (Canadá), May 2001.

[4] I. Keidar, R. Khazan, N. Lynch, and A. Shvartsman. An
Inheritance-Based Technique for Building Simulation Proofs
Incrementally. In 22nd International Conference on Software
Engineering (ICSE), pages 478–487, June 2000.

[5] J. J. Pazos-Arias and J. García-Duque. SCTL-MUS: A Formal
Methodology for Software Development of Distributed Sys-
tems. A Case Study. Formal Aspects of Computing, 13:50–91,
2001.

[6] J. Schumann and Fischer. NORA/HAMMR: Making
Deduction-Based Software Component Retrieval Practical. In
M. Lowry and Y. Ledru, editors, Proceedings of the 12th
International Conference Automated Software Engineering,
pages 246–254. IEEE Computer Society Press, Nov. 1997.

[7] A. M. Zaremski and J. M. Wing. Specification Matching of
Software Components. ACM Transactions on Software Engi-
neering and Methodology, 6(4):333–369, Oct. 1997.



Industrial experience of using a component-based approach to 
industrial robot control system development. 

 
Peter Eriksson 
ABB, Sweden 

peter.j.eriksson@se.abb.com 
 

Introduction 
 
I will share some experience that we have gained during ten years of development of our today’s 
robot controller software, supporting simulation systems and communication software. ABB 
produces and delivers industrial robot systems to a variety of application fields such as those for 
car manufacturing, foundry, painting and food packaging. Recently ABB has as the first robot 
manufacturer delivered more than 100.000 units to the market. The controller generation that this 
presentation will cover represents about half of the delivered systems. The controller software 
represents a huge and complex system with several million lines of code and several hundred 
man-years of development. Many different software engineering fields such as real-time, motion 
control, databases, application programming language, communication and human-machine 
interaction are combined in these products and increase the demands on the development process 
as well as the system architecture.  

Experience and some highlights during ten years of using a component-based 
approach to system development 
 
The subjects that will be covered can be divided in the following areas 

• Organization 
• Methods 
• System architecture 
• Test strategy 
• Legal and commercial issues 
 

Some examples and solutions that we have applied on the different subjects will be presented.  

Present and future challenges, goals and obstacles for CBSE from my perspective 
 
Many challenges and unsolved issues exist and even if we have been very successful during our 
development we are heavily dependent on the experience of individuals and on the maintaining of 
quality and system architecture. During the presentation I will highlight some of those issues that 
need to be addressed to establish a higher degree of stability and predictability in the type of 
component-based software architectures that we use. 
 


	Ronan_Mac_Laverty.pdf
	Software Component Deployment in Consumer Device Product-lines
	Introduction
	Motivation
	System Architecture
	System Deployment
	Automated Deployment
	Deployment Generation/Analysis Tool
	Future work
	Acknowledgments
	References




