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∗{saad.mubeen, jukka.maki-turja, mikael.sjodin}@mdh.se
†{saad.mubeen, jukka.maki-turja}@arcticus-systems.com

Abstract—In order to support the end-to-end timing analysis
at various abstraction levels and development phases, the end-
to-end timing models should be extracted from models of
the applications in such a way that they are interoperable.
We discuss the challenges and issues that are faced when
the timing models are extracted at various abstraction levels
during model- and component-based development of vehicular
distributed embedded systems. We also present preliminary
guidelines and solutions to address these challenges.

I. INTRODUCTION

Due to increase in the amount of advanced computer

controlled functionality in vehicular distributed embedded

systems, the size and complexity of embedded software has

drastically increased in the past few years. For example, the

amount of software in a modern premium car can exceed 100

million lines of code [1]. Similarly, the software in a heavy

truck can consist of as many as 2000 software functions [2].

In order to deal with the software complexity, the research

community proposed model- and component-based devel-

opment of embedded real-time systems by using the prin-

ciples of Model-Based Software Engineering (MBSE) and

Component-Based Software Engineering (CBSE) [3], [4].

This approach allows to capture requirements early during

the development, lowers the development cost, enables faster

turn-around times in early design phases, allows reusability,

supports modeling at higher abstraction levels, and provides

possibilities to automatically perform timing analysis; derive

test cases; and generate code. MBSE provides the means to

use models to describe functions, structures and other design

artifacts. Whereas, CBSE supports the development of large

software systems by integration of Software Components

(SWCs). It raises the level of abstraction for software

development and aims to reuse SWCs and their architectures.

Within the segment of construction-equipment vehicles and

similar segments for heavy special-purpose vehicles, model-

based development of software architectures for embedded

real-time systems has had a surge the last few years.

Most of the vehicular functions are developed as dis-

tributed embedded systems with real-time requirements. This

means, the time at which these systems respond to some

stimulus is as important as logically correct response. In

other words, logically correct but late response may be

considered as bad as logically incorrect response. Hence,

the providers of these systems are required to ensure that

the actions by the systems will be taken at a time that is

appropriate to their environment. One way to guarantee that

the system will meet all its deadlines is to perform the end-

to-end response-time and delay analysis [5], [6]. For this

purpose, the end-to-end timing model should be extracted

from the software architecture of the system.

A. Problem Statement and Paper Contributions

The existing model- and component-based development

approaches for distributed embedded systems in the vehic-

ular domain support the extraction of end-to-end timing

models at an abstraction level that is close to the system

implementation. As a result, the end-to-end timing analysis

cannot be performed at earlier development stages. In order

to support the early timing analysis, the timing model should

be extracted at higher abstraction levels. It is important to

note that several modeling technologies and tools are used

at various stages during the development of these systems in

the industry. The extracted timing model should be interop-

erable by the tools that are used at various abstraction levels

compared to the level where the timing model is extracted.

We discuss the challenges and issues that are faced during

the extraction of the timing models from component-based

vehicular distributed embedded systems at higher levels of

abstractions. The goal is to extract the timing models that

can be inter-operated by various tools to enable early end-to-

end timing analysis. We also present preliminary guidelines

and solutions to deal with these challenges.

B. Paper Organization

In Section II, we present the background and related

works. Section III describes the end-to-end timing models.

In section IV, we discuss the research challenges. Finally,

Section V summarizes the current work.

II. BACKGROUND AND RELATED WORKS

A. Abstraction Levels Considered by Various Methodologies

Various models and methodologies used for the develop-

ment of vehicular distributed embedded systems consider



four abstraction levels as shown in Figure 1. Each abstrac-

tion level provides a complete definition of the system for a

given purpose during the development process.
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Figure 1. Abstraction levels considered during the development

1) Vehicle or end-to-end level: At the vehicle level, re-

quirements, functionality and features of the vehicle are cap-

tured in an informal (often textual) and solution-independent

way. This level captures the information regarding what the

system should do [7]. It is better known as the end-to-end

level because features and requirements on the end-to-end

functionality of the vehicle are captured in an informal way.

2) Analysis level: At the analysis level, the requirements

are captured in a formal way. Functionality of the system

is defined based on the requirements and features without

implementation details. A high-level analysis may also be

performed for functional verification.

3) Design level: The artifact developed at the analysis

level is refined into design functions at the design level.

The resulting artifact at this level also contains middleware

abstraction and hardware architecture. In addition, software

functions to hardware allocation may be present.

4) Implementation level: At this level, the design-level

artifact is refined to software-based implementation of the

system functionality. The artifact at this level is the software

architecture in terms of SWCs and their interactions.

B. Models and Development Methodologies

We focus on some of the component technologies that are

used for the development of distributed embedded systems

in the automotive domain, specifically in the segment of the

construction equipment and other heavy vehicles.

Rubus [8] is a collection of methods and tools for model-

and component-based development of dependable embedded

real-time systems. It is developed by Arcticus Systems in

close collaboration with several industrial partners. Rubus

is today mainly used for the development of control func-

tionality in vehicles by several international companies, e.g.,

BAE Systems Hägglunds,1 Volvo Construction Equipment,2

Knorr-bremse,3 and Mecel4. The Rubus concept is based

around the Rubus Component Model (RCM) and its devel-

opment environment Rubus-ICE which includes modeling

tools, code generators, analysis tools and run-time infrastruc-

ture. The overall goal of Rubus is to be aggressively resource

1http://www.baesystems.com/hagglunds
2http://www.volvoce.com
3http://www.knorr-bremse.com
4http://www.mecel.se

efficient and to provide means for developing predictable,

timing analyzable and synthesizable control functions in

resource-constrained embedded systems. The timing analy-

sis supported by Rubus-ICE includes distributed end-to-end

response-time and delay analysis [6]. Rubus methods and

tools mostly focus at the implementation level in Figure 1.

AUTOSAR [9] is an industrial initiative to provide stan-

dardized software architecture for the development of em-

bedded software. It is used at the implementation level in

Figure 1. It describes the software development at a higher

level of abstraction compared to RCM. Unlike RCM, it

does not separate control and data flows among components

within a node. It does not differentiate between the modeling

of intra- and inter-node communication which is unlike

RCM. The timing model in AUTOSAR is introduced fairly

recently compared to that of Rubus. There are some similar-

ities between AUTOSAR and RCM, e.g., the sender receiver

communication in AUTOSAR resembles the pipe-and-filter

communication in RCM. AUTOSAR is more focussed on

the functional and structural abstractions, hiding the im-

plementation details about execution and communication.

AUTOSAR hides the details that RCM highlights.

TIMMO [10] is an initiative to provide AUTOSAR with

a timing model [11]. It is based around a methodology

and TADL [12] language. TADL is used to express timing

requirements and constraints. It is inspired by MARTE

[13] which is a UML profile for model-driven development

of real-time and embedded systems. TIMMO methodology

uses EAST-ADL language [14] for structural modeling and

AUTOSAR for the implementation. TIMMO and EAST-

ADL focus on the top three levels in Figure 1. However,

TIMMO methodology uses AUTOSAR at the implementa-

tion level. In TIMMO-2-USE project [15], a major redefini-

tion of TADL is done and released in TADL2 specification.

TADL2 can specify timing related information at all ab-

straction levels shown in Figure 1. Most of these initiatives

lack the focus on expressing low level details at the higher

levels such as linking information in the distributed chains.

These details are necessary to extract the end-to-end timing

model from the architecture. Furthermore, there is no focus

on how to extract this information from the model or perform

timing analysis or synthesize the run-time framework. In our

view, the end-to-end timing model means extracting enough

information from the distributed embedded systems to be

able to perform certain type of timing analysis, e.g., end-to-

end response-time analysis.

In our previous works [16], [17], we presented a method

to extract the end-to-end timing models only at the imple-

mentation level. However, we did not consider the aspect of

interoperability. On the other hand, this paper focuses on the

extraction of the timing models at higher abstraction levels

with a focus on interoperable timing models and performing

early end-to-end timing analysis.



III. END-TO-END TIMING MODEL

This model consists of timing properties, requirements

and dependencies of all tasks, messages and task chains in

the system under analysis. It consists of two sub models.

A. System Timing Model

It is composed of node and network timing models.

1) Node timing model: This model contains node-level

timing information. We consider the transactional task model

(i.e, tasks with offsets ) introduced in [18]. A node, Γ,

consists of a set of k transactions Γ1, . . . ,Γk. Each trans-

action Γi is activated by mutually independent events, i.e.,

the phasing between the events is arbitrary. The activating

events can be a periodic sequence of events with a period Ti.

In case of sporadic events, Ti denotes the minimum inter-

arrival time between two consecutive events.

There are |Γi| tasks in a transaction Γi. Each task in

Γi may not be activated until a certain time, called an

offset, elapses after the arrival of an external event. By task

activation we mean that the task is released for execution.

A task is denoted by τij . The first subscript, i, specifies

the transaction to which this task belongs. Whereas, the

second subscript, j, denotes the index of the task within the

transaction. A task, τij , is defined by the following attributes.

• Cij denotes the worst-case execution time of the task.

• Oij denotes the offset of the task.

• Dij specifies the optional deadline of the task.

• Jij denotes the maximum release jitter.

• Bij represents the maximum blocking time which is

the maximum time the task has to wait for a resource

that is locked by a lower priority task.

• Pij denotes the priority of the task.

• Rij denotes the worst-case response time of the task.

There are no restrictions on offset, deadline or jitter, i.e.,

they can each be either smaller or greater than the period.

2) Network timing model: This model contains network-

level timing information within the system. A network con-

sists of a number of nodes that communicate via messages.

Currently, we focus on the Controller Area Network (CAN)

and its higher-level protocols, e.g., CANopen. However,

this model can be easily extended to accommodate other

automotive network protocols. Each message m has the

following attributes.

• IDm denotes a unique identifier.

• Pm denotes unique priority.

• Cm specifies the transmission time.

• Transmission Type shows whether the message is

periodic (P), sporadic (S) or mixed (both P and S).

• Jm denotes the release jitter. Usually, it is inherited

from the task that queues m .

• sm denotes the data payload in each message. It ranges

from 0 to 8 bytes in a CAN message.

• Tm specifies the period of a message in the case of

periodic transmission. For a sporadic message, MINTm

is used which is the minimum time that should elapse

between the transmission of any two messages. For a

mixed message, both Tm and MINTm are specified.

• Bm denotes the maximum blocking time during which

m can be blocked by the lower priority messages.

• Rm denotes the worst-case response time.

B. System Linking Model

The chains of components (tasks at run time) can be dis-

tributed over more than one node in a distributed embedded

system. A task chain consists of a number of tasks that are

in a sequence and have one common ancestor. Each task

may receive a trigger, a data or both from its predecessor.

A chain is said to be a trigger chain if first task in the chain

is triggered by independent clock/event, while the rest of

the tasks are triggered by their predecessors. Each task in

a data chain is triggered independently. A mixed chain is a

combination of trigger and data chains. The chain types in

the modeled application must be unambiguously identified

because each type of chain is analyzed using different type

of the end-to-end timing analysis. Two neighboring tasks

in a distributed chain may reside on two different nodes,

while the nodes communicate with each other via network.

The end-to-end timing model should also contain the linking

information among all tasks and messages within the chain.

All mapping and linking information of distributed chains

is extracted into the system linking model.

IV. RESEARCH CHALLENGES AND ISSUES

Ideally, the modeling technology used for the development

of the systems should facilitate unambiguous extraction of

the timing models with ease. The modeling technologies

that are used at the implementation level such as RCM

and AUTOSAR support the extraction of the end-to-end

timing models. However, the modeling technologies that

are used at the design or higher levels such as EAST-

ADL, TIMMO and TADL do not support complete and

unambiguous extraction of these models. The tool chain that

uses all these technologies for the development of vehicular

distributed embedded systems lacks the support for end-to-

end timing analysis at higher levels. As a result, it may be

too late to perform the timing analysis in some cases.

In this work, we focus on the design level within the

context of this problem. We discuss some of the issues

that hinder the extraction of the end-to-end timing model

at the design level. We consider the modeling support

of EAST-ADL, TIMMO and TADL at the design level.

Whereas, the modeling support of RCM is considered at

the implementation level. However, these issues are equally

applicable for other modeling technologies at these levels.

1) Annotation and extraction of timing parameters: The

timing information expressed with the models and tools

used at higher levels (with respect to the implementation

level) is not enough to extract the end-to-end timing model.



For example, one of the EAST-ADL based tools5 used

in the construction-equipment vehicles industry is able to

specify only one timing parameter on the SWCs at the

design level, i.e., the period of the component. Clearly,

this information is not enough to perform the end-to-end

timing analysis. TADL2 can specify timing requirements,

constraints and properties at the design level in the EAST-

ADL and AUTOSAR based development. However, it lacks

the expression of some timing parameters, e.g., transmission

type, jitter, and priority which are needed to perform the end-

to-end timing analysis. In short, the models and tools used

at the design and higher levels need to be more expressive

to support the extraction of interoperable timing models.

2) Control and data flows: One of the main challenges

in the extraction of the timing model is the lack of clear

separation between the control and data flows at the design

and higher levels. At the implementation level, e.g. in

RCM, these flows are clearly separated from each other

by means of trigger and data ports as shown in Figure 2

(b). However, at the design level, the SWCs communicate

via flow ports which can be interpreted as a data or trigger

ports as shown in Figure 2 (a). Moreover, the component

can be triggered via specified constraints, modes, or internal

behavior of the component. The two flows should be clearly

and separately captured in the end-to-end timing model

because the type of the timing analysis depends upon it. For

example, it is meaningful to specify the Age and Reaction

delay constraints, introduced in TADL and also supported

in RCM, on the data flows rather than on trigger flows. The

analysis engines can calculate these delays only when they

are specified on the data flows.

Figure 2. Model of the SWC at (a) design level, (b) implementation level

3) Identification of chain types: Since the control and

data flows are clearly separated at the implementation levels,

e.g., in RCM, the chain types can be easily identified as

shown in Figure 3. Due to no clear separation between

these flows at the design level, virtually it is not possible

to identify the type of a chain. At the design level, a chain

can be interpreted as a trigger or data chain. Without any

explicit trigger information, the end-to-end timing model re-

mains incomplete. The end-to-end timing analysis explicitly

depends upon the type of the chain. This is because the

trigger chains are analyzed using end-to-end response-time

analysis, whereas, the data and mixed chains are analyzed

using the end-to-end delay analysis [6].

4) Execution order and priorities of components: The

execution order of SWCs must be captured in the end-to-end

5For IP protection, the name of the tool is not specified.

timing model. At the implementation level, e.g. in RCM, the

execution ordering is determined by means of connecters,

precedence constrains, and more importantly priorities. Al-

though, the precedence constraints can be specified, there is

no notion of priorities at the design level. Therefore, at the

design level, it is very difficult to extract the execution order

in these systems that contain branches (e.g., in the case of

multiple producers and a single consumer).

5) Extraction of linking information in distributed chains:

The linking model is an important part of the end-to-end

timing model. The linking information within a chain is

vital to identify the relation among the components that may

be distributed over several nodes in a distributed embedded

application. This information is modeled very explicitly at

the implementation level, e.g., the signal database object

handles this information in RCM. Hence, it can be easily

extracted into the end-to-end timing model. However, this

information is either very implicit or does not exist at

the design level. Since, EAST-ADL relies on AUTOSAR

at the implementation level, the linking model of chains

at the design level is left to be handled by the Virtual

Function Bus (VFB). The VFB is a concept in AUTOSAR

to handle the distribution of SWCs, their virtual integration

and communication. In fact, its purpose is to hide low-level

communication details such as the linking information.

6) Information duplication and ambiguity: The modeling

at the implementation level is unambiguous, and hence, the

extracted timing model is also unambiguous. For example,

RCM does not allow illogical operations such as specifying

more than one clock on the same component without any

synchronization or merge operation. However, these restric-

tions are not present at the design level, e.g., more than one

execution time or periodic constraint can be specified on a

single SWC in EAST-ADL and TADL. Similarly, if data

age and reaction constraints are wrongly specified then the

development environment does not complain about it. As a

result, the extracted timing model may have redundant or

erroneous information. Information duplication can lead to

inconsistency in the timing model.

V. SUMMARY OF CURRENT WORK

Currently, we focus on extracting interoperable end-to-end

timing models at the design level. Later, we will move up

to the analysis level. There are two different approaches to

deal with these challenges. The first approach is to extend

and improve the design-level models, languages and tools in

such a way that the timing models can be completely and un-

ambiguously extracted. Moreover, the extracted models can

be operated by different models and tools especially at the

implementation level. The only problem with this approach

is that it requires collaboration among a number of tool

suppliers and stake holders. This, in turn, raises other types

of challenges and limitations. The second approach is to

develop the execution-level modeling technology-dependent
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Figure 3. Example of (a) Trigger chain, (b) Data chain, and (c) Mixed chain.

interpretation of the design level. For example, developing

the Rubus interpretation of EAST-ADL (this is an ongoing

work). It is important to note that this interpretation can

be a subset of the full expressiveness of EAST-ADL. No

doubt, this may result in a number of these interpretations

by several other modeling technologies. This can be a good

solution as long as these interpretations support unambigu-

ous extraction of interoperable end-to-end timing models.

Now, we propose some guidelines to deal with the dis-

cussed challenges. In order to clearly identify the trigger

and data flows, we assume implicit trigger when data is

received at any input flow port of a component. For example,

the component in Figure 2(a) may receive three individual

triggers when data is separately received at the three input

flow ports. In order to deal with multiple implicit triggers

(corresponding to multiple flow ports), we can introduce

a synchronization object at the design level or import it

form RCM at the implementation level. This object gets the

multiple triggers at input, synchronizes them, and produces

a single trigger that can be used to trigger the design-level

component with multiple flow ports. In this way, the timing

model extracted at the design level can be easily operated

by the analysis engines at the implementation level.

If the worst-, best- and average-case execution times are

not available at the design level, they can be estimated at

the implementation level by the analysis engines provided

the extracted timing model is interoperable.

Unless explicit trigger requirements are not specified at

the design level, we assume each design-level software

function to be triggered by independent clock. Hence, the

chains are assumed to be data chains. Moreover, we assume

that the execution order of the design-level components is

specified, otherwise, we make implicit assumption about

the precedence constraints along the chain. That is, each

component is assumed to execute only after the successful

execution of the preceding component in the chain, un-

less specified otherwise. This means that the data provider

component is assumed to be always executed before the

data receiver component. Since, this assumption fixes the

execution order, it is safe to assume the priorities of the

components are equal within the chain.

The analysis engines treat these chains in two ways. First,

the chains are considered trigger chains and the end-to-end

response-time analysis is performed. Second, the chains are

treated as data and mixed chains and the end-to-end delays

are calculated along with the end-to-end response times.
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