
Improving Reliability of Real-Time Systems
through Value and Time Voting

Hüseyin Aysan1, Iain Bate1,2, Patrick Graydon1, and Sasikumar Punnekkat1
1Mälardalen University, Väster̊as, Sweden

2University of York, York, UK
{huseyin.aysan, patrick.graydon, sasikumar.punnekkat}@mdh.se, iain.bate@cs.york.ac.uk

Abstract

Critical systems often use N-modular redundancy
to tolerate faults in subsystems. Traditional ap-
proaches to N-modular redundancy in distributed,
loosely-synchronised, real-time systems handle time
and value errors separately: a voter detects value er-
rors, while watchdog-based health monitoring detects
timing errors. In prior work, we proposed the in-
tegrated Voting on Time and Value (VTV) strategy,
which allows both timing and value errors to be detected
simultaneously. In this paper, we show how VTV can
be harnessed as part of an overall fault tolerance strat-
egy and evaluate its performance using a well-known
control application, the Inverted Pendulum. Through
extensive simulations, we compare the performance of
Inverted Pendulum systems which employs VTV and
alternative voting strategies to demonstrate that VTV
better tolerates well-recognised faults in this realistically
complex control problem.

1 Introduction

Dependability is important in safety-critical sys-
tems, where a failure (systematic or random) could
cause harm to humans or the environment. Since it
is difficult to demonstrate that all faults have been
completely removed, achieving adequate dependabil-
ity frequently requires tolerating some faults. In the
common N-modular redundancy fault tolerance mech-
anism, critical functions are replicated [22]. A voter
compares outputs from all replicated channels to de-
termine both whether a fault has occurred and what
result the system should use.

Many safety-critical systems are real-time systems:
if the system misses too many deadlines, it will en-
ter a hazardous state and an accident might occur [4].

Distributed real time systems might be either tightly
synchronized or loosely synchronized. Loose synchro-
nization is attractive and often used because it reduces
overheads, complexity, and reliance on the synchroniza-
tion mechanism itself [8]. However, most existing N-
modular redundant voting strategies assume tight syn-
chronization and focus solely on tolerating anomalies in
the value domain [12]. In these systems, other mech-
anisms, such as timing watchdogs, are used to detect
timing errors. These strategies wait until all signals
arrive, or watchdog timers fire for all late or omitted
signals, before producing output. However, a voter can
in fact provide output as soon as it has received suffi-
cient inputs. Such an approach can mask timing faults
that would otherwise harm system dynamics. This pa-
per assumes loose synchronisation due to its benefits,
e.g. its relative simplicity compared to tighter synchro-
nisation, and the fact that it prevents the global time
base becoming too critical.

In previous work, we proposed an integrated voting
strategy based on both value and time [2]. We call
this approach Voting on Time and Value (VTV). Tra-
ditional approaches to N-modular redundancy capture
timing errors only when a deadline is exhausted. In
contrast, VTV detects timing deviations between the
replica outputs as they occur, yielding more reliable
and earlier detection of faults in loosely synchronized
systems. Replicated channels might produce outputs
within their deadlines at quite different times (e.g.,
one soon after their release and one near the dead-
line) because of a problem that could cause failures
later. VTV can detect such situations earlier than tra-
ditional approaches. This facilitates quicker recovery,
such as resetting the offending channel, and increases
the likelihood that the deadlines are met. Our over-
arching claim is that systems using VTV rather than
traditional approaches can be more capable of deliver-
ing correct service despite credible failures.

In prior work, we evaluated VTV using abstract sim-

1

ulation [2]. In this paper, we report a more thorough,
more realistic evaluation of VTV’s ability to handle
transient faults. We have assessed VTV’s performance
through extensive simulation of a well-known real-time
control system. The inverted pendulum is a challeng-
ing control problem where subtle undetected failures
lead to undesirable consequences [3] and thus represen-
tative of classic safety-critical systems. The evaluation
framework has two principal benefits. Firstly, the same
scenarios can be run across a number of state of the art
approaches to give a comparative evaluation. Secondly,
the scenarios can be controlled, thus allowing the ap-
proaches to be compared as key parameters (e.g. type,
likelihood and size of errors) are adjusted such that we
understand the relative performance of the algorithms.
In this paper, we build on our prior work with four new
contributions:

1. We compare fault detection approaches in terms of
their system-level effect on the inverted pendulum
(e.g., accuracy and responsiveness)

2. We assess VTV’s ability to mask and detect tran-
sient faults in comparison to that of voting on
value with or without a watchdog timer

3. We demonstrate how this enables the system to be
more dependable in the presence of credible fail-
ures

4. We discuss how VTV’s strengths can be harnessed
(and its weaknesses overcome) to create a com-
plete approach to tolerating transient faults and
managing permanent faults

In Section 2, we describe the dependability model
we assume and define the redundancy approach in
which VTV could be used. We discuss related work in
Section 3 and define VTV and the alternative voting
strategies in Section 4. We present evaluation results
in Section 5 and conclude the paper in Section 6.

2 Dependability Model and Redun-
dancy Approach

We follow the dependability concepts originally in-
troduced in [1, 6, 17]. Faults in replicated channels
might lead to errors in the visible state of the subsys-
tems that use these channel outputs. Replication is
meant to mask some of these errors, preventing them
from causing system failure. Errors in individual chan-
nel outputs might be either time errors or value errors
and might also be either transient or permanent.

2.1 Time and Value Errors

We model our system using the following variables:

Other Components/

Subsystems

Replica 1

Bad
Out

Replica 2

Replica N

…
Voter

Health Monitoring System
Error

R1

R2

RN

Figure 1. Voter inputs and outputs

Ri The output of the ith replicated channel,
with Ri =< vi, ti >

v∗ The value that an ideal channel and voter
would produce

σ The maximum that the voter’s output may
deviate from v∗

t∗ The design target time at which the channel
should produce output

δ The design target for maximum jitter in the
channel output

These definitions simplify our earlier model [2]: we
have standardized on a one-sided definition of toler-
ances δ and σ and eliminated a variable that is not used
in this paper. Designers derive σ from system safety
requirements and select t∗ and δ given the timing re-
quirements on the voter’s output and the computation
time of the voter itself. Given these parameters, we
define replica Ri’s output as correct if and only if it is
both within σ of v∗i and delivered within δ of t∗i :

(v∗i − σ ≤ vi ≤ v∗i + σ) ∧ (t∗i − δ ≤ ti ≤ t∗i + δ)

2.2 Transient and Permanent Errors

The erroneous visible state of a replicated com-
ponent is a fault at the system level. These errors
might be either transient or permanent. We consider a
replicated channel’s erroneous state to be transient if
and only if the channel would clear the error without
system-level intervention. If restoring error-free opera-
tion requires resetting the channel’s hardware or soft-
ware, or repairing or replacing a line replaceable unit,
we consider the error permanent.

2.3 The Voter Component and Its Design
Goals

Figure 1 illustrates the system that we assume. Each
replicated channel is implemented on a separate pro-
cessor. Channels begin processing when they receive
input and send output to the voter when they finish.
Unlike tightly-synchronized systems, we allow individ-
ual clocks to drift to a degree that can be achieved
using relatively inexpensive software-based clock syn-
chronization.

2

The primary purpose of the voter is to mask errors
in the redundant channels. However, it is also a part
of the system’s mechanism for remediating permanent
errors in the channels. If the voter finds a consensus,
Out gives it and the voter signals ¬Bad to indicate that
Out can be trusted. Otherwise, Out gives a best guess
and the voter signals Bad . To facilitate health moni-
toring and management, the voter reports any Errors
it detects in the replicated channels’ output.

The voter’s requirements vary from system to sys-
tem. For example, fail operational systems depend on
the voter producing acceptable Out values even when
there is no consensus. Broadly speaking, the voter is
subject to three design goals:

G1. Produce good Out values as frequently as possi-
ble.

G2. Minimize false negative ¬Bad and false positive
Bad signals.

G3. Report as many detectable Errors, as early as
possible.

Health Monitoring and Management. The
health monitoring and management strategy assumed
has two design goals:

1. Permanent error detection. In this paper, the er-
ror monitoring and management strategy identi-
fies a channel to be affected by a permanent error
if the voter reports p consecutive errors from that
channel.

2. Recovery from permanent errors. In this paper, we
perform recovery by resetting the erroneous chan-
nel. Our simulations model a reset period of r
voting periods during which the channel produces
no output.

3 Related Work

Many different voting strategies have been proposed
to tolerate faults and researchers have been addressing
different aspects of these strategies depending on the
characteristics of the target system.

Voter Dependability. One disadvantage of N-
modular redundancy is that the approach introduces
a new single point of failure, namely the voter [13].
One approach to achieving a highly reliable voter is
to construct it of very simple electronic circuits. This
approach is useful in exact voting, i.e. where all non-
faulty replicates produce bitwise-identical output, par-
ticularly when output is generated at high frequen-
cies [13]. However, in some systems non-faulty repli-
cates might produce slightly different values [7]. For

example, replicates might use data from different sen-
sors or a different calculation algorithm. It is more dif-
ficult to produce simple voting hardware for these more
complex inexact voting applications [13]. Another ap-
proach to achieving a highly reliable voter is to repli-
cate the voter [13, 9, 15]. In the assessment of VTV
we report in Section 5, a single voter implemented in
software. The complexity of VTV might make a hard-
ware implementation complicated. However, we are
unaware of any reason why the VTV approach could
not be implemented using a replicated voter.

Definitions of Consensus. Researchers have pro-
posed different definitions of consensus and strategies
for deriving an output from that consensus [5, 10]. Plu-
rality voters (or m-out-of-n voters) require m corre-
sponding outputs out of n, where m is less than the
majority, to reach a consensus [11, 14]. Median vot-
ers output the median value [13]. Average voters out-
put the mean. Some practitioners have advocated the
use of geometric means rather than arithmetic means
in some circumstances, arguing that the former is less
sensitive to outliers [21]. The implementation of VTV
that we used in this paper reports the mean of a simple-
majority consensus. However, VTV approach can very
well be implemented using a different definition of con-
sensus or strategy for deriving output from it.

Other Techniques That Address Timing Errors.
Researchers have proposed majority voting techniques
that are able to implicitly handle the errors in the time
domain [18, 19, 20]. In the Quorum Majority Voting
(QMV) and Compare Majority Voting (CMV) tech-
niques, the voter builds a consensus as soon as it re-
ceives a quorum or a majority of responses. These
approaches aim to mask late timing errors and both
provide outputs within a bounded time interval. Both
also assume that the number of timing errors within
a certain period does not exceed an allowed threshold.
As long as this assumption holds, QMV and CMV can
detect value errors as well as existing approaches. How-
ever, neither QMV nor CMV can detect violations of
this assumption. In contrast, VTV explicitly detects
these violations and reports them for health monitor-
ing purposes. Because QMV and CMV do not detect
timing assumption violations, they must be comple-
mented by health monitoring for the same. Moreover,
when their timing assumptions are violated, they might
produce incorrect values.

4 Voting Strategies

We have evaluated VTV by comparing it to two al-
ternatives: voting on value (V) and voting on value

3

with a watchdog timer (VWDT). These approaches
represent the typical approaches reported in the litera-
ture [13] and those approaches used in industry. In this
section, we describe all three approaches. We have cho-
sen these two alternatives to investigate how an event-
triggered approach (VTV) compares to time-triggered
approaches with and without timing error detection ca-
pabilities (V and VWDT, respectively).

In the following descriptions, we assume the parame-
ters used in our evaluation. For example, while VTV is
applicable to any number of replicated channels N ≥ 3,
we describe VTV as implemented for triple modular re-
dundancy (i.e., N = 3). While it should be possible to
implement different strategies for deriving Out from a
consensus, we describe VTV as implemented using an
arithmetic mean strategy.

Voting on Time and Value (VTV). We intro-
duced VTV in prior work [2] (Algorithm 1). This
approach is event triggered: the voter considers each
Ri as it arrives and produces output as soon as there is
a consensus among the available inputs. Table 1 defines
‘consensus’ and the output produced for each input
scenario. Because VTV is event-triggered, if it receives
no input it will produce no output. If it is necessary
to produce output even in these cases (e.g., because
an actuator would drift otherwise) the output com-
ponent can be made to latch the voter’s last output.

Algorithm 1: Voting on Value and Time (VTV)

Inputs: sensor outputs with time stamps
Outputs: Out, Bad, Error
while true do

if consensus among available and timely
outputs then

Out = consensus;
Bad = false;

else
if there are three timely outputs then

Out = last good value;
else if there are two timely outputs then

Out = randomly choose one;
else if there is one timely output and all
three channels are active (the other two
channels can form a majority) then

Out = none;
else if there is one timely output then

Out = the timely output;
Bad = true;

end
if detected error then

Error = detected error;
end

end

Voting on Value (V). Von Neumann introduced
the basic Voting on Value majority voting strategy,
which can mask up to n value errors in 3n inputs [24].
We implement this strategy using a fixed-period, time-
triggered approach. Algorithm 2 shows the details of
this voting procedure.

Algorithm 2: Voting on Value (V)

Inputs: latest sensor outputs
Outputs: Out, Bad, Error
if consensus among available outputs (active
channels) then

Out = consensus;
Bad = false;

else
Out = last good value;
Bad = true;

end
if detected error then

Error = detected error;
end

Voting on Value with Watchdog Timers
(VWDT). Voting on Value with Watchdog Timers
extends the V strategy by using watchdog timers to
mask and detect timing anomalies. Untimely inputs
are excluded from each voting round. We implement
this strategy as shown in Algorithm 3.

Algorithm 3: Voting on Value with Watchdog
Timers (VWDT)

Inputs: latest sensor outputs with time stamps
Outputs: Out, Bad, Error
if consensus among available and timely outputs
then

Out = consensus;
Bad = false;

else
if there are two timely outputs then

Out = randomly choose one;
else if there is one timely output then

Out = the timely output;
else

Out = last good value;
end
Bad = true;

end
if detected error then

Error = detected error;
end

4

Table 1. The Voting on Time and Value (VTV), Voting on Value (V), and Voting on Value with Watchdog
Timers (VWDT) voting approaches

Number of
Active

Voter Channels Input Scenario Out Bad Error

VTV 3 Ta ∧ Tb ∧ Tc ∧Ma,b ∧Mb,c ∧Ma,c mean(va, vb, vc) false none
3 Ta ∧ Tb ∧ Tc ∧Ma,b ∧Mb,c ∧ ¬Ma,c median(va, vb, vc) false none
3 Ta ∧ Tb ∧ Tc ∧Ma,b ∧ ¬Mb,c ∧ ¬Ma,c mean(va, vb) false c value
3 Ta ∧ Tb ∧ Tc ∧ ¬Ma,b ∧ ¬Mb,c ∧ ¬Ma,c last good value true none
3 Ta ∧ Tb ∧ ¬Tc ∧Ma,b mean(va, vb) false c time
3 Ta ∧ Tb ∧ ¬Tc ∧ ¬Ma,b randomly va or vb true c time
3 Ta ∧ ¬Tb ∧ ¬Tc none false a time
3 no input none false none
2 Ta ∧ Tb ∧Ma,b mean(va, vb) false none
2 Ta ∧ Tb ∧ ¬Ma,b randomly va or vb true none
2 Ta ∧ ¬Tb va true none
2 no input none false none
1 Ta va false none
1 no input none false none

V 3 Ma,b ∧Mb,c ∧Ma,c mean(va, vb, vc) false none
3 Ma,b ∧Mb,c ∧ ¬Ma,c median(va, vb, vc) false none
3 Ma,b ∧ ¬Mb,c ∧ ¬Ma,c mean(va, vb) false c value
3 ¬Ma,b ∧ ¬Mb,c ∧ ¬Ma,c last good value true none
2 Ma,b mean(va, vb) false none
2 ¬Ma,b last good value true none
1 - va false none

VWDT 3 Ta ∧ Tb ∧ Tc ∧Ma,b ∧Mb,c ∧Ma,c mean(va, vb, vc) false none
3 Ta ∧ Tb ∧ Tc ∧Ma,b ∧Mb,c ∧ ¬Ma,c median(va, vb, vc) false none
3 Ta ∧ Tb ∧ Tc ∧Ma,b ∧ ¬Mb,c ∧ ¬Ma,c mean(va, vb) false c value
3 Ta ∧ Tb ∧ Tc ∧ ¬Ma,b ∧ ¬Mb,c ∧ ¬Ma,c last good value true none
3 Ta ∧ Tb ∧ ¬Tc ∧Ma,b mean(va, vb) false c time
3 Ta ∧ Tb ∧ ¬Tc ∧ ¬Ma,b randomly va or vb true c time
3 Ta ∧ ¬Tb ∧ ¬Tc va true b, c time
3 no input last good value true a, b, c time
2 Ta ∧ Tb ∧Ma,b mean(va, vb) false none
2 Ta ∧ Tb ∧ ¬Ma,b randomly va or vb true none
2 Ta ∧ ¬Tb va true b time
2 no input last good value true a,b time
1 Ta va false none
1 no input last good value true a time

Key. In each round of voting, we refer to one of the channels as a, another as b, the last as c, and the time of
the first arrival as t0. For VTV, we define each channel as timely (Ti) if and only if it arrives within 2δ of t0:
Ti ≡ ti ≤ t0 + 2δ. For VWDT, we define each channel as timely (Ti) if and only if Ri arrives before the timer fires:
Ti ≡ ti ≤ t∗ + δ. For all voters, we define two channels as matching if and only if their values differ by less than
2σ: Mi,j ≡ abs(vi − vj) ≤ 2σ.

5

Position
Voter

Angle
Voter

LQR Controller

Position Angle

Position
Sensor1

Reference
position

0

Perfect observer

Bad Bad
Out Out

Evaluation results

Position
Sensor2

Position
Sensor3

Angle
Sensor1

Angle
Sensor2

Angle
Sensor3

Figure 2. Simulation setup

5 Evaluation

We evaluate the three approaches using an inverted
pendulum simulated in Matlab/Simulink. In this sec-
tion, we assess how well VTV meets the first two of
three goals identified in Section 2.3 compared to V and
VWDT. We discuss the third goal in Section 6 but leave
a more detailed evaluation for future work.

5.1 Study Design

Figure 2 illustrates the setup. The pendulum is as-
sumed to be mounted on a cart that moves on a linear
track. The control objective is to move the cart to a ref-
erence position while keeping a pendulum, attached to
its top by a pivot, upright. Triplicated position sensors
monitor the cart’s position along the track. Triplicated
angle sensors monitor the angle between the pendu-
lum and the cart’s top. Voting mask transient errors
in both types of sensor. A linear-quadratic regulator
(LQR) feedback controller produces control output to
the cart’s motors.

The sensors sample position and angle periodically.
Position sensors nominally report a new position at
intervals of 20 millseconds. Angle sensors nominally
report a new position at intervals of 10 milliseconds.
We inject random value and timing errors (delays) into
their outputs to simulate the faults that real sensors
experience. Value and timing errors might have either
(s)mall or (l)arge magnitude and (l)ow or (h)igh prob-
ability or (n)ot at all. To explore the effect of these
variables, we simulated each permutation of

Voter ×ValueMagnitude × TimeMagnitude × Prob

where Voter is the set {VTV ,V ,VWDT},
ValueMagnitude and TimeMagnitude are the set {s, l},
and Prob is the set of value and time error probability
combinations {(l, l), (l, n), (n, l), (h, h), (h, n), (n, h)}.

Value Errors. At each period, each sensor i collects
a sample vi that it will report unless its output is omit-
ted. This sample is computed from the simulator’s
ground truth v∗ as vi = v∗ + avbv, where av controls
whether an error occurs and bv gives its magnitude.
For position sensors, the magnitude is an integer length
unit where the track runs from −9 to 9. For angle sen-
sors, the magnitude is an integer angle in degrees. We
randomly select av = 1 with probability 0% (not at
all), 1% (low), or 10% (high) and 0 otherwise. We ran-
domly select bv from the range [−1..1] (small) or [−5..5]
(large) with uniform probability.

Timing Errors. Each sensor i nominally reports its
sample at time ti unless its output is delayed or omit-
ted. We compute the sample time from the nominal
sample time ts as ti = ts + atbt + j, where at controls
whether an error occurs, bt gives the magnitude of the
delay in milliseconds, and j gives the jitter in millisec-
onds. We randomly select at = 1 with probability 0%
(not at all), 1% (low), or 10% (high) and 0 otherwise.
We randomly select bt from the range [1..100] (small)
or [1..1000] (large) with uniform probability. We ran-
domly select j from {−1, 0, 1} with uniform probability.
As each sensor goes to report its sample, we randomly
decide whether to omit the output with probability 0%
(not at all), 0.1% (low), or 1% (high). If an output is
omitted, the next period’s output is also omitted (i.e.,
we are simulating a two-period sensor outage).

System Parameters. We use value tolerance σ =
0.02 length units for position sensors and σ = 0.02 de-
grees for angle sensors. We use time tolerance δ = 1
milliseconds for both sensor types. Our V and VWDT
voters run δ = 1 millisecond after the nominal time
that the sensors report their samples in each sensor
period. A channel is assumed to be permanently failed
if the voter reports p = 3 consecutive errors from that
channel. Health monitoring and management strategy
resets a permanently failed channel to attempt recovery
which is modeled by not producing output for r = 100
voting periods. VTV is event triggered by design. Vot-
ers feed their consensus value to the controller as soon
as consensus is formed. Due to its event triggered na-
ture, comparing VTV with V and VWDT is not a triv-
ial task. Our main goal in this study is to show the
benefits and drawbacks of each approach by covering
a wide range of different scenarios. We simulated each

6

Table 2. Pendulum MTBF in seconds. Results
show data from a set of simulation runs that
include both time and value errors injected
with high magnitude and probability. We pro-
vide data from simulations with one sensor
(no voting) for comparison.
VTV V VWDT Single sensor

9033.7 2940.8 517.4 4.3

Table 3. Statistical analysis of VTV’s MTBF
performance versus that of V, VWDT, and
a single sensor with no voting. We com-
puted p-values using the Mann-Whitney U
test [16]. We computed a-values using the
Vargha-Delaney a-test [23]. MTBF ratios are
given as the ratio of VTV’s MTBF to that of
the voter in comparison.

VTV Versus p-value a-value MTBF Ratio

V 1.32 · 10−04 0.79 3.07
VWDT 1.21 · 10−10 0.98 17.46
single sensor 3.02 · 10−11 1.00 2108.14

permutation described above for 100 seconds, having
first checked that longer runs produced similar results.

Perfect Observer and Evaluation Metrics. We
use a perfect observer module to evaluate the voters’
Out and Bad outputs by comparing these to the ground
truth of the simulation. An Out signal is counted cor-
rect if and only if it differs from ground truth by no
more than σ. A Bad signal is counted as a true pos-
itive if Bad ∧ correct(Out), a false positive if Bad ∧
¬correct(Out), a true negative if ¬Bad∧¬correct(Out),
or a false negative if ¬Bad ∧ correct(Out).

5.2 Results

System-Level Performance. The simulated in-
verted pendulum remains upright longer using VTV
than when using either V or VWDT. Table 2 compares
the mean time between failures (i.e., pendulum falls)
(MTBF) across approaches. Table 3 presents a statis-
tical analysis showing that VTV’s effect on MTBF is
significant.

Producing Good Out Values. VTV generally sat-
isfies design goal G1 better than either V or VWDT.

0!

2000!

4000!

6000!

8000!

10000!

2 4 6 8 10 >10

Angle error length (milliseconds)

V! V (only timely)! VTV!

0!

400!

800!

1200!

1600!

2! 4! 6! 8! 10! 12! 14! 16! 18! 20! >20!

Position error length (milliseconds)!

VTV!

V!

VWDT!

Figure 3. Distribution of lengths of periods
for which Out was incorrect in the value do-
main (in milliseconds)

Table 4 and Table 5 show that VTV’s Out is more
frequently correct than that of V or VWDT, but the
difference is very subtle. However, Figure 3 also shows
that the majority of the errors produced by VTV are
much shorter than those produced by others. As V
and VWDT works in a time triggered way, they may
not be able to act immediately upon error occurrences
and may need to wait until the next scheduled voting
round. This is the reason of the peak in the distribu-
tion for the errors whose lengths are equal to the period
of the voting task. This means that when VTV out-
puts an incorrect Out , it corrects itself faster than V or
VWDT. Figure 4 shows the distribution of magnitude
of value deviations in Out from the ideal value and
indicates that VTV’s Out values are generally closer
to ground truth than those produced by V or VWDT.
Readers should note that only the last columns for each
respective voter show the outputs that are considered
as incorrect in the value domain (|v∗i −vi| > 0.02). Fig-
ure 5 shows the distribution of incorrect values in Out
for different maximum jitter, caused by different levels
of clock synchronisation, and maximum allowed drift
(δ) scenarios. The figure shows that VTV performs
better than V and VWDT, outputting fewer incorrect
outputs, as the clock synchronisation gets looser.

Minimising False Negative and False Positive
Bad Signals. VTV generally satisfies design goal G2
better than either V or VWDT. Table 6 shows that
VTV’s Bad output contains consistently fewer false
positives and a consistently lower false positive rate
than V or VWDT. However, Table 7 shows VTV’s

7

Table 4. Proportion of simulation time during which each voter’s Out was correct. Figures (in %)
combine data from simulations of all Probability combinations.

Magnitude Position Sensor Angle Sensor
Value Time VTV V VWDT VTV V VWDT

small small 97.82 97.88 97.51 96.52 96.36 96.12
large small 97.67 97.71 98.01 96.84 96.72 96.77
small large 97.79 97.98 97.34 96.90 96.60 96.45
large large 98.08 98.03 97.80 97.12 96.68 96.52

Table 5. Proportion of simulation time during which each voter’s Out was correct. Figures (in %)
combine data from small and large magnitude simulations.

Errors Injected Position Sensor Angle Sensor
Value Time Probability VTV V VWDT VTV V VWDT

X low 99.35 99.45 99.48 98.95 99.08 99.12
X low 99.37 99.46 99.47 99.02 99.03 99.09

X X low 99.34 99.40 99.47 99.08 98.97 99.10

X high 98.70 98.79 98.76 98.11 98.05 98.04
X high 98.24 98.06 98.73 97.29 96.68 98.11

X X high 96.34 96.40 95.87 94.61 94.21 93.82

0"

2000"

4000"

6000"

8000"

0! 1! 2! 3!

VTV!
V!
VWDT!

0!

10000!

20000!

30000!

40000!
VTV!
V!
VWDT!

Figure 4. Distribution of magnitudes of value
deviation in Out from the ideal value (in de-
grees)

higher false negative rate. This is partly due to VTV’s
better Out values and partly due to VTV missing
slightly more of its incorrect Out values (i.e., FN +
FP is lower for VTV in almost every case).

Our simulations show that, for the simulated sys-

0"

2000"

4000"

6000"

8000"

0! 1! 2! 3!

VTV!
V!
VWDT!

0!

10000!

20000!

30000!

40000!
VTV!
V!
VWDT!

Figure 5. Distribution of incorrect Out with re-
spect to maximum allowed clock drift (in mil-
liseconds)

tem, VTV outperforms V and VWDT in terms of
keeping the pendulum upright longer. The simulations
show mixed results for the simulated voters in satisfy-
ing the voter design goals G1 and G2 defined in Sec-
tion 2.3 with a slight advantage for VTV.

8

Table 6. Bad false positives with respect to error magnitude. FP and TN figures are given as percent-
ages of total voter outputs. FP ratio given in percent. Figures combine data from simulations of all
Probability combinations.

Mag. VTV V VWDT FP Ratio
V/T Sensor FP TN FP TN FP TN VTV V VWDT

s/s angle 0.9 98.1 1.9 97.5 4.6 94.4 0.9 1.9 4.6
s/l angle 0.9 98.2 1.7 97.6 4.4 94.7 0.9 1.7 4.4
l/s angle 1.0 98.1 1.9 97.6 4.2 94.9 1.0 1.9 4.3
l/l angle 1.1 98.1 2.0 97.4 4.7 94.3 1.1 2.0 4.8

s/s position 1.0 98.4 1.4 98.2 4.0 95.2 1.0 1.4 4.0
s/l position 1.2 98.2 1.6 98.0 4.4 94.8 1.2 1.6 4.5
l/s position 1.0 98.2 1.7 97.9 4.1 95.4 1.0 1.7 4.1
l/l position 1.0 98.6 2.2 97.5 4.2 95.2 1.0 2.2 4.2

Table 7. Bad false negatives with respect to error magnitude. TP and FN figures are given as per-
centages of total voter outputs. FN ratio given in percent. Figures combine data from simulations of
all Probability combinations.

Mag. VTV V VWDT FN Ratio
V/T Sensor TP FN TP FN TP FN VTV V VWDT

s/s angle 0.27 0.81 0.42 0.23 0.88 0.13 75.3 35.7 12.9
s/l angle 0.17 0.75 0.49 0.21 0.82 0.13 81.4 30.0 13.8
l/s angle 0.19 0.75 0.40 0.14 0.76 0.10 80.1 26.2 11.2
l/l angle 0.17 0.67 0.45 0.11 0.86 0.09 80.1 19.6 9.5

s/s position 0.10 0.52 0.26 0.10 0.66 0.12 83.9 27.8 15.4
s/l position 0.08 0.53 0.31 0.11 0.69 0.08 86.9 26.2 10.4
l/s position 0.16 0.59 0.35 0.11 0.47 0.05 78.7 23.9 9.6
l/l position 0.15 0.28 0.27 0.06 0.66 0.03 65.1 18.2 4.3

6 Conclusions

In this paper, we report on a simulation-based eval-
uation VTV’s ability to produce correct output in the
face of errors and to accurately report bad outputs.
Our results show that, most of the time, VTV out-
performs periodic voting in the value domain with and
without watchdog timers. VTV restores service more
quickly after errors and falsely signals bad output less
frequently than either V or VWDT. Using VTV, our
simulated inverted pendulum remains upright longer
despite the injected value and time errors. Even though
the total durations during which the voters’ outputs
were incorrect were quite similar, VTV’s errors were
more in number than those of V and VWDT but they
were much shorter. We believe that this is the main
advantage of using VTV and the fundamental reason
why the pendulum remains upright longer.

We present MTBF data for only one configuration

of errors because time constraints precluded simulating
each permutation for a sufficient duration. To over-
come these constraints, we attempted to run the simu-
lations with higher error likelihood. When we injected
only value errors, all voters produced similar results
due to similarity of the voting approaches in the value
domain alone. When we injected only timing errors
with a higher error rate, the effect of repeated health-
management resets seemed to dominate the effects of
the voters’ accuracy. We leave precise assessment of
MTBF under these other conditions for for future work.

Because it is event triggered, VTV can pass data on
to consumers faster than periodic designs. However, for
the same reason, VTV has more jitter in its outputs. If
there are multiple timing errors in its inputs, it might
even deliver multiple outputs or no output in a given
period. Our assessment suggests that its advantages
outweigh these drawbacks.

9

References

[1] A. Avižienis, J.-C. Laprie, B. Randell, and
C. Landwehr. Basic concepts and taxonomy of de-
pendable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33,
January–March 2004.

[2] H. Aysan, S. Punnekkat, and R. Dobrin. VTV —
A voting strategy for real-time systems. In Proc. of
the IEEE Pacific Rim Intl. Symposium on Dependable
Computing, pages 56–63, 2008.

[3] S. Bak, D. Chivukula, O. Adekunle, M. Sun, M. Cac-
camo, and L. Sha. The system-level simplex architec-
ture for improved real-time embedded system safety.
In IEEE Real-Time and Embedded Technology and Ap-
plications Symposium, pages 99–107, 2009.

[4] I. Bate and A. Burns. An integrated approach to
scheduling in safety-critical embedded control sys-
tems. Real-Time Systems Journal, 25(1):5–37, 2003.

[5] D. M. Blough and G. F. Sullivan. A comparison of
voting strategies for fault-tolerant distributed systems.
In Proc. of the 9th Symposium on Reliable Distributed
Systems, pages 136–145, October 1990.

[6] A. Bondavalli and L. Simoncini. Failure classification
with respect to detection. In Proc. of the 2nd IEEE
Workshop on Future Trends in Distributed Computing,
pages 47–53, 1990.

[7] S. S. Brilliant, J. C. Knight, and N. G. Leveson.
The consistent comparison problem in N-version soft-
ware. IEEE Transactions on Software Engineering,
15(11):1481–1484, November 1989.

[8] G. J. Davis. An analysis of redundancy manage-
ment algorithms for asynchronous fault tolerant con-
trol systems. Technical Memorandum NASA-TM-
100007, National Aeronautics and Space Administra-
tion, September 1987.

[9] V. De Florio, G. Deconinck, and R. Lauwereins. The
EFTOS voting farm: A software tool for fault mask-
ing in message passing parallel environments. In Proc.
of the 24th Euromicro Conference, pages 379–386, Au-
gust 1998.

[10] F. Di Giandomenico and L. Strigini. Adjudicators
for diverse-redundant components. In Proc. of the
9th Symposium on Reliable Distributed Systems, pages
114–123, October 1990.

[11] A. Grnarov, J. Arlat, and A. Avižienis. Modeling of
software fault-tolerance strategies. In Proc. of the 11th
Annual Pittsburgh Modeling and Simulation Confer-
ence, pages 571–578, May 1980.

[12] H. Kopetz. Fault containment and error detection in
the time-triggered architecture. In Proc. of the 6th
Intl. Symposium on Autonomous Decentralized Sys-
tems, pages 139–146, April 2003.

[13] G. Latif-Shabgahi, J. M. Bass, and S. Bennett. A tax-
onomy for software voting algorithms used in safety-
critical systems. IEEE Transactions on Reliability,
53(3):319–328, September 2004.

[14] P. R. Lorczak, A. K. Caglayan, and D. E. Eckhardt.
A theoretical investigation of generalized voters for
redundant systems. In Proc. of the 19th Intl. Sym-
posium on Fault-Tolerant Computing, pages 444–451,
June 1989.

[15] R. E. Lyons and W. Vanderkulk. The use of triple-
modular redundancy to improve computer reliability.
IBM Journal of Research and Development, 6(2):200–
209, April 1962.

[16] H. B. Mann and D. R. Whitney. On a test of whether
one of two random variables is stochastically larger
than the other. The Annals of Mathematical Statistics,
18(1):50–60, 1947.

[17] D. Powell. Failure mode assumptions and assumption
coverage. In Proc. of the 22nd Intl. Symposium on
Fault-Tolerant Computing, pages 386–395, 1992.

[18] K. Ravindran, K. A. Kwiat, and A. Sabbir. Adapting
distributed voting algorithms for secure real-time em-
bedded systems. In Proc. of the 24th Intl. Conference
on Distributed Computing Systems Workshops, pages
347–353, March 2004.

[19] K. Ravindran, K. A. Kwiat, A. Sabbir, and B. Cao.
Replica voting: A distributed middleware service for
real-time dependable systems. In Proc. of the 1st Intl.
Conference on Communication System Software and
Middleware, pages 1–7, 2006.

[20] K. G. Shin and J. W. Dolter. Alternative majority-
voting methods for real-time computing systems.
IEEE Transactions on Reliability, 38(1):58–64, April
1989.

[21] M. J. Squair. Averages, voting and system robustness.
Post to the author’s blog (criticaluncertainties.
com), January 2011.

[22] N. Storey. Safety Critical Computer Systems. Pearson
Education Limited, Essex, England, 1996.

[23] A. Vargha and H. D. Delaney. A critique and improve-
ment of the CL common language effect size statistics
of McGraw and Wong. Journal of Educational and
Behavioral Statistics, 25(2):101–132, 2000.

[24] J. von Neumann. Probabilistic logics and the synthe-
sis of reliable organisms from unreliable components.
Automata Studies, pages 43–98, 1956.

10

