
Mälardalen University Press Doctoral Thesis
No.148

From Models to Code and
Back: A Round-trip Approach
for Model-driven Engineering

of Embedded Systems

Federico Ciccozzi

January 2014

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden

Copyright c© Federico Ciccozzi, 2014
ISSN 1651-4238
ISBN 978-91-7485-129-8
Printed by Mälardalen University, Västerås, Sweden

Abstract

The complexity of modern systems is continuously growing, thus demanding
novel powerful development approaches. In this direction, model-driven and
component-based software engineering have reached the status of promising
paradigms for the development of complex systems. Moreover, in the embed-
ded domain, their combination is believed to be helpful in handling the ever-
increasing complexity of such systems. However, in order for them and their
combination to definitively break through at industrial level, code generated
from models through model transformations should preserve system properties
modelled at design level.

This research work focuses on aiding the preservation of system properties
throughout the entire development process across different abstraction levels.
Towards this goal, we provide the possibility of analysing and preserving sys-
tem properties through a development chain constituted of three steps: (i) gen-
eration of code from system models, (ii) execution and analysis of generated
code, and (iii) back-propagation of analysis results to system models. With the
introduction of steps (ii) and (iii), properties that are hard to predict at mod-
elling level are compared with runtime values and this consequently allows the
developer to work exclusively at modelling level thus focusing on optimising
system models with the help of those values.

i

Sammanfattning

Denna doktorsavhandling presenterar nya och förbättrade tekniker för modell-
driven och komponentbaserad utveckling av programvara. Syftet är att bevara
systemegenskaper, som specificerats i modeller, genom de olika stadierna av
utvecklingen och när modeller översätts mellan olika abstraktionsnivåer och till
kod. Vi introducerar möjligheter att studera och bevara systemets egenskaper
genom att skapa en kedja i tre steg som: (i) genererar kod från systemmodellen,
(ii) exekverar och analyserar den genererade koden och (iii) slutligen återkop-
plar analysvärden till systemmodellen. Introduktionen av steg (ii) och (iii) gör
det möjligt att genomföra en detaljerad analys av egenskaper som är svåra, eller
till och med omöjliga, att studera med hjälp av endast systemmodeller.

Fördelen med det här tillvägagångssättet är att det förenklar för utvecklaren
som slipper arbeta direkt med kod för att ändra systemegenskaper. Istället kan
utvecklaren arbeta helt och hållet med modeller och fokusera på optimering
av systemmodeller med hjälp av analysvärden från testkörningar av systemet.
Vi är övertygade om att denna typ av teknik är nödvändig att utveckla för att
stödja modelldriven utveckling av programvara eftersom dagens tekniker inte
möjliggör för systemutvecklare att specificera, analysera och optimera syste-
megenskaper på modellnivå.

iii

Prefazione

La continua crescita in complessitá dei sistemi software moderni porta alla
necessitá di definire nuovi e piú efficaci approcci di sviluppo. In questa di-
rezione, metodi basati su modelli (model-driven engineering) e componenti
(component-based software engineering) sono stati riconosciuti come promet-
tenti nuove alternative per lo sviluppo di sistemi complessi. Inoltre l’interazione
tra loro é ritenuta particolarmente vantaggiosa nella gestione nello sviluppo di
sistemi integrati. Affinché questi approcci, cosí come la loro interazione, pos-
sano definitivamente prendere piede in campo industriale, il codice generato
dai modelli tramite apposite transformazioni deve essere in grado di preservare
le proprietá di sistema, sia funzionali che extra-funzionali, definite nei modelli.

Il lavoro di ricerca presentato in questa tesi di dottorato si focalizza sul
preservamento delle proprietá di sistema nell’intero processo di sviluppo e at-
traverso i diversi livelli di astrazione. Il risultato principale é rappresentato
da un approccio automatico di round-trip engineering in grado di sostenere il
preservamento delle proprietá di sistema attraverso: 1) generazione automat-
ica di codice, 2) monitoraggio e analisi dell’esecuzione del codice generate su
piattaforme specifiche, e 3) offrendo la possibilitá di propagare verticalmente
i risultati da runtime al livello di modellazione. In questo modo, quelle pro-
prietá che possono essere stimate staticamente solo in maniera approssimativa,
vengono valutate in rapporto ai valori ottenuti a runtime. Ció permette di ot-
timizzare il sistema a livello di design attraverso i modelli, piuttosto che man-
ualmente a livello di codice, per assicurare il preservamento degli proprietá di
sistema d’interesse.

v

Acknowledgements

There are many people to thank for making the path towards this doctoral thesis
possible and pleasant. I would like to start with my family that always believed
in me and supported, even economically, my decision to move to Sweden for
pursuing my objectives; without them I would not have been able to follow my
instinct and achieve this result.

A special thanks goes to my main supervisor Mikael Sjödin and assistant
supervisor Antonio Cicchetti that have continuously supported me, my curios-
ity and talkativeness, helping and driving me for achieving very satisfactory
results. I would like to thank all my colleagues at MDH, especially at IDT,
for all the moments, both fun and constructive, we spent together hoping that
many more are to come in the near future.

Being able to stand me and my vim, I would like to thank my office room
mate Mehrdad. Many friends, both in Italy and Sweden, have believed in me
and made it possible for me to fully enjoy every moment in my free time spent
with them; a special thanks goes to all of them. Last but not least, thanks for
standing by my side, believing in me and sharing her everyday life with me
goes to my girlfriend Julia.

Federico Ciccozzi
Västerås, December, 2013

vii

List of Publications

Main Contributing Publications

Automatic Synthesis of Heterogeneous CPU-GPU Embedded Applications from

a UML Profile, Federico Ciccozzi, 6th International Workshop on Model Based
Architecting and Construction of Embedded Systems (ACES-MB) at MOD-
ELS, Miami, USA, September, 2013.

Towards Code Generation from Design Models for Embedded Systems on Het-

erogeneous CPU-GPU Platforms, Federico Ciccozzi, IEEE International Con-
ference on Emerging Technology and Factory Automation (ETFA) – Work in
Progress Session, IEEE, Cagliari, Italy, September, 2013.

Towards Translational Execution of Action Language for Foundational UML,
Federico Ciccozzi, Antonio Cicchetti, Mikael Sjödin, Proceedings of the 39th
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), IEEE, Santander, Spain, September, 2013.

An Automated Round-trip Support Towards Deployment Optimization in Comp-

onent-based Embedded Systems, Federico Ciccozzi, Mehrdad Saadatmand, An-
tonio Cicchetti, Mikael Sjödin, Proceedings of the 16th International ACM
SIGSOFT Symposium on Component Based Software Engineering (CBSE),
Vancouver, Canada, June, 2013.

From Models to Code and Back: Correct-by-construction Code from UML and

ALF, Federico Ciccozzi, ACM Student Research Competition (SRC) at the In-
ternational Conference of Software Engineering (ICSE), ACM, San Francisco,
USA, May, 2013.

ix

x

Exploiting UML Semantic Variation Points to Generate Explicit Component

Interconnections in Complex Systems, Federico Ciccozzi, Antonio Cicchetti,
Mikael Sjödin, Proceedings of the International Conference on Information
Technology: New Generations (ITNG), IEEE, Las Vegas, USA, April, 2013.

Full Code Generation from UML Models for Complex Embedded Systems,
Federico Ciccozzi, Antonio Cicchetti, Mikael Sjödin, Second International
Software Technology Exchange Workshop (STEW) 2012, Swedsoft, Kista,
Stockholm (Sweden), November, 2012.

Round-Trip Support for Extra-functional Property Management in Model-Dri-

ven Engineering of Embedded Systems, Federico Ciccozzi, Antonio Cicchetti,
Mikael Sjödin, Journal of Information and Software Technology (INFSOF),
Elsevier, 2012.

Enhancing the Generation of Correct-by-construction Code from Design Mod-

els for Complex Embedded Systems, Federico Ciccozzi, Mikael Sjödin, IEEE
International Conference on Emerging Technology and Factory Automation
(ETFA) - Work in Progress Session, IEEE, Krakow, Poland, July, 2012

Generation of Correct-by-Construction Code from Design Models for Embed-

ded Systems, Federico Ciccozzi, Antonio Cicchetti, Mikael Krekola, Mikael
Sjödin, Work-In-Progress at IEEE International Symposium on Industrial Em-
bedded Systems (SIES), Västerås, Sweden, 2011.

Toward a Round-Trip Support for Model-Driven Engineering of Embedded

Systems, Federico Ciccozzi, Antonio Cicchetti, Mikael Sjödin, EUROMICRO
Conference on Software Engineering & Advanced Applications (SEAA), Oulu,
Finland, August, 2011. Best Paper Award.

Evolution Management of Extra-Functional Properties in Component Based

Embedded Systems, Antonio Cicchetti, Federico Ciccozzi, Thomas Leveque,
Séverine Sentilles, International ACM SIGSOFT Symposium on Component
Based Software Engineering (CBSE), Boulder, Colorado (USA), June, 2011.

xi

Related Publications

Towards a Novel Model Versioning Approach based on the Separation between

Linguistic and Ontological Aspects, Antonio Cicchetti, Federico Ciccozzi, In-
ternational Workshop on Models and Evolution (ME) at MODELS, Miami,
USA, September, 2013.

Towards Migration-Aware Filtering in Model Differences Application, Fed-
erico Ciccozzi, Antonio Cicchetti, International Workshop on Models and Evo-
lution (ME) at MODELS, Innsbruck, Austria, October, 2012.

A hybrid approach for multi-view modeling, Antonio Cicchetti, Federico Cic-
cozzi, Thomas Leveque, Journal of Electronic Communications of the EASST,
EASST, June, 2012.

A Solution for Concurrent Versioning of Metamodels and Models, Antonio Ci-
cchetti, Federico Ciccozzi, Thomas Leveque, Journal of Object Technology
(JOT), AITO, August, 2012.

CHESS: a Model-Driven Engineering Tool Environment for Aiding the Devel-

opment of Complex Industrial Systems, Antonio Cicchetti, Federico Ciccozzi,
Silvia Mazzini (Intecs SpA), Stefano Puri (Intecs SpA), Marco Panunzio (Uni-
versity of Padova), Tullio Vardanega (University of Padova), Alessandro Zovi
(University of Padova), 27th International Conference on Automated Software
Engineering (ASE), Essen, Germany, September, 2012.

Supporting Incremental Synchronization in Hybrid Multi-View Modeling, An-
tonio Cicchetti, Federico Ciccozzi, Thomas Leveque, ACM/IEEE International
Conference on Model Driven Engineering Languages & Systems (MODELS),
Wellington, New Zealand, October, 2011. Best Paper Award.

A Hybrid Approach for Multi-View Modeling, Antonio Cicchetti, Federico Cic-
cozzi, Thomas Leveque, International Workshop on Multi-Paradigm Modeling
(MPM) at MODELS, Wellington, New Zealand, October, 2011.

On the concurrent Versioning of Metamodels and Models: Challenges and

possible Solutions, Antonio Cicchetti, Federico Ciccozzi, Thomas Leveque,
Alfonso Pierantonio, International Workshop on Model Comparison in Prac-
tice (IWCMP), Zurich, Switzerland, June, 2011.

xii

An Open-Source Pivot Language for Proprietary Tools Chaining, Antonio Cic-
chetti, Federico Ciccozzi, Stefano Cucchiella, International Workshop on Mod-
el-Based Development for Computer-Based Systems - Covering Domain and
Design Knowledge in Models (ECBS-MBD), Las Vegas, Nevada, USA, April,
2011.

CHESS Tool presentation, Antonio Cicchetti, Federico Ciccozzi, Mikael Kreko-
la, Silvia Mazzini, Marco Panunzio, Stefano Puri, Carlo Santamaria, Tullio
Vardanega, Alessandro Zovi, TOPCASED Days, Toulouse, France, February,
2011.

Automating Test Cases Generation: From xtUML System Models to QML Test

Models, Federico Ciccozzi, Antonio Cicchetti, Toni Siljamäki, Jenis Kavadiya,
Workshop on Model-based Methodologies for Pervasive and Embedded Soft-
ware (MOMPES) at ASE, Antwerp, Belgium, September, 2010.

Other Publications

Multi-dimensional Assessment of Risks in a Distributed Software Development

Course, Ivana Bosnic (University of Zagreb), Federico Ciccozzi, Igor Cavrak
(University of Zagreb), Marin Orlic (FER, University Zagreb, Croatia), Raf-
faela Mirandola (Politecnico di Milano), CTGDSD Workshop at the Inter-
national Conference on Software Engineering (ICSE), ACM, San Francisco,
USA, May, 2013.

Integrating Wireless Systems into Process Industry and Business Management,
Federico Ciccozzi, Antonio Cicchetti, Tiberiu Seceleanu, Johan Åkerberg, Lars
Eric Carlsson, Jerker Delsing, International Conference on Emerging Technol-
ogy and Factory Automation (ETFA), Bilbao, Spain, September, 2010.

Performing a project in a Distributed Software Development Course: Lessons

Learned, Federico Ciccozzi, Ivica Crnkovic, International Conference on Glob-
al Software Engineering (ICGSE), Princeton, New Jersey, USA, August, 2010.

To my family

The problem in this business isn’t to keep people from

stealing your ideas; it’s making them steal your ideas!

Howard H. Aiken

Contents

1 Introduction 1

1.1 Basic Concepts . 3
1.2 Research Goal and Challenges 8
1.3 Thesis Contributions . 10
1.4 Research Method . 11
1.5 Thesis Outline . 14

2 Core Artefacts 17

2.1 Instance Metamodel . 17
2.2 Intermediate Metamodel . 18
2.3 Back-propagation Metamodel 22
2.4 Summary . 24

3 Round-trip Approach for Model-driven Development of Embed-

ded Systems: an Overview 27

4 A Running Example: the AAL2 Subsystem 31

5 Exploiting UML Semantic Variation Points to Generate Explicit

Component Instances 35

5.1 Assumptions . 37
5.2 Definition of Semantic Rules 38
5.3 Relation with Instance Metamodel 40
5.4 Generation Process . 40
5.5 Summary and Related Work 45

xvii

xviii Contents

6 Generating Intermediate Concepts 47

6.1 Traceability and Back-propagation Model 49
6.2 Summary and Related Work 52

7 Completing Intermediate Model with Behavioural Descriptions in

ALF 53

7.1 Transforming ALF to Intermediate Model 54
7.2 Applying the Solution . 55
7.3 Summary and Related Work 56

8 Generating Full-fledged C++ from Intermediate Model 57

8.1 Deployment and Platform Configurations 60
8.2 Summary . 62

9 Code Execution Monitoring and Back-propagation 63

9.1 Monitoring and Back-propagation at Function Level in Linux . 65
9.2 Monitoring and Back-propagation at Component Level in OSE 69
9.3 Summary and Related Work 73

10 Validation 77

11 Discussion 81

11.1 Research Challenges and Solutions 81
11.2 General Issues . 84

12 Conclusions and Future Work 91

Bibliography 97

A Intermediate Metamodel in Ecore 107

B QVTo Transformation for If Statement 111

C Coverage of ALF Expressions and Statements 113

D Generated C++ Files 115

Chapter 1

Introduction

The intricacy of complex embedded systems demands proper development
mechanisms able to effectively deal with it. Towards this purpose, Model-
Driven Engineering (MDE) [1] and Component-Based Software Engineering
(CBSE) [2] have earned consideration for their ability to mitigate software-
development complexity by tackling different issues with dedicated solutions.
More specifically, the former shifts the focus of the development from hand-
written code to models from which the implementation is meant to be automat-
ically generated through the exploitation of model transformations. The latter
breaks down the set of desired features and their intricacy into smaller replace-
able sub-modules, namely components, starting from which the application can
be built-up and incrementally enhanced. Moreover, their combination has been
recognised as an enabler for them to definitely break through for industrial de-
velopment of embedded systems [3].

Among the others, one of the core goals of MDE is the provision of au-
tomated code generation from design models; however, this goal is too often
seen as the very final step of an MDE approach [4]. On the one hand, preser-
vation of extra-functional properties (EFPs) throughout the development pro-
cess by means of appropriate description and verification is of crucial impor-
tance since it allows to reduce final product verification and validation effort
and costs by providing correctness-by-construction, which opposes the more
costly correctness-by-correction typical of code-centric approaches. On the
other hand, certain EFPs specified at modelling level are difficult to determine
without code generation and execution [5]. That is the reason for which these
properties need to be measured at code level through monitoring or analysis

1

2 Chapter 1. Introduction

activities [6]. This would be the case, e.g., of performance-related EFPs, that
often only emerge in a running product. As an example, let us consider two
sorting algorithms that speed up a program because they use a big portion of
the main memory. Although both increase the performance in isolation and
they have no direct functional interaction, in combination they may degrade
the overall performance because both share the same (too small) main mem-
ory [7].

The outcome of this research work is a novel model-driven technique that
aids the preservation of system properties from models to generated code. On
the one side, one could argue that MDE is highly suitable for the manage-
ment of system properties thanks to the promotion of their modelling and early
analysis. On the other side, very little has been achieved, or even attempted,
in practice when it comes to ensuring preservation of system properties (es-
pecially EFPs) when transforming models for, e.g., code generation purposes.
To the best of our knowledge, no work has previously introduced the notion
of back-propagation across different abstraction levels (i.e., from runtime to
model) to evaluate preservation of EFPs from models to generated code. The
proposed technique is represented by a round-trip approach which consists of
the combination of the following four steps:

• Modelling: the first step is represented by modelling the system through
a structural design in terms of components, a behavioural description by
means of state-machines and action code, as well as a deployment model
describing the allocation of software components to operating system’s
processes;

• Code generation: from the information contained in the design model,
we automatically generate full functional code. Note that we refer to
generated code as full or full-fledged if it is entirely generated in an auto-
mated manner and does not require manual tuning in order to be executed
on the selected platform;

• Monitoring: after the code has been generated we monitor its execution
on the target platform and measure selected EFPs;

• Back-propagation: at this point, gathered values are back-propagated to
the modelling level and, after their evaluation, the design model can be
manually tuned to generate, e.g., more resource-efficient code.

Moreover, we show how the approach can be employed in order to use the
measurements gathered at system implementation (or runtime) level for de-
ployment assessment at modelling level. Also in this case, no previous attempt

1.1 Basic Concepts 3

has been found in the literature that employs measurements gathered at system
implementation level to assist the developer in taking deployment decisions at
modelling level.

1.1 Basic Concepts

In this section we introduce the basic concepts upon which we build our re-
search.

Model-Driven Engineering and Component-Based Software Engineering.

The core concept in Model-Driven Engineering (MDE) is the model, consid-
ered as an abstraction of the system under development. Rules and constraints
for building models have to be properly described through a corresponding lan-
guage definition and in this respect, a metamodel describes the set of available
concepts and well-formedness rules a correct model must conform to [8].

Following the MDE paradigm, a system is developed by designing models
and refining them starting from higher and moving to lower levels of abstrac-
tion until code is generated; refinements are performed through transformations
between models. A model transformation translates a source model to a target
model while preserving their well-formedness [9]. More specifically, in this
research work we exploit the following kinds of model transformation:

• Model-to-model (M2M): translates between source and target models,
which can be instances of the same or different languages, often ex-
ploiting syntactic typing of variables and patterns. Different approaches
exist: direct manipulation, relational, graph-based, structure-driven and
hybrid. In this research work we exploit mainly hybrid approaches com-
bining direct and relational manipulations;

• Model-to-text (M2T): a particular case of M2M where the target arte-
fact is represented by text. Two main approaches exist: template-based,
where a template represents the target text with holes for variable parts
computed at runtime with metacode, and visitor-based, where simple
visitor mechanisms are defined to traverse the internal representation
of a model and write text to a text stream. In our solution we exploit
template-based mechanisms for the generation of code from models;

• Text-to-model (T2M): in this case the transformation operates in the op-
posite direction as the M2T, generating a model from a textual represen-

4 Chapter 1. Introduction

tation. In this research work we mainly utilize T2M transformations for
in-place modifications.

Any of these types of model transformation may be defined as in-place, mean-
ing that source (or one of the sources) and target are represented by the same
model; in this case, the transformation provides as output an updated version
of (one of) the model(s) in input. Most of the transformations described in this
thesis, except for the in-place transformations which are by nature endogenous,
are exogenous meaning that they operate between artefacts expressed using dif-
ferent languages [9].

As base for our work we employ the increasingly popular synergy of MDE
and Component-Based Software Engineering (CBSE). Since different nuances
of the CBSE-related terminology can be found in the literature, in this work we
exploit the component-based design pattern as prescribed by the UML Super-
structure [10], leaving other specific aspects related to CBSE as future direc-
tion (as explained in Section 11.2). That is to say, a system is modelled as an
assembly of components communicating via required and provided interfaces
exposed by ports, where a port represents an interaction between a classifier
instance and its internal or external environment. Additionally, features owned
by required interfaces are meant to be offered by one or more instances of the
owning classifier to one or more instances of the classifiers in its internal or
external environment.

Extra-functional Properties, Monitoring and Preservation. In this work,
as well as in the related publications, we employ the term Extra-functional

Property (EFP) as synonym for Non-functional Property. Hence, for EFP we
intend those properties that define the overall quality attributes of the system.
Moreover, EFPs can set restrictions on the product being developed, as well
as on the development process itself, by specifying constraints that must be
met. Examples of EFPs include safety, security, usability, reliability and per-
formance.

A fairly wide assortment of different approaches devoted to the measure-
ment of EFPs at system implementation level exists. In this work we focus on
runtime monitoring, that represents a method to observe the execution of a sys-
tem in order to determine whether its actual behaviour is in compliance with
the intended one. In comparison to other verification techniques such as static
analysis, model checking, testing and theorem proving which are used mainly
to determine “universal correctness” of software systems, runtime monitoring
focuses on each instance and current execution of a system [11].

1.1 Basic Concepts 5

Preservation of system properties entails the ability to ensure that what is
defined at modelling level both functionally and extra-functionally is actually
reflected in the generated implementation. To achieve that, the research de-
scribed in this thesis focused on providing a complete model-driven mechanism
for code generation and back-propagation of monitoring results from code exe-
cution. In this work we consider the following performance-related EFPs: exe-
cution time, response time, heap and stack memory usage. The choice of EFPs
was driven by the monitoring possibilities provided by the target platforms as
well as the modelling concepts able to host the back-propagated values.

Correctness-by-construction. For correctness-by-construction we refer to
the ability to demonstrate or argue software correctness in terms of the ap-
proach exploited to generate it. A correct-by-construction approach means that
the requirements are more likely to be met, the system is more likely to be the
correct system to meet the requirements, the implementation is more likely to
be defect-free, and upgrades are more likely to retain the original correctness
properties. In this respect it is worth noting that the notion of correctness refers,
in this research work, to the adherence of the generated code to what was spec-
ified at model level, once the generation process (i.e., model transformations)
has been validated [12]. Nonetheless the correctness of the user solution in the
modelling space must be demonstrated for every model, for instance by adopt-
ing model verification methods. Possible model-based analysis techniques can
be employed for this purpose, even though the verification of the models goes
beyond the scope of our contribution.

CHESS Modelling Language. As reference modelling language in this work
we employ the cross-domain Composition with Guarantees for High-integrity
Embedded Software Components Assembly (CHESS) [13] modelling language
(CHESS-ML) [14]. The CHESS-ML has been defined as a UML [15] profile,
including tailored subsets of the SysML [16] profile, for requirements defi-
nition, and the MARTE [17] profile for extra-functional as well as deploy-
ment modelling. The CHESS tool environment has been developed as a set of
Eclipse plugins on top of MDT Papyrus [18], an open source integrated envi-
ronment for editing EMF [19] models and particularly supporting UML and
related profiles such as SysML and MARTE, on the Eclipse platform.

CHESS-ML allows the specification of a system together with some EFPs
such as predictability, dependability, and security. Moreover, it supports a de-
velopment methodology expressly based on separation of concerns; distinct

6 Chapter 1. Introduction

design views address distinct concerns. In addition, CHESS actively supports
component-based development. The CHESS component model is conceived
in a manner that permits domain-specific needs to be addressed by adding spe-
cialization features to a domain-neutral core. In this manner CHESS intends to
support a variety of application domains, the common character of which is to
embrace model-driven engineering solutions for the development of depend-
able and predictable real-time embedded systems. According to the CHESS
methodology, functional and extra-functional characteristics of the system are
defined in specific separated views as follows:

• Functional: the development style follows the component-based pattern
where each component is equipped with provided and required interfaces
realised via ports and with state-machines and other standard UML dia-
grams to express functional behaviour. Regarding state-machines, which
we employ in this research work for modelling behavioural aspects, nei-
ther hierarchical nested states nor orthogonal regions [10] are consid-
ered. Moreover, the OMG Action Language for Foundational UML
(ALF) [20] is used to enrich the behavioural description. In this way,
we reach the necessary expressive power to be able to generate 100% of
the implementation directly from the models;

• Extra-functional: in compliance with the principle of separation of con-
cerns adopted in CHESS, the functional models are decorated with extra-
functional information thereby ensuring that the definition of the func-
tional entities is not altered.

Moreover, the set of design views is completed by: Requirement View, used
to model the software requirements and associate them to other model entities,
Deployment View, which supports the modelling of the target execution plat-
form and software to hardware components allocations, Analysis View, that is a
set of subviews in which the user can model the analysis contexts used as input
for the analysis tools. The latter is split in two distinct views, each specialised
for a given type of analysis: (i) dependability (Dependability Analysis view)
and (ii) predictability (RT Analysis view). Most importantly, for each tech-
nique back-propagation features have been implemented for enriching the de-
sign models with the analysis results, thus enabling a multi-perspective extra-
functional evaluation of the system.

The distinct design views are automatically generated by the tool as UML
packages in the Papyrus Model Explorer when the user creates a new CHESS
model. Switching from a design view to another causes the change of a view

1.1 Basic Concepts 7

indicator (set of different colours each representing a different view) placed on
the main toolbar. The user can even switch from functional to extra-functional
view and thereby model extra-functional definitions by means of decorations
of already modelled functional entities. Switching among views affects also
the model entities available in a customised CHESS palette; this enforces sep-
aration of concerns by driving the user in choosing among a set of entities
(changing from view to view) in each of the different design phases.

Concerning model-based analysis, state-based, Failure Propagation Trans-
formation Calculus (FPTC), Failure Mode Effects & Criticality (FMECA),
Failure Mode and Effect (FMEA) and Fault Tree (FTA) are the means through
which CHESS supports different kinds of evaluation of the dependability at-
tributes of the system [21, 22]. Moreover, schedulability analysis is provided
to verify whether the timing requirements set on interfaces can be met [23]. The
extraction of information from the user model (i.e., generation of a Platform-
Specific Model, PSM, or a Schedulability Analysis Model, SAM) and genera-
tion of the input for the analysis tools are automated; the results of the analysis
are propagated back to the design model as read-only attributes of the appro-
priate design entities. Thanks to the full automation, as well as the code gen-
eration and monitoring mechanisms described in this work, the analysis can be
iterated at will until the designer is satisfied with the result.

OSE Real-Time Operating System. OSE is a commercial and industrial
real-time operating system developed by Enea1 which has been designed from
the ground specifically for fault-tolerant and distributed systems. It is widely
adopted mainly in telecommunication domain for systems ranging from mo-
bile phones to radio base stations [24]. OSE provides the concept of direct
and asynchronous message passing for communication and synchronisation be-
tween tasks, and its programming model is based on this concept. This allows
tasks to run on different processors or cores, utilising the same message-based
communication model as on a single processor. This programming model pro-
vides the advantage of avoiding the use of shared memory among tasks. In
OSE, the runnable real-time entity equivalent to a task is called process, and
the messages that are passed between processes are referred to as signals (thus,
the terms process and task in this thesis can be considered synonyms).

1http://www.enea.com

8 Chapter 1. Introduction

1.2 Research Goal and Challenges

In order for code generators, and generally MDE, to be adopted in industrial
settings, preservation of system properties throughout the development pro-
cess by means of appropriate description and verification is pivotal. The way
towards this adoption is often undermined by the clash of the common miscon-
ception that code generation always represents the very final step of an MDE
approach and the fact that, in the embedded domain, certain EFPs are extremely
hard or even impossible to be accurately predicted at modelling level with-
out code execution. As a solution to this clash, this research work provides
an automated round-trip approach for the preservation of system properties

throughout the development of embedded systems.
For achieving this goal, the following research challenges have been for-

mulated and considered as main drivers for the work presented in this thesis:

Research Challenge 1 (RC1) – Define an automated process to enable the

generation of full-fledged code from design models

Automating the generation of full code concerns the manipulation of design
models to generate target code through transformation mechanisms. Moreover,
exploiting UML profiles leads to the need of handling the UML’s fuzziness, in
terms of undecided semantics, in a proper manner. For instance, in the case
of component-based design pattern in UML, while the number of instances of
components and ports can be precisely specified, the port-to-port links are not
equipped with a detailed specification of the component instances they connect.

In order to provide full code generation we need to be able to automatically
generate the set of links between explicit component instances and therefore the
solution cannot prescind from adding the semantic information needed to drive
the definition of links’ source and target. In this sense, we need to: (i) define
semantic rules for driving the generation of links between explicit component
instances via ports, (ii) identify appropriate means for storing the generated
information, (iii) and perform the actual generation following the defined rules
as well as the hierarchical composition of components and ports.

Research Challenge 2 (RC2) – Define and implement translational exe-

cution of ALF towards non-UML platforms

In our approach, complex behavioural descriptions are defined through ALF
action code in the models; this information needs to be translated into target
code too. There are three prescribed ways in which ALF execution semantics
may be implemented, namely Interpretive Execution, Compilative Execution,

1.2 Research Goal and Challenges 9

and Translational Execution. In this work, the challenge is to provide trans-

lational execution of ALF through mechanisms able to transform ALF action
code first into intermediate concepts and thereby to a non-UML target language
(e.g., C++). This choice was dictated by the overall goal of the code generation
to produce a non-UML target language.

Research Challenge 3 (RC3) – Define and implement an automated pro-

cess to enable the back-propagation of monitoring results to design models

The challenge identified in achieving back-propagation is two-fold:

• Monitoring results and traceability information management: results
coming from the monitored execution of the generated code are part of
the source artefacts for back-propagation to the design models; the rep-
resentation format of this information is pivotal. Monitoring results need
to be manipulated in order to extract the observed values and store them
in formal structures to be fed to the back-propagating transformations;

• Annotation of design models: the very final step of the approach would
be the actual enrichment of the design models with values gathered dur-
ing code execution monitoring activities. The enrichment should be per-
formed by injecting the observed values into the related model elements’
placeholders at modelling level according to the mappings contained in
the traceability links.

Research Challenge 4 (RC4) – Demonstrate how the round-trip approach

can be employed to guide engineering decisions based on back-propagated

EFP values

The round-trip approach is meant to be employed as a support for the engi-
neer to take extra-functionally aware decisions at modelling level exploiting
values gathered at runtime. The approach provides synthesis of design models
to highly resource efficient (in terms of inter-system communications) single
process applications or exploit multi process configurations. These different
deployment options raise the opportunity of demonstrating how the round-trip
approach can be employed by the engineer to exploit measurements gathered at
system implementation level for deployment assessment at modelling level. As
part of the demonstration, the approach is applied to an industrial case-study in
the telecommunication domain.

10 Chapter 1. Introduction

1.3 Thesis Contributions

The contribution of this research work is represented by an automated round-
trip approach for the preservation of system properties throughout the develop-
ment of embedded systems. Specific novel contributions are:

Thesis Contribution 1 (TC1) – Definition of semantic rules for the exploita-

tion of UML semantic variation points regarding explicit components in-

terconnections via ports and their automated generation

This contribution provides a solution for the automatic generation of explicit
component instances and establishment of links among them according to the
involved components’ and ports’ multiplicity, in the structural model of the sys-
tem. To achieve this, a set of rules have been defined as semantic interpretation
of the UML metamodel by exploiting the semantic variation points mechanism
provided along with UML. The details about this contribution in terms of the
defined semantic rules as well as the model transformation mechanisms imple-
mented for enabling the generation of explicit component instances and links
are presented in Chapter 5. This contribution provides a solution for Challenge
RC1.

Thesis Contribution 2 (TC2) – Generation of full functional code in C++

from design models to either a single process or to a set of communicating

processes for Linux (only single process) and OSE

This contribution enables fully automatic generation of 100% functional C++
code from the design models. The entailed target platforms are Linux and
OSE while the design models conform to the CHESS-ML. The description
of the various model manipulations (in terms of M2M and M2T transforma-
tions) needed to generate traceability links as well as the implementation are
described in Chapters 6, 7, and 8, together with the employment of the inter-
mediate modelling artefacts introduced in Chapter 2 and employed to support
generation and back-propagation phases. This contribution provides a solution
for Challenge RC1.

Thesis Contribution 3 (TC3) – Translation mechanisms for the transfor-

mation of ALF concepts to a generic object-oriented intermediate format

and thereby to C++

In order to generate 100% functional code, the solution has to be able to trans-
form complex behaviours, defined in the models through ALF, to the target lan-
guage. The ALF specification proposes three different mechanisms for the ex-

1.4 Research Method 11

ecution of ALF text; this contribution provides a solution for the translational

execution of ALF, meant as the translation of the ALF text into a non-UML tar-
get language to be executed on a non-UML target platform. The details of the
contribution in terms of entailed intermediate modelling artefacts (introduced
in Chapter 2) and implementation of the model transformations that perform
the translation from ALF concepts to a non-UML target language (i.e., C++)
are provided in Chapter 7. While part of the Contribution 2, this solution is
considered as a standalone novel contribution agnostic of the considered mod-
elling language and therefore can be employed in any development process in
need of a translator from ALF concepts to C++. This contribution provides a
solution for Challenge RC2.

Thesis Contribution 4 (TC4) – Provision of back-propagation facilities to

correctly inject monitoring results to the appropriate placeholders in the

design models.

One of the pillars of this research work is the introduction, in an MDE pro-
cess, of the novel step of back-propagation to the design models of the extra-
functional values gathered at runtime by monitoring the execution of the gen-
erated code. In Chapter 9 we describe the features employed for monitoring
the code execution on Linux and OSE and gathering extra-functional values
at function level. Moreover, we depict text and model manipulations needed
to perform the injection of extra-functional values to the design models. This
contribution provides a solution for Challenge RC3.

Thesis Contribution 5 (TC5) – Possibility to employ the round-trip ap-

proach for deployment assessment activities at modelling level based on

measurements gathered at system implementation level

Based on the possibility provided by the solution to entail the generation of
multi process applications, we propose a possible employment of the round-
trip approach to help the engineer in taking deployment decisions at modelling
level based on values gathered at system implementation level on OSE. Details
about this contribution are provided in Chapter 9. This contribution provides a
solution for Challenge RC4.

1.4 Research Method

This research work has been carried out by following the deductive-like method
depicted in Figure 1.1. As first task we studied the literature to identify open

12 Chapter 1. Introduction

research challenges in the fields of both MDE and CBSE defining context and
focus on complex (embedded) systems. During this phase we identified the
problem of system (especially extra-functional) properties preservation from
models to code as common challenge in the two areas.

Afterwards we defined our research agenda by iterating the following steps:
(i) definition of the research problem, (ii) systematic literature review for round-
ing off the problem, and (iii) definition of research-driving challenges. While
the research problem, namely the preservation of system properties from mod-
els to code, was quite clear, the involved challenges were not. In order to
be able to preserve properties at code level, the implementation should have
been completely generated in an automatic manner. Moreover, in order to
reach the needed level of details at modelling level to generate 100% of code,
advanced means to model behavioural descriptions would have been needed.
This led to our choice of employing ALF as action language within the models;
this decision added the additional challenge of producing translational mech-
anisms from ALF to the target language. Additionally, in order to aid preser-
vation in the embedded domain, where some EFPs (e.g., performance) often
only emerge in a running product, we introduced the novel concept of back-
propagation of monitoring results from the code execution to design models.

Once the research objectives and challenges were finalised, we carried out
the development of the solution and gradually presented the results at inter-
national forums. These tasks have been performed by iteratively observing,
analysing, evaluating and refining the research results. Moreover, in this phase
we identified additional challenges that were added to the ones arisen at re-
search definition time. An example of additional challenges was the need of
exploiting UML’s semantic variation points to generate explicit component in-
stances in order to be able to generate a running application with no need of
manual intervention.

To close the circle, we validated our research results by implementing
a prototype and testing it against a set of in-house case-studies as well as
an industrial case-study in the telecommunication domain; multiple iterations
among this and the previous phases were needed to achieve the final solution.

1.4 Research Method 13

Figure 1.1: Research methodology

14 Chapter 1. Introduction

1.5 Thesis Outline

In this chapter we describe the outline of the chapters composing this thesis.
An overview of the relation between contributions and research challenges as
well as describing chapters is summarised in Figure 1.2.

Chapter 1 – Introduction

This chapter introduces the motivation of this research work as well as the def-
inition of the basic concepts we employ throughout the thesis. Moreover, the
research settings are described in terms of goal, related challenges and method.

Chapter 2 – Core Artefacts

In this chapter we introduce the auxiliary modelling artefacts (i.e., instance,
intermediate, back-propagation metamodels) we defined in order to support
the round-trip approach both forward, for code generation purposes, and back-

ward, for back-propagation needs.

Chapter 3 – Round-trip Approach for Model-driven Development of Em-

bedded Systems: an Overview

It presents an overall description of the round-trip approach in terms of the
main steps and artefacts involved, while leaving details to the specific chapters.

Chapter 4 – A Running Example: the AAL2 Subsystem

A running example by means of a re-elaborated industrial system is presented
in this chapter. The example will be employed to show the actual application
of each of the approach’s steps and has been utilised for validation purposes
too.

Chapter 5 – Exploiting UML Semantic Variation Points to Generate Ex-

plicit Component Instances

In this chapter we describe our solution for the automatic generation of ex-
plicit component instances and establishment of links among them according
to components’ and ports’ multiplicity in the structural model of the system.
More specifically we depict the set of semantic rules that we defined as seman-
tic interpretation of the UML metamodel by exploiting the semantic variation
points mechanism provided along with UML, as well as the actual generation
of instances in terms of M2M transformations. The solution is applied to the
running example introduced in Chapter 4.

1.5 Thesis Outline 15

Chapter 6 – Generating Intermediate Concepts

It depicts the generation step where intermediate concepts and traceability links
are created starting from the design models. This step focuses on the structural
description of the system under development and is achieved through a set of
M2M transformations. The application of the mechanism to the running exam-
ple is provided too.

Chapter 7 – Completing Intermediate Model with Behavioural Descrip-

tions in ALF

This chapter describes the solution for the translational execution of ALF code.
More specifically, in-place M2M transformations are defined for translating
ALF code to intermediate concepts and injecting them into the already created
intermediate model. Examples of translation from ALF to intermediate con-
cepts are given in terms of the running example.

Chapter 8 – Generating Full-fledged C++ from Intermediate Model

The final generation step consisting of the translation from intermediate con-
cepts to C++ is described in terms of the related M2T transformation and its
application to the running example.

Chapter 9 – Code Execution Monitoring and Back-propagation

In this chapter we explore the monitoring features that enable the gathering
of performance measurements during code execution both on Linux and OSE
as well as the model transformation mechanisms (T2M and M2M) providing
back-propagation of those measurements to the design models for preserva-
tion assessment. Moreover, the usefulness of the proposed round-trip approach
is shown through its employment towards deployment assessment in case of
multi process applications on OSE.

Chapter 10 – Validation

The validation of the proposed round-trip approach against both in-house case
studies as well as in industrial settings is discussed in this chapter. Moreover,
details on complexity, scalability and reusability of the approach as a whole as
well as step-wise are presented too.

Chapter 11 – Discussion

In this chapter a discussion of the thesis contributions is provided. The focus is
reviewing each of the contributions against the related research challenge and
highlight both positive aspects and limitations as well as the reasons behind

16 Chapter 1. Introduction

them. Moreover, a discussion on more general issues is given together with
possible solutions.

Chapter 12 – Conclusions

The contents of the thesis are summarised and possible future directions are
presented in this chapter.

Figure 1.2: Distribution of research challenges and thesis contributions

Chapter 2

Core Artefacts

In this chapter we introduce the intermediate artefacts, in terms of metamodels,
that we defined in order to support the round-trip approach. A dedicated section
is provided for each of the artefacts.

2.1 Instance Metamodel

The explicit instances of components and ports as well as the links between
them need to be stored in properly defined structures used during the genera-
tion process but even for eventual model-based analysis and simulation. Since
we aim at providing a model-driven development process, the most suitable
way to store information concerning model elements is to use models [1].
For performance reasons, namely speeding up the code generation process,
we defined an Instance Metamodel (InstanceMM) using Ecore (Figure 2.1)
in the Eclipse Modeling Framework (EMF) [19] for this purpose. Alterna-
tively, this information could be stored by means of instance specifications
available in UML (e.g., object diagram [25]); this solution would be preferable
in case of model-based analysis and simulation based on UML. Considering a
component in ChessMM, its instances in InstanceMM are represented by the
Component metaclass; the attributes mult and rel_id represent respec-
tively the component multiplicity and the relative identifier of the instance in
the range [1,mult]. Additionally, support for modelling the allocation of com-
ponent instances to specific processes is provided by means of the attribute
deployTo.

17

18 Chapter 2. Core Artefacts

Figure 2.1: Instance metamodel in Ecore

Required and provided port instances are modelled by, respectively, Requi-
redPort and ProvidedPort that specialise the abstract metaclass Port.
Their multiplicity is modelled through Port’s attribute mult. The relative
identifier of a the port instance, in the range [1,mult], is represented by Port’s
attribute id.

2.2 Intermediate Metamodel

The Intermediate Metamodel (InterMM) has been defined in Ecore to provide
the means for translating the design model to a neutral and more generic object-
oriented (OO) abstraction. The usefulness of intermediate artefacts resides in
the generic goals of the generation approach, such as domain-independence
and reusability, as well as for validation reasons [26]. While a direct genera-
tion from design models to C++ would entail an overly complex M2T trans-
formation and could hardly be reused in the generation of other languages, the
employment of InterMM allows to split up the generation into a set of simpler
M2M and M2T transformations. Doing so, the process is carried out through
smaller and less complex steps thus reducing its error-proneness and allowing
to focus only on the M2T rules for enabling the generation of other target lan-

2.2 Intermediate Metamodel 19

guages; the M2M transformations, which represent the most complex steps,
would remain largely valid.

Moreover, while the notion of intermediate metamodel in a code genera-
tion process is not new (as discussed in Chapter 6), the ability of InterMM to
host action code in a modelling fashion at the same abstraction level of the
surrounding modelling elements contributes to its originality. In fact, while
usually action code is defined in terms of target languages (as in [27, 28]) and
therefore taken as it is from the model and injected into generated structural
code, we define it at modelling level using proper modelling artefacts (i.e.,
ALF) and therefore we need to account it into the transformation process and
consequently into InterMM.

A graphical definition of InterMM is depicted in Appendix A (due to its
size) where we can distinguish three main portions that are used to model the
followings:

• Structure: identified by the SubSystem metaclass which represents
the root of any intermediate model and its contained metaclasses;

• Statements: identified by the abstract Statement metaclass and the
specialising metaclasses that represent the different types of statement;

• Expressions: identified by the abstract Expressionmetaclass and the
specialising metaclasses that represent the different expression kinds.

According to this decomposition of InterMM, in the next paragraphs we give
an overview on the main metaclasses composing them.

Structure. This portion of InterMM is used to describe the structure of the
system (see Figure A.1 in Appendix A). It addresses the specification of appli-
cation specific types, classes, interfaces, operations and processes. Moreover it
provides constructs for modelling controlled code injection points (i.e., mark-
ers) that are exploited for static and runtime code analysis [29]. The main
metaclasses are:

• SubSystem: represents the root model entity and it is composed by
processes, types, global variables, structures, defines, functions and ref-
erences to external functions;

• Process: represents the processes on which the component instances
are deployed;

20 Chapter 2. Core Artefacts

• Operation: models operations and consists of a signature and a set of
statements;

• ScopedNamedInstance: represents a named accessible entity that
may represent, e.g., component’s attributes/properties or variables de-
fined in the behavioural specifications by means of, e.g., an action lan-
guage like ALF;

• Type: is the abstract metaclass which is specialised by a set of meta-
classes defining the different types that can be modelled in the modelling
language (e.g., primitive types, enumerations, redefined types, complex
types) together with code-related types (e.g., references, garbage collec-
tor references);

• Class: it specialises Type and owns a set of methods and attributes. It
can represent, e.g., component instances, state-machine states and com-
plex datatypes;

• InjectionMarker: it is a metaclass that can be employed to model
injection markers to be put in the code in a controlled manner for, e.g.,
analysis purposes. The use of code injections has to be handled carefully
also at M2T transformation level in order not to jeopardise the imple-
mentation.

Statements. The body of operations, if specified through action code, would
be composed by a sequentially ordered set of statements. This portion of In-
terMM is devoted to the definition of the concepts needed to model statements
(see Figure A.2 in Appendix A). The main metaclasses are:

• Statement: is the core abstract metaclass;

• SimpleInvocation: represents the invocation of a function and it
contains an Invocation expression (see next paragraph);

• Assign: represents the assignment of a value to a variable. It contains
a specific InstanceAccess expression (see next paragraph);

• Control: is the abstract metaclass representing statements related to
the control flow of the application. It is specialised by specific meta-
classes such as: If, for modelling if loops and switch cases, ForRange,
ForEver and ForEach, for modelling the various different for loops
available in ALF, While, for modelling while loops, and Return, for

2.2 Intermediate Metamodel 21

modelling the exit from an operation body. If the operation has a defined
return-type, the statement includes an expression evaluating it;

• InjectionStatement represents the statement that can be intro-
duced in the code through injection markers;

• Inline: it is used to place inline statically defined statements in the
generated code. It should be employed mainly for debugging and analy-
sis purposes (e.g., check the correctness of the control flow when testing
the application) and hence be avoided when generating the final imple-
mentation version.

Expressions. This portion of InterMM provides the means to define expres-
sions, meant as behavioural units that evaluate a collection of values (see Fig-
ure A.3 in Appendix A). The main metaclasses are:

• Expression: is the core abstract metaclass;

• Invocation: represents the expression related to the invocation of a
function and defines input parameters and expected return type;

• RTTI: represents an abstract metaclass that is specialised by metaclasses,
such as Instanceof and Hastype, for defining type introspection if
provided by the modelling or action language (as in the case of ALF);

• Alloc: is a metaclass used to define a memory allocation in case the
target programming languages would require it;

• Define: represents the specification of symbolic constant declarations
(i.e., #DEFINE or similar, depending on the target programming lan-
guage);

• InstanceAccess: is an abstract metaclass for the definition of access
to variables;

• ReferenceAccess: represents the access to a variable’s reference;

• ValueAccess: represents the access to the value of a variable;

• Literal: is an abstract metaclass representing the different constant
literal values. It is specialised by metaclasses such as IntegerValue,
StringValue, BooleanValue, that define the specific literal type;

22 Chapter 2. Core Artefacts

• Computation: represents an abstract metaclass which is specialised
by Unary and Binary respectively defining an expression that exe-
cutes a unary operator and an expression that executes a binary operator.

InterMM is meant to accommodate a wide range of concepts that are then inter-
preted in a specific way by the M2T transformation depending on the features
provided by the target programming languages. This means that, while the syn-
tax is fixed, the semantics that the various metaconcepts assume might change
from one target programming language to another and is therefore embedded
in the target-specific M2T transformation.

2.3 Back-propagation Metamodel

In the proposed approach, the task of automating the generation of implementa-
tion code does not only concern the actual transformation from design models
to code since tracing information between model elements and generated code
has also to be defined for enabling back-propagation activities. Traceability can
be any relationship existing between artefacts within a software engineering
life cycle. These relationships include: (i) explicit links derived from for/back-
ward transformations, (ii) links derived from code analysis, (iii) inferred links
computed on the basis of change management of system’s items [30]. In our
work we consider explicit links derived from transformations as relationships
between artefacts.

Since our approach relies on models, transformations and generated code
as main artefacts, definition and maintenance of traceability links to cope with
consistency among them are crucial. That is the reason for which model trans-
formations in charge of code generation shall be properly defined by encoding
apposite rules for the generation of explicit traceability links between source
and target. In this way, information exchanged among models through trans-
formations is formally stored and maintained in structures that are easily and
univocally navigable and pieces of information reachable following precise
patterns.

For this purpose we defined the Back-propagation Metamodel (BackMM),
depicted in Figure 2.2, using Ecore; a slightly similar structure for storing trac-
ing information can be found in [31]. BackMM has been defined for enabling
the creation of back-propagation models (BackM) which store the information
gathered during code generation and monitoring tasks in a structured manner.

Conceptually, two classes of information are stored in BackMM: (i) trace-
ability information and (ii) monitoring results. Traceability information is

2.3 Back-propagation Metamodel 23

Figure 2.2: Back-propagation metamodel

composed by explicit trace links created during the code generation task and
stored in terms of trace elements between model elements and code. The core
concept in BackMM is indeed the trace element, which allows the navigation
through all the stored information needed for back-propagating the observed
values to the design models. A trace element TE (TraceElement in Figure 2.2)
can store traceability at two different granularities:

• Model element level: in this case it is represented as a triple <ME, EU,

MEP> where ME is a model element (ModelElement in Figure 2.2)
contained in a design model SM (SourceModel in Figure 2.2), EU is
an executable unit (ExecutableUnit in Figure 2.2) contained in an
executable entity EE (ExecutableEntity in Figure 2.2), and MEP

24 Chapter 2. Core Artefacts

(ModelElementProperty in Figure 2.2) is an EFP defined for ME

and calculated by monitoring the execution of EU. A typical case for this
granularity is the component in a component-based architecture;

• Model element’s functional unit level: in this case it is represented
as a quadruple <ME, FU, EU, FUP> where ME and EU represent the
same information as for the model element level. The further level of
granularity is maintained by FU which represents an operation/method
(FunctionalUnit in Figure 2.2) defined in the model element spec-
ification ME and FUP (FunctionalUnitProperty in Figure 2.2)
which represents an EFP defined for FU and meant to be calculated by
monitoring the execution of EU. A typical case for such a granularity is
the component’s operation in a component-based architecture.

More generally, BackM (BackpropagationModel in Figure 2.2) is a triple
<TE*, SM, EE*>, where TE* is a non-empty set of trace elements, SM is a
design model (i.e., a composition of model elements ME and functional units
FU), and EE* is a non-empty set of executable entities which are in turn com-
posed by executable units EU. Depending from the code generation and the
monitoring activities, an executable unit could be defined in a more detailed
manner as a code block with start and end point within the code file (i.e., the
executable entity).

Apart from the traceability links, BackM hosts the information extrapolated
from the monitoring activities. More specifically, each property P defined in
BackM has a property value V (PropertyValue in Figure 2.2), which is
calculated during monitoring activities and represents the value to be propa-
gated back to the related extra-functional annotation’s placeholder in the design
model.

2.4 Summary

In this chapter we introduced three intermediate artefacts, namely instance
metamodel, intermediate metamodel and back-propagation metamodel. The
instance metamodel hosts information regarding component instances and ex-
plicit links between them which are generated from the initial design model.
The intermediate metamodel is thought to be the core intermediate artefact to
which all the information, both structural and behavioural, coming from the
design model is translated to and from which the further generation of code

2.4 Summary 25

towards various platforms is performed. Finally, the back-propagation meta-
model stores information regarding explicit traceability links created during the
code generation phase and it is utilised as bridge between monitoring results
and design model for back-propagation activities.

Chapter 3

Round-trip Approach for

Model-driven Development

of Embedded Systems: an

Overview

The overall contribution of the research work presented in this thesis is rep-
resented by a full model-driven approach for the development of embedded
systems. The focus is on the provision of automatic mechanisms to exploit
measurements gathered at system implementation level for assessment of sys-
tem properties preservation. In order to achieve such an approach, depicted
in Figure 3.1, two main steps had to be provided: (1) forward, meaning auto-
matic generation of full-fledged functional code from the design models, and
(2) backward, through monitoring of code execution and back-propagation of
observed values to the design models.

Both steps consist of a number of substeps that we describe in the following
paragraphs. In the remainder of the thesis we employ these abbreviations when
describing modelling artefacts within model transformations and algorithms:

• UmlMM: UML metamodel
• UmlM: UML model
• ChessMM: CHESS metamodel
• ChessM: CHESS model
• AlfMM: ALF metamodel

27

28 Chapter 3. Round-trip Approach for Model-driven Development

of Embedded Systems: an Overview

• AlfOpM: ALF operation model
• InterMM: intermediate metamodel
• InterM: intermediate model
• InstanceMM: instance metamodel
• InstanceM: instance model
• BackMM: back-propagation metamodel
• BackM: back-propagation model

Automatic generation of code. Starting from the design of the system under
development defined as ChessM, the first step is represented by the genera-
tion of component instances and explicit links according to components’ and
ports’ multiplicity defined in ChessM (Figure 3.1.a). This information is stored
in terms of InstanceM, conforming to the previously defined InstanceMM.
The generation is driven by a set of semantic rules we defined to fix the re-
lated semantic variation point in the UmlMM. Practically, the generation is
achieved through a M2M transformation taking in input ChessM and provid-
ing InstanceM as output.

A further M2M transformation takes in input ChessM and the newly cre-
ated InstanceM for translating the structural description of the system into in-
termediate concepts (Figure 3.1.b). The outcome of this transformation is In-
terM, that conforms to InterMM. Moreover, during this task, explicit traceabil-
ity links are created (Figure3.1.c) in terms of BackM, conforming to BackMM,
and will be used for driving the back-propagation phase.

InterM is then completed with information regarding the behavioural spec-
ification of the system defined by means of ALF. This is achieved by: pars-
ing each ALF operation in the system (Figure 3.1.d) and then run an in-place
M2M transformation (Figure 3.1.e) that translates ALF to intermediate con-
cepts and injects them into InterM. Finally the executable C++ implementation
is generated through M2T transformations taking as input the sole InterM (Fig-
ure 3.1.f).

Monitoring and back-propagation. Once code and traceability links have
been generated, EFPs can be evaluated by specific code execution monitoring
routines (Figure 3.1.g). Depending on their output format, different actions
varying from T2M to M2M transformations (Figure 3.1.h) are required to ex-
tract and formalise gathered values, which are thereby injected in the BackM
via an in-place T2M transformation in order to have a complete link from mod-
els to values. The last step of the round-trip approach annotates ChessM with

29

the monitoring values (Figure 3.1.i) through a dedicated in-place M2M trans-
formation.

At this point ChessM can be evaluated by means of actual extra-functional
values and, if needed, it can be tuned by the developer (e.g., by changing the al-
location of components to processing units) to generate more resource-efficient
code (Figure 3.1.k). Thanks to the automated support, the process can be re-
iterated at will until the developer is satisfied with the generated code.

Figure 3.1: Research contribution

Chapter 4

A Running Example: the

AAL2 Subsystem

The solution proposed in this work has been validated against case-studies,
both in-house as well as in industrial settings, modelled using the CHESS-ML.
More specifically regarding the industrial case-study, we employed the Asyn-
chronous Transfer Mode (ATM) [32] Adaptation Layer 2 (AAL2) subsystem,
originally intended to adapt voice for transmission over ATM and currently
used in telecommunications as part of connectivity platform systems.

The AAL2 subsystem is described in this chapter and utilised as running
example for showing each of the steps composing the round-trip approach. For
confidentiality reasons, the system models presented here are a re-elaboration
of the actual models. Moreover, since the actual ChessM representing the
AAL2 subsystem was composed by several hundred thousands of component
instances and multiple levels of hierarchical composition of components, we
employ a simplified version as running example for simplicity reasons. Any-
how, in Chapter 10 we provide all the details regarding the evaluation of the
proposed approach on the complete AAL2 model.

In Figure 4.1 we propose the simplified AAL2 subsystem (i.e., SwSystem
composite component) which is composed by three main components: (i) NCC,
(ii) AAL2RI_Client, (iii) NCIClient. Each of these components has a
complex internal structure in terms of composition of other components; in
this example we only show part of the NCC internal structure while consid-
ering AAL2RI_Client and NCIClient as black-boxes. NCC is a con-
nections handler providing connectivity services for the establishment/release

31

32 Chapter 4. A Running Example: the AAL2 Subsystem

of communication paths between pairs of connection endpoints handled by
AAL2RI_Client. NCIClient represents an application asking for ser-
vices provided by NCC and its underlying layers; the components communicate
through functional interfaces (function calls or message passing depending on
the deployment configuration) exposed by their provided ports.

The NCC component has a complex internal structure (Figure 4.1) com-
posed of the following components: NodeConnHandler, which dispatches
the incoming connection requests to available NetConn instances, NetConn,
that controls establishment and release of network connections between nodes
(NodeConneElem instances), NodeConnElem, that handles management of
connections to the network within the single node, and PortHandler, which
manages connection resources. Each of these subcomponents has in turn a
complex internal structure in term of components composition; in this case-
study we consider only the first two levels of decomposition (down to the NCC’s
internal structure).

The behavioural definition of the system is given by means of UML state-
machines enriched with action code definitions for the involved operations
specified by means of ALF. In Figure 4.2 the AAL2’s NodeConn state-machine
is depicted together with the ALF code specifying the behaviour of the oper-
ation NodeConn_riDisconnectCfm. A typical connection scenario in
the AAL2 subsystem is the establishment of a connection between two end-
points residing on the same node. This is a constrained case of a more gen-
eral network-wide connection where the two end-points reside on different
nodes and the communication transits through a number of other intermediate
nodes in the network. When NCIClient wants to connect two end-points,
a connection setup request is sent to NCC through the PI_NCI_2_NCC in-
terface; this request contains information about the end-points. NCC asks for
the establishment of a connection segment between the end-points to an ex-
ternal component (not modelled in this case-study). Then it sends a request
through the RI_NCC_2_AAL2RI interface for each end-point to their respec-
tive AAL2RI_Client to activate the access to the transport layer. Once both
end-points have positively responded through their RI_AAL2RI_2_NCC in-
terface, NCC confirms the establishment of the connection to NCIClient

through the RI_NCC_2_NCI interface.

Figure 4.1: AAL2 subsystem structural design in CHESS

Figure 4.2: NodeConn state-machine and NodeConn_riDisconnect-

Cfm operation in ALF

Chapter 5

Exploiting UML Semantic

Variation Points to Generate

Explicit Component

Instances

The UML allows the specification of a system in a component-based fashion as
assembly of components communicating via required and provided interfaces
(exposed by ports). As stated in the language specification, a port represents
an interaction between a classifier (i.e., component) instance and its internal or
external environment. Additionally, features owned by required interfaces are
meant to be offered by one or more instances of the owning classifier to one or
more instances of the classifiers in its internal or external environment [10].

In other words, multiple instances of components can provide features via
ports to multiple instances of both peer (at the same hierarchical level) and in-
ternal components. While the number of instances of components and ports can
be precisely specified, the port-to-port links are not equipped with a detailed
specification of the component instances they connect. In fact, the links are
defined at classifier level thus on the sets of instances and the UML metamodel
leaves the rules for matching the multiplicities of connected sets of instances
(components) and ports as a semantic variation point [10]. In order to be able
to automatically generate the set of actual links between explicit component
instances the solution cannot prescind from defining the semantics needed to

35

36 Chapter 5. Exploiting UML Semantic Variation Points to

Generate Explicit Component Instances

fix the related variation point.
As depicted on the left-hand side in Figure 5.1, the two components (or

sets of instances since their multiplicity is greater than 1) A and B are linked
through a single connector that does not carry any information on the ac-
tual instance-to-instance connection. This information is crucial to be able to
properly analyse important properties of the system at modelling level, enable
model simulation and generate executable code. That is why semantic rules
should be specified for generating the actual links among explicit component
instances. Alternatively, this information could be manually modelled in dif-
ferent ways (e.g., ad-hoc stereotyped annotations, OCL constraints) or created
on-the-fly (e.g., through action languages), but, when dealing with complex
systems consisting of thousands of component instances, the manual effort de-
manded by this kind of activity is overwhelming. The same information could
even be manually described at code level; different complications, such as in-
consistency between models and code, unintentional injection of errors in the
code as well as large effort in carrying out the manual coding task arise thus
making this solution simply infeasible in developing industrial systems. For
these reasons, automatic generation is preferable in order to generally mitigate
the developing team’s effort demanded by modelling activities.

Figure 5.1: UML-like component instances and links ([x] = multiplicity)

In defining the generation of links between instances we need to take into ac-
count the fact that UML allows the definition of hierarchical composite compo-
nents with unlimited depth levels. In fact, links do not always concern compo-
nent instances placed at the same hierarchical level but even instances defined

5.1 Assumptions 37

at different depths in the composition structure. Especially when composition
hierarchy does not imply delegation of the provided features by internal clas-
sifiers to the container classifier, the ability to generate explicit links between
component instances placed at different hierarchical levels becomes crucial for
increasing model analysability and providing complete code generation capa-
bilities.

In this chapter we explore the solution we provide for the automatic gen-
eration of explicit component instances and the establishment of links among
them according to the involved components’ and ports’ multiplicity defined in
the structural model of the system. This generation is made possible by a set of
rules that we defined as semantic interpretation of the UML metamodel. On the
right-hand side in Figure 5.1 the general idea of generating explicit component
instances and links is applied to the two sets of instances A and B introduced
before. More specifically, the components A and B are unwound by means
of explicit instances according to their multiplicity and the actual links among
them are created.

5.1 Assumptions

In order to identify the scope in which our solution has been developed and
its ultimate goal, a number of assumptions and clarifications must be made.
According to the constraints given when defining the CHESS-ML, for ensur-
ing guarantees at runtime of the properties modelled at design time, dynamic
instantiation of components is not allowed; that is the reason for which our so-
lution entails only prefixed cardinality on components and ports. For the same
reason, multiplicities are defined as concise values (i.e., [n]) while range val-
ues (e.g., [n..m]) are left as possible future enhancement. Moreover, two
further assumptions have been made in regards to components interconnec-
tions: (i) the connectors linking components via ports have multiplicity 1, thus
leaving components’ and ports’ multiplicity as variables for the interconnec-
tions calculation and generation, (ii) only binary connections are considered,
leaving n-ary possibilities as future work.

Nonetheless, these assumptions did not prevent us from the ability to model
complex industrial systems, but were rather derived to circumscribe the scope
of the problem and therefore propose a technically valid solution. Since no
unique interpretation of the UML metamodel semantics can be given for a
semantic variation point, we focused on the problems to be addressed within
our scope with particular attention to full-fledged code generation.

38 Chapter 5. Exploiting UML Semantic Variation Points to

Generate Explicit Component Instances

5.2 Definition of Semantic Rules

The guidelines given by the superstructure specification of UML do not pro-
vide a fixed semantics concerning the multiplicities of connected components
and ports. This means that any combination of multiplicities is syntactically
allowed and therefore syntactically correct. In order to be able to give a se-
mantics to the interrelationships among components and to generate explicit
links between component instances, boundaries have to be set for their syn-
tactical definition. In other words, only a set of meaningful combinations of
multiplicities of connected components are considered in order for the seman-
tic rules to be deterministically applied. Let us refer to the most general case of
connection between two components A and B; their multiplicity is expressed
respectively as MA and MB . An explicit instance of component A is repre-
sented by iA and assumes values in the range [1,MA]. Concerning component
B, an explicit instance is represented by iB and assumes values in the range
[1,MB].

Moreover, component A is connected through its required port A_RP to
component B’s provided port B_PP ; the multiplicities of these ports are ex-
pressed respectively as MA_RP and MB_PP . An explicit instance of port
A_RP is represented by iA_RP and assumes values in the range [1,MA_RP].
Regarding port B_PP , an explicit instance is represented by iB_PP and as-
sumes values in the range [1,MB_PP].

The basic rule for the specification of components and ports multiplicities
is that: each required port instance should be connected to one and only one

provided port. According to our general connection case, each iA_RP of each
iA should be connected to one and only one iB through one iB_PP . Hence
the condition in Equation 5.1 shall always be true for the generation process
to be able to link an instance iA, requesting features, to the right instance iB ,
providing the features, through their port instances.

MA ×MA_RP = MB ×MB_PP (5.1)

At this point, given both the component instance iA and the instance iA_RP

of its required port, we automatically derive the link to the right instance iB .
We defined the following set of five semantic rules for creating such links based
on the specified multiplicity combinations (where dxe denotes the ceiling func-
tion mapping x to the smallest integer greater than or equal to x):

(MA = MB) ∧ (MA_RP = MB_PP) ⇒ iB = iA (Rule 1)

5.2 Definition of Semantic Rules 39

(MA 6= MB) ∧ (MA = 1) ∧ (MA_RP = MB ×MB_PP) ⇒

iB =

⌈

iA_RP

MB_PP

⌉

(Rule 2)

(MA 6= MB) ∧ (MB = 1) ∧ (MB_PP = MA ×MA_RP) ⇒ iB = 1

(Rule 3)

(MA_RP 6= MB_PP) ∧ (MA_RP = 1) ∧ (MA = MB ×MB_PP) ⇒

iB =

⌈

iA
MB_PP

⌉

(Rule 4)

(MA_RP 6= MB_PP) ∧ (MB_PP = 1) ∧ (MB = MA ×MA_RP) ⇒

iB = (iA ×MA_RP)− (MA_RP − iA_RP) (Rule 5)

Rule 1 represents the situation where A and B have same multiplicity as well
as the connecting A_RP and B_PP ports. This is a simple case, in which the
indexes of A and B coincide (iB = iA). Rule 2 takes care of the case in which
MA and MB are different (with MA = 1) and MA_RP = MB × MB_PP .
In this case iB is calculated through ceiling the quotient of iA_RP /MB_PP .
Rule 3 represents the case where MA and MB are different (with MB = 1)
and and MA = MB × MB_PP . In this case iB = 1 since MB = 1. Rule
4 accounts the case where MA = MB × MB_PP and A_RP and B_PP
ports have different multiplicity (with MA_RP = 1). Here iB is calculated
through ceiling the quotient of iA/MB_PP . Rule 5 takes care of the case in
which MB = MA ×MA_RP and A_RP and B_PP ports have different mul-
tiplicity (with MB_PP = 1). Here iB is calculated through the expression
(iA ×MA_RP)− (MA_RP − iA_RP).

The same rules can be applied in case of delegation among provided or
required ports in order to generate links between them; in this case, A_RP and
B_PP would both represent provided or required port instances. Note that the
defined rules are mutually exclusive therefore there is no fixed order in which
they are supposed to be applied.

The considered set of multiplicity combinations does not cover all the pos-
sibilities that satisfy Equation 5.1, but rather the set for which no added mod-
elling effort was requested from the developer side. The possibility which is

40 Chapter 5. Exploiting UML Semantic Variation Points to

Generate Explicit Component Instances

not covered is represented by Equation 5.2 and represents the case in which
Equation 5.1 is satisfied and all the operands are greater than 1.

(MA = MB_PP) ∧ (MB = MA_RP) ∧ (MA 6= MB) (5.2)

5.3 Relation with Instance Metamodel

Let us generalise the representations introduced when defining the semantic
rules in terms of the concepts provided by InstanceMM. Considering compo-
nent A, the instances iA are represented by the Component metaclass; the
attributes mult and rel_id represent respectively the component multiplic-
ity MA and the value assumed by iA in the range [1,MA]. Mirror reasoning
applies to component B. Port instances iA_RP and iB_PP are represented by,
respectively, RequiredPort and ProvidedPort that specialise the ab-
stract metaclass Port. The multiplicities MA_RP and MB_PP are modelled
through Port’s attribute mult. The value assumed by iA_RP in [1,MA_RP]
and by iB_PP in the range [1,MB_PP] are represented by Port’s attribute id.

After generating explicit instances of components and ports in the terms
described above, it is possible to apply the defined semantic rules for creating
the explicit links between component instances. As aforementioned, given iA
and iA_RP , the idea is to find the right instance iB to which iA is connected
through iA_RP ; once found, this index is stored in the attribute dest_id (or
deep_id if considering provided ports) of iA_RP , thus making iA_RP point
to the right instance iB . In this way, at the end of the process, we will obtain
an instance model (InstanceM) conforming to InstanceMM and containing all
the explicit instances of components and ports as well as the actual instance-
to-instance links.

5.4 Generation Process

The generation of explicit instances and links is achieved through a M2M
transformation defined in Operational QVTo [33]. Taking as input a ChessM
(or more generally a component-based description of the system defined as a
UmlM), the transformation generates the explicit instances of components and
ports and then creates the explicit links between component instances by apply-
ing the previously defined semantic rules. The multiplicities must be aligned
to the rules defined earlier in this section for the generation process to operate
correctly. The output of the transformation is an InstanceM.

5.4 Generation Process 41

The transformation has to take into account all the possible connections
between ports in a component-based design pattern with unlimited hierarchical
levels. These connections can be summarised as follows:

• Provided to Provided: in case of composite structures, container and
contained component instances can be connected via provided ports for
modelling delegation of features’ provision visibility to the environment;

• Required to Required: similarly, container and contained component
instances can be connected via required ports for modelling delegation
of features’ request to the environment;

• Required to Provided: connecting component instances via a link be-
tween required and provided port respectively, represents the actual client-
server interaction where a component instance owning the required port
requires features that the one owning the provided port offers.

The workflow (generalised for UmlMM and valid for ChessMM too) of the
transformation is summarised in the pseudo-code shown in Algorithm 1.

Algorithm 1 M2M Transformation from UmlM to InstanceM
Uml2Instance(in UmlM, out InstanceM){
for each component c in UmlM do

InstanceM = c.createInstances();
end for

for each comp instance cInst in InstanceM do

cInst.setProv2Prov();
end for

for each comp instance cInst in InstanceM do

cInst.setReq2Prov();
end for

for each comp instance cInst in InstanceM do

cInst.setReq2Req();
end for

}

The main transformation rules work as follows:

• createInstances(): for each component in UmlM, a set of Comp-
onent elements is created in InstanceM; in addition, ProvidedPort

42 Chapter 5. Exploiting UML Semantic Variation Points to

Generate Explicit Component Instances

and RequiredPort elements are created for both provided and re-
quired ports of the UML component. The number of component and
port instances to be created is, according to CHESS-ML that does not
entail value ranges in multiplicities, equally represented by the lower-

Bound and upperBound attributes of the related UML element; in our
transformation we employ the upperBound attribute. Moreover, the hi-
erarchical structure of the components is kept intact in order to correctly
generate the links between them;

• setProv2Prov(): in UmlM, containing components may be con-
nected to contained components via provided-to-provided port connec-
tion. In InstanceM, for each generated component instance, starting from
the root1, we create the explicit links between its provided ports to the
component instance owning the provided port at the other end of the con-
nection. The rule is then recursively applied to the contained component
instances;

• setReq2Prov(): peer components are connected via required-to-pro-
vided port connection. In InstanceM, for each generated component in-
stance, starting from the root, we create the explicit links between its
required ports to the component instance owning the provided port at the
other end of the connection. The rule is then recursively applied to the
contained component instances;

• setReq2Req(): at this point, each explicit required port instance
points to the right component instance owning the provided port instance
at the other end of the connection. In UmlM, container components may
be connected to contained components via required-to-required port con-
nections. In this case, the transformation sets these missing links in a
similar way as for provided ports in setProv2Prov(). The rule is
then recursively applied to the contained component instances.

Setting links between port instances, regardless of the connection type (i.e.
required to provided, provided to provided, required to required), is done by
applying the semantic rules we defined. InstanceM generated for the AAL2
subsystem is depicted in a simplified UML-like fashion in Figure 5.2. From
the AAL2 model, composed by 7 components, 24 ports and 14 connectors,
the transformation mechanism generates an instance model composed by 23
component instances, 136 ports and 80 connectors.

1By root component it is meant the one at the root of the hierarchical composition. For peer
components we mean components placed at the same hierarchical level.

5.4 Generation Process 43

While the automatic generation of these instances took only few seconds, a
manual modelling of each single interconnection instance, besides being error-
prone, would not have been as fast; these advantages are amplified when deal-
ing with actual industrial models. In fact, the generation of InstanceM for the
complete AAL2 model, composed by 2003 component instances, 14000 port
instances and therefore several thousands of connections among their ports,
was achieved in around 3 on a conventional laptop.

44 Chapter 5. Exploiting UML Semantic Variation Points to

Generate Explicit Component Instances

Figure 5.2: InstanceM for the AAL2 subsystem

5.5 Summary and Related Work 45

5.5 Summary and Related Work

In this chapter we described a solution for the automatic generation of explicit
component instances and establishment of links among them according to the
involved components’ and ports’ multiplicity defined in the structural model
of the system. To enable the automatic generation, we defined a set of rules as
semantic interpretation of the variation points defined in the UML metamodel.
This represents the first transformation step towards the generation of C++
from ChessM that, taking as input ChessM, provides InstanceM as result; the
transformation process is developed using the QVTo transformation language
and is packaged in a standalone Eclipse plugin.

The concept of component has been introduced in the UML 2.0, together
with an appropriate diagram [10]. In [34] the author discusses composition
mechanisms provided with UML 2.0, and in particular the role of multiplicities
in interconnections between composite structures. However, it only touches
upon the issue of realising component interconnections at different abstraction
levels while leaving aside the concrete instantiation.

Generally, several works can be found in the literature addressing issues
related to semantic variation points, such as [35] where the authors reify the
semantic variation points concerning synchronicity in state-machines towards
code generation using the KerMeta meta-language [36] for fixing semantics,
or [37] where the authors provide matters to disambiguate variation points re-
lated to other aspects of UML diagrams.

Other research works have been devoted to giving semantics across links
through ports and keeping its correctness [38, 39, 40], nonetheless they focus
more on interface definitions (in terms of type and behaviour of ports and con-
nectors) rather than on the issue of explicitly instantiating instance-to-instance
links between components. Even component-based design tool implementa-
tions, as the solution proposed in [41], seem to miss out the problem we are
addressing in this chapter.

Concerning the tools providing code generation from UML models, differ-
ent solutions are provided when coming to the generation of interconnections
between component instances. Enterprise Architect2, by Sparx Systems, pro-
vides code generation from class diagrams where classes are linked through
associations. More specifically, code is generated so that instances of the as-
sociation’s target class are owned by the instances of the source class. In our
solution we target component-based design for encapsulation reasons and we

2http://www.sparxsystems.com.au/

46 Chapter 5. Exploiting UML Semantic Variation Points to

Generate Explicit Component Instances

aim at generating code which preserves this paradigm, that is to say compo-
nents communicating by invoking functionalities on their own required ports
with no need of knowing which component is on the other side of the connec-
tion providing the functionality. In this way generated code can be consistent
to what specified at modelling level in terms of components and preservation
of system properties from models to code is facilitated [42].

Other solutions, as in IBM Rational Rhapsody3, maintain the generality of
UML when coming to matching the multiplicities of components and ports. In
fact, no decision is automated regarding the interconnections between compo-
nents via ports, but rather instances generated according to their multiplicities
along with function handlers (i.e., get and set) for managing connections
when needed. In this case, the modeller will have to specify how to connect
the different component instances when describing the behaviour of the single
components.

Our approach provides an interpretation of the UML metamodel’s seman-
tics, as prescribed by the notion of semantic variation point, in order to au-
tomate the generation of fixed interconnections between component instances
whose manual specification would require heavy and error-prone modelling ef-
fort in case of complex industrial systems composed by several hundred thou-
sands components. Therefore, despite analysis, simulation, and code gener-
ation techniques remain valid without any form of components’ instantiation
automation, such a problem can remarkably affect scalability as well as error-
proneness if not automated.

3http://www-01.ibm.com/software/awdtools/\-rhapsody/

Chapter 6

Generating Intermediate

Concepts

The information about components and ports instances as well as the explicit
links among them carried by InstanceM is employed together with the informa-
tion represented by the state-machines in terms of states and transitions carried
by ChessM to generate classes, attributes and functions in the intermediate
representation (InterM). This represents the second step in the code generation
process and is implemented as a QVTo M2M transformation taking as input the
ChessM and the instances information stored in InstanceM; a first version of
InterM is produced in output as description of the system’s structure by means
of intermediate concepts.

The main transformation rules are summarised by means of pseudo-code
in Algorithm 2. The first part of the transformation is in charge of translating
UML primitive types (pt2type(..)) and data types (d2class(..)) to the corre-
sponding elements (i.e., primitive type and class) in InterM. Moreover, com-
plex types such as enumerations and structures are translated too (d2class(..)).
Auxiliary structures, as superclasses generally defining state-machine, state
and message classes are created to be extended later on by specialising classes.

For each interface defined in ChessM a counterpart class in InterM is cre-
ated and for each operation defined in the interface a mirror operation is defined
and added to InterM (op2operation(..)). Moreover, for each interface’s opera-
tion, the transformation generates an internal send operation in InterM for
communication purposes (op2message(..)) that will be implemented in differ-
ent ways depending on the targeted solution (see Chapter 8).

47

48 Chapter 6. Generating Intermediate Concepts

Finally, taking as input the component instances carried by InstanceM and
the corresponding state-machine specifications in ChessM, the transformation
generates the corresponding classes in InterM (ci_sm2class). Regarding the
translation of state-machines, our approach resembles the state design pattern,
as defined in [43], considering the component owning the state-machine as the
context for the related states. Therefore each component instance is mapped to
a class whose attributes represent the component’s state-machine states (which
in turn are translated into classes) and the properties defined in the component
itself; component’s operations are added to the generated class as operations
(AddOperations()).

The final step consists of creating, for each of the state-machine’s states,
references to the outgoing transitions in order to be able to update the state of
the state-machine when triggering transitions.

Algorithm 2 M2M Transformation from ChessM-InstanceM to InterM
Chess2Intermediate(in ChessM, in InstanceM, out InterM){
for each primitiveType pt in ChessM do

pt2type(in ChessMM ::PrimitiveType, out InterMM ::PrimitiveType);
end for

for each dataType d in ChessM do

d2class(in ChessMM ::DataType, out InterMM ::Class);
end for

for each interface i in ChessM do

i2class(in ChessMM ::Interface, out InterMM ::Class);
for each operation op in i do

op2operation(in ChessMM ::Operation, out InterMM ::Operation);
op2message(in ChessMM ::Operation, out InterMM ::Class);

end for

end for

for each (component, stateMachine) ci_sm in InstanceM,ChessM do

ci_sm2class(in ChessMM ::StateMachine, in InstanceMM ::Component, out

InterMM ::Class);
AddOperations();
for each state st in sm do

st2class(in ChessMM ::State out InterMM ::Class);
for each outTransition ot in s do

ot2reference(in ChessMM :: Transition, out InterMM :: Reference-
Access);

end for

end for

end for

}

6.1 Traceability and Back-propagation Model 49

6.1 Traceability and Back-propagation Model

The generation of intermediate concepts entails also the creation of traceability
information between modelling elements (i.e., components, ports, operations
and EFPs) and code units (in terms of intermediate concepts) which is stored in
BackM to enable further back-propagation activities. BackM is created during
the generation of InterM through a set of M2M transformation rules defined as
part of the QVTo transformation presented above.

Navigating ChessM from the root component through all its composition
levels, for each component instance a number of trace elements are created
to keep track of the EFPs defined at both component and function level. The
transformation rules in charge of creating the trace elements, related to each of
the instantiated component instances operates according to the pseudo-code in
Algorithm 3. More specifically, the algorithm is composed of three main steps:

• Step 1 – Starting from the root, for each component contained by the cur-
rent component, an element of type ModelElementInstance in BackM
is created. Particularly important in this process is that the containing compo-
nent is set as parent of the ModelElementInstance in order to maintain
the containment hierarchy crucial for back-propagation activities. In fact, it
may happen that different instances of the same component type are defined
in different parts of the model with ambiguous identities; by maintaining the
containment relationships from the root component we are able to univocally
identify the different instances of a same component type and correctly per-
form back-propagation. Moreover, since at code level the different component
instances are identified by a progressive unique numerical identifier assigned
during the code generation, the model element instance will also need to inherit
this information in order to allow correct injection of the observed values to the
right placeholder in BackM;

• Step 2 – For each operation defined in the component, a corresponding
FunctionalUnit is created in BackM together with the elements represent-
ing the EFPs (FunctionalUnitProperty) that are modelled, and there-
fore could be monitored and back-propagated, as annotations for Functi-
onalUnit. An example of such could be respT and memorySizeFoot-
print, respectively representing execution time and memory allocation in
the CHESS-ML �CHRtSpecification� stereotype derived from MARTE’s
�RtSpecification�. The generation of properties at component level is per-
formed in a similar manner, but ModelElementProperty elements are
created instead of FunctionalUnitProperty and associated to Model-

50 Chapter 6. Generating Intermediate Concepts

ElementInstance elements instead of FunctionalUnit. Moreover, a
corresponding C++ function is created and its execution will be used for moni-
toring and compute values for the defined properties. An ExecutableUnit
element is created for this purpose, and the previously defined Function-

alUnitProperty elements are linked to it in order to complete the trace-
ability chain (model-code-properties);

• Step 3 – Finally a TraceElement is created for each of the properties.

Algorithm 3 Algorithm for the Creation of Trace Links
Create_trace_links(in ChessM, out BackM){
for each comp in ChessM do

ME = new BackMM ::ModelElementInstance;
for EFP_deco in comp do

MEP = new BackMM ::ModelElementProperty;
TE = new BackMM ::TraceElement;
TE.modelSource= ME;
TE.property = MEP ;
BackM.traceElements+ = TE;

end for

for each op in comp do

FU = new BackMM ::FunctionalUnit;
EU = new BackMM ::ExecutableUnit;
for EFP_deco in op do

FUP = new BackMM ::FunctionaUnitProperty;
FU.has + = FUP ;
EU.monitors + = FUP ;
TE = new BackMM ::TraceElement;
TE.modelSource= ME;
TE.sourceFunction = op;
TE.targetFunction= EU ;
TE.property = FUP ;
BackM.traceElements+ = TE;

end for

end for

end for

}

6.1 Traceability and Back-propagation Model 51

In Figure 6.1 the details of one of the trace elements created during the code
generation process for the AAL2 subsystem is depicted. The meaning of this
trace can be summarised as follows: the trace element client2NodeConnect-

_2_NCC_ci_client2NodeConnect_respT represents the trace link between the
client2nodeConnect operation, and the property respT, defined for the com-
ponent instance NCC and monitored through the code function NCC_ci_cli-

ent2nodeConnect.

Figure 6.1: Trace Element details in the AAL2’s Back-propagation Model

52 Chapter 6. Generating Intermediate Concepts

6.2 Summary and Related Work

In this chapter we presented the transformation step in charge of translating
all the structural information contained in ChessM and InstanceM in terms of
component instances, ports and links as well as state-machines to intermediate
concepts (InterM). The transformation is defined through the QVTo transfor-
mation language and packaged as an Eclipse plugin as part of the generation
chain from ChessM to C++. Moreover, explicit traceability links are gener-
ated and stored in an ad-hoc back-propagation model (BackM) that will be
employed for back-propagation activities.

In the literature several attempts to the code generation from diverse mod-
elling artefacts can be found. In [44] the authors propose a code generation
solution to produce C tailored for real-time embedded systems from AADL
focusing on flexibility of the code generator. This supports the reasoning about
the multi-step approach proposed in our solution thought to be highly flexible
and adaptable to different target platform languages.

The usefulness of introducing intermediate artefacts (i.e., InterMM in our
solution) for mitigating the differences in expressiveness between modelling
and target platform languages is confirmed by [26]. In our solution we prefer to
place intermediate artefacts at the same abstraction level as the design models
in order to maintain domain-independence and enhance reusability.

Several works, such as [45, 46, 47, 48, 49], just to mention a few, provide
solutions similar to ours from an abstract perspective (i.e., using UML profiles
and, except for [48], state-machine diagrams as source artefacts), though not
focusing on generating full-fledged code exclusively from modelling artefacts.

Chapter 7

Completing Intermediate

Model with Behavioural

Descriptions in ALF

As prescribed in its specification [20], the execution semantics for ALF is spec-
ified by a formal mapping to foundational UML (fUML), which is a UML’s
subset defining a basic virtual machine for it, the abstractions supported by
it, and thereby enabling conforming models to be translated into diverse ex-
ecutable forms for different purposes, such as verification, integration, and
deployment [50]. There are three prescribed ways in which ALF execution
semantics may be implemented [20], summarised as follows:

• Interpretive Execution: the ALF code is directly interpreted and exe-
cuted;

• Compilative Execution: the ALF code is translated into a UML model
conforming to the fUML subset and executed according to the semantics
specified in the fUML specification;

• Translational Execution: the ALF code, as well as any surrounding
UML concept in the model, is translated into some executable form on a
non-UML target platform, and executes on it.

In this chapter, we present a solution towards the translational execution of
ALF, using the UML–ALF implementation and related facilities (e.g., editors,

53

54 Chapter 7. Completing Intermediate Model with Behavioural

Descriptions in ALF

parsers, metamodels) provided along with Papyrus. This solution complements
the transformation steps presented in the previous chapters enriching InterM
with complex behavioural descriptions thus enabling the generation of full-
fledged code.

Moreover, there are three levels of syntactical conformance defined for
ALF, namely minimum, full, and extended [20]. In this work we focus on
the minimum conformance and we provide translation of most of the entailed
concepts (as depicted in Appendix C). The set of translated concepts, although
limited if considering the expressiveness provided by ALF, reflect the ones
which are usually found and used in the target language (and target domain).

Additionally, we delimited the number of state-machines to one per non-
composite component and we defined ALF code at component operation level.
Behaviour of state-machine transitions is defined within the component opera-
tion triggering the specific transition1.

7.1 Transforming ALF to Intermediate Model

As described in the previous chapter, the structural specification of the sys-
tem defined in ChessM is translated into intermediate concepts and stored in
InterM. In order to achieve full-fledged code generation, we now need to com-
plete it with the behavioural descriptions which are defined in ChessM in terms
of ALF code within components’ operations. An in-place M2M transformation
defined using QVTo takes as input an ALF operation model (AlfOpM), trans-
lates its elements into their counterpart in the intermediate representation, and
places them into the right placeholders in InterM.

Thanks to a dedicated parser provided by Papyrus under Eclipse, the action
code related to each operation can be retrieved (Figure 3.1.d in Chapter 3) and
manipulated as a model, which would be conforming to the ALF operation
metamodel2.

Once parsed into AlfOpM, the ALF code is translated to intermediate con-
cepts through a transformation taking as input AlfOpM, ChessM (or more gen-
erally a UmlM) and InterM and providing an enriched version of InterM as
output. For each of the parsed ALF operations present in UmlM, the related

1This is due to some limitations of the ALF editor provided in Papyrus that is still undergoing
enhancements.

2The ALF operation metamodel is part of the ALF metamodel [20] and for simplicity reasons
we consider the ALF operation models (AlfOpM) as conforming to the ALF metamodel (AlfMM)
leaving apart the ALF operation metamodel

7.2 Applying the Solution 55

operation body is navigated and for each of the found ALF statements the ap-
propriate handler function is called in order to translate it into intermediate
concepts. Each of these handlers employs in turn further helpers and queries
whose size varies from few to several hundreds of lines of code (e.g., 280 lines
is the size of the transformation rule translating boolean expressions). An ex-
ample partially representing the translation of the if statement is depicted in
the next section.

The concepts in the minimum conformance that are currently left out from
the translation process, most of which not commonly used in the target lan-
guage (and domain), are: Behavior Invocation Expressions, Feature Invoca-
tion Expressions, Super Invocation Expressions, Link Operation Expressions,
Class Extent Expressions, Sequence Operation Expressions, Sequence Reduc-
tion Expressions, Sequence Expansion Extensions, Isolation Expressions, Clas-
sification Expressions, Conditional-Test Expressions, Annotated Statements,
Empty Statements, accept Statements, and classify Statements. It is important
to notice that the translation of ALF concepts is independent of the underly-
ing UML, and this makes the related transformation process reusable in other
development processes which are based on UML profiles.

7.2 Applying the Solution

In order to show an example of input and output of the transformation process
we consider the state-machine in Figure 4.2 of Chapter 4, which represents the
behaviour of the AAL2’s NodeConn component and for which we focus on
the ALF code specifying the operation NodeConn_riDisconnectCfm. In
this case the transformation process operates as follows.

First, an Operation is created with Signature set as NodeConn_ri-

DisconnectCfm and owning passed parameters portId and serverConn_r de-
fined as ScopedNamedInstance. Then, an IfStatement is encountered and
handled. A control statement If is created as well as a ConditionalBlock
and an ElseBlock. ConditionalBlock will contain a Binary expres-
sion as condition (representing the if condition) and two Assign statements.
The Binary expression is of type AND (i.e., logic AND) and combines two
furter Binary expressions of type EQ (i.e., equal to). Moreover, value ac-
cesses are used to represent the single variables within them. ElseBlock

will contain the body of the else (empty for the two outer if statements in Fig-
ure 4.2). Within the IfStatement two more nested IfStatement are encountered
and properly handled. The transformation rules translating an IfStatement are

56 Chapter 7. Completing Intermediate Model with Behavioural

Descriptions in ALF

depicted in Figure B.1 in Appendix B.
To grasp how value accesses, assignments and invocations work, let us

consider the two Assign statements mentioned above. The first will be com-
posed of a ValueAccess, in turn made of an IndexAccessPart, for
representing “connHalf[serverConn_r.connHalf]”), and an AccessPart, for
representing “.respondState”, as left hand side, as well as a FixedValue

set to RI_RESPONDED_CFM as right hand side. The second Assign con-
tains, except for an AccessPart to a newly defined variable secondHalf (as
ScopedNamedInstance) as left hand side, an Invocation of the oper-
ation with Signature NodeConn_getSecondHalf and a ValueAccess for
the parameter “serverConn_r.connHalf”.

7.3 Summary and Related Work

In this chapter we described an automatic mechanism for the translational exe-
cution of ALF, meant as the translation of the ALF text, as well as surrounding
UML concepts (addressed in the previous chapters), into a non-UML target
language to be executed on a non-UML target platform. The mechanism is de-
fined through the QVTo transformation language and packaged as an Eclipse
plugin which is employed in the generation chain from ChessM to C++. At the
best of our knowledge, no documented attempt can be found in the literature
concerning the definition and implementation of transformation mechanisms
towards the translational execution of ALF, thus confirming the novelty of the
contribution.

In the literature works such as [27, 28] generate code exploiting XML-
based formalisms and scripts as well as specifying behaviours by means of
target languages (e.g., Java) instead of model-aware formalisms such as ALF.
In this way, consistency at modelling level may be jeopardised since the ab-
straction gap between modelling and programming languages does not permit
native code from being aware of modelling concepts.

The generality of InterMM (and somewhat its intricacy) allowed us to be
able to translate any combination of (the covered) ALF statements and expres-
sions to intermediate concepts. Examples of this could be complex conditional
logic expressions embedding multiple nested invocations, value accesses, and
indexed values accesses, just to mention a few.

Chapter 8

Generating Full-fledged C++

from Intermediate Model

At this phase of the generation, InterM is complete and the final step of gen-
erating C++ code can be carried out. A M2T transformation defined by using
the Xpand language is in charge of generating the actual C++ taking as input
the sole InterM. Totally, the transformation is composed by the following five
template files containing transformation rules:

• Expressions: definition of the transformation rules translating the
intermediate concepts concerning expressions (i.e., Expression and
specialising elements in Figure A.3) to C++;

• Statements: definition of the rules that take care of transforming
the intermediate concepts concerning statements (i.e., Statement and
specialising elements in Figure A.2) to C++;

• Declarations: definition of the transformation rules that transform
the intermediate concepts (e.g., variables, methods, classes) into C++
forward declarations;

• Implementations: definition of the transformation rules that gener-
ate the implementation of the methods defined in InterM;

• Main: representation of the core template that, exploiting the other ones,
generates a C++ header (.h) and a C++ implementation file (.cpp).

57

58 Chapter 8. Generating Full-fledged C++ from Intermediate

Model

Figure 8.1: Xpand rule for If-statement

Functional extensions have been defined in terms of the Xtend1 language in
order to lighten the verbosity of the transformation rules and increase their
readability and understandability. Moreover, by exploiting the notion of poly-
morphic template invocation, we were able to considerably contain the size of
the transformation both in number of rules and lines of code.
In Figure 8.1 we depict the Xpand rule that generates the structure of an if

statement defined in the Statements template. Once such a statement is
found in InterM, each of the conditional blocks (line 5), meant as the first if as
well as any of the eventual following else if, is “expanded” by calling the ap-
propriate rule (lines 12-17) and thereby the if skeleton is generated. Then, the
if condition is built by a set of rules defined in the Expressions template,
depending on which composition of expressions the conditional expression is
composed of. The body of the if is generated eventually by (i) declaring vari-
ables in the scope of the if block (line 14) through appropriate rules defined

1http://www.eclipse.org/modeling/m2t/?project=xpand

59

in the Declarations template, and (ii) unwinding the body by calling the
appropriate rule in the Statements template for each of the statements com-
posing it (line 15). Finally the else statement is generated in a similar manner
(lines 22-27). The transformation workflow defined in the Main template is
summarised by means of pseudo-code in Algorithm 4.

Algorithm 4 M2T Transformation from InterM to C++
Intermediate2Cplusplus(in InterM, out [∗.h, ∗.cpp]){
createHfile(){
generateDefines(in InterM.defines);
generateTypeDefs(in InterM.types);
generateGlobalV arsDeclaration(in InterM.globalvariables);
generateInjectionMarkers(in InterM.markers);
generateClassesDeclaration(in InterM.types)
generateFunctionsDeclaration(in InterM.functions);
generateDatatypeDeclaration(in InterM.types)

}
createCPPfile(){

generateStructs(in InterM.structs);
generateGlobalV ars(in InterM.globalvariables);
generateOSEprocesses(in InterM.processes);
generateFunctionsImpl(in InterM.functions);
generateOtherMethodsImpl(in InterM.types)

}
}

The transformation takes as input InterM and produces in output header (.h)
and implementation (.cpp) files, while configuration and make files are stati-
cally defined since they do not depend on the concepts carried by InterM. For
generating the header file, InterM is navigated in order to translate definitions
(i.e., defines, types, injection markers) and declarations (i.e., global variables,
classes, functions, complex data types by means of classes). Afterwards, the
implementation file is produced by navigating InterM in order to generate dec-
larations (i.e., structures, global variables, OSE processes) and implementa-
tions of concepts declared in the header file (i.e., functions and other methods).
A portion of the code generated (both header and implementation files) for the
AAL2 subsystem is depicted in Appendix D in Figures D.1 and D.2, where
the focus is on a subportion of the code concerning the NodeConn component
instances including the code related to the ALF code specifying the behaviour
of the operation NodeConn_riDisconnectCfm (modelled in Figure 4.2).

In respect to the M2M transformation process that manipulated ChessM to
get InterM, which is closer to the type of language we aim to generate (i.e.,

60 Chapter 8. Generating Full-fledged C++ from Intermediate

Model

C++), the M2T transformation task for the translation of modelling concepts
from InterM into C++ is less intricate. This characteristic together with the
generality of the concepts defined in InterMM makes it possible to implement
other M2T transformations for generating code targeting different languages
(e.g., Java or C#).

8.1 Deployment and Platform Configurations

The provided solution entails the generation of code for two different deploy-
ment configurations, namely single and multi process, and targeting Linux and
OSE. On the one hand, when targeting Linux the application is generated as
single process and, in our case, no particular deployment model is required.
On the other hand, in case the generation targets OSE a detailed deployment
model is needed for the transformation process to produce either single or multi
process applications. The ability to handle parallelisation, transparently from
the underneath hardware, is provided by OSE as described in Chapter 2.

For describing deployment information in CHESS-ML we exploit specific
concepts by which the modeller defines allocation of component instances to
processes through specific concepts provided by MARTE. Regarding specifi-
cally OSE, the deployment of component instances to the processing nodes is
achieved through two intermediate layers: the OSE process and the OSE mod-
ule. In fact, a component instance is allocated through a one-to-one connection
to a specific OSE process; having a one-to-one connection allows monitoring
at component level through the related process as described in the next Chap-
ter. OSE processes are then allocated to OSE modules through a many-to-one
connection; the module represents the running unit that will be deployed on
the actual processing unit. In Figure 8.2 a portion of the deployment model
concerning the AAL2 subsystem is depicted. More specifically the following
allocations are shown:

• The two instances of component NCIClient are allocated to mod-
ule mod1 through, respectively, processes mprocA and mprocB (Fig-
ure 8.2.a);

• The single instance of AAL2RIClient is allocated to module mod2
through process mprocC (Figure 8.2.b);

• The single instance of NCC is allocated to module mod3 through process
mprocE (Figure 8.2.c).

8.1 Deployment and Platform Configurations 61

Figure 8.2: Partial Deployment Model of the AAL2 Subsystem

The OSE processes are defined as elements of type OSE_Process and stereo-
typed with MARTE’s �MemoryPartition�, while the OSE modules are typed
as OSE_Module. The allocation is modelled by MARTE’s �allocated�
(on allocated components, process and modules) and �allocate� (dotted ar-
rows between elements with allocation relationship). Moreover, the specific
instance of the component which is meant to be allocated to a process is speci-
fied through a MARTE’s �nfpConstraint� labelled instance.

In order to allow generation towards different platforms, the transforma-
tion process has to take into account the information carried by the deployment
model that, together with the functional model, drives the code generation.
More specifically, in the case of OSE applications, that information is exploited
to create processes and modules as well as to statically deploy component in-
stances on them. Moreover, the deployment configuration drives the generation
of the communication code in order to distinguish between:

62 Chapter 8. Generating Full-fledged C++ from Intermediate

Model

• Intraprocess communication: communication between component in-
stances deployed on the same process, which is achieved by function
calls;

• Interprocess communication: components deployed on different pro-
cesses, which communicate via signals across processes.

Practically, the communication between components defined in ChessM in
terms of ALF as function calls on ports had to be properly translated into ap-
propriate intermediate concepts. Depending on the deployment configuration
of the communicating components, a function call in the model can be trans-
lated into (i) a function call, in case of a single process application, or (ii) into a
message send (i.e, OSE signal) in the case of multi process application. This
is an example of application-specific decisions that had to be taken when im-
plementing the code generation process. In any case, this does not prevent the
code generator to be adapted to other communication paradigms depending on
the specific domain and application under development.

8.2 Summary

In this chapter we described the last step of the code generation process, namely
the transformation from the intermediate model (InterM) to the target language
(C++). The transformation is defined through the Xpand language and it is
part of a set of Eclipse plugins providing the generation chain from ChessM to
C++.

Additionally we depicted how to model deployment information in CHESS-
ML in terms of the allocation of components instances to processes and mod-
ules through specific concepts provided by MARTE. The deployment model is
crucial for targeting different platforms (Linux and OSE). In fact, different de-
ployment configurations affect the M2T transformation since communication
patterns among components vary depending on them.

In the scope of the CHESS project, the ability to produce OSE tailored
code, with its specific libraries and APIs, enabled the possibility to validate
the code generation process against industrial case-studies in the telecommu-
nication applicative domain. Moreover, the monitoring capabilities built upon
OSE permitted to employ the round-trip approach for deployment assessment,
as described in the next chapter.

Chapter 9

Code Execution Monitoring

and Back-propagation

At this point of the development using our round-trip approach, the target code
has been automatically generated and therefore the forward path is completed.
The next operation is monitoring the code execution on the specific platform
to gather runtime values for the selected EFPs, and then back-propagate them
to modelling level.

For the provision of back-propagation capabilities the approach had to
overcome common reverse engineering challenges in mapping data derived
from data analysis (e.g., monitoring results) to more abstract design levels [51].
This is usually achieved by supporting iteration of the process and bidirec-
tional mappings from models to data analysis and vice versa [51]. Our solution
achieves back-propagation through a set of model transformations (T2M and
M2M, both in-place) which enriches the design model with the observed values
gathered at system implementation level by monitoring activities.

The back-propagation process is composed of:

• Monitoring results and traceability information management: results
coming from the monitored execution of the generated code are part
of the source artefacts for back-propagation to the design models; the
representation format of this information is pivotal. Monitoring results
are manipulated in order to extract the observed values and store them
in formal structures to be fed to the back-propagating transformations.
The proposed solution provides storing structures as part of the back-

63

64 Chapter 9. Code Execution Monitoring and Back-propagation

propagation metamodel (BackMM). Observed values as source for the
back-propagating transformations are not enough. In fact, the traceabil-
ity chain defined along the path from design model to observed values
is also part of the source artefacts to be fed to the transformations in
order to correctly propagate values back to the design model. More-
over, regarding the code inserts needed for monitoring activities, they
are automatically generated with the rest of the implementation, thus not
jeopardising the consistency between source model and code;

• Annotation of design models: the final step of the round-trip approach
is the enrichment of the design model with values gathered at system
implementation level. The enrichment is performed by injecting the ob-
served values into the related model elements’ placeholders at design
level.

Once completed, the back-propagation task produces an extra-functionally dec-
orated version of the initial design model. At this point it is possible for the
developers to evaluate it and possibly operate modifications and optimisations
when needed. The process might necessitate multiple iterations in order to
reach the desired quality level, in terms of EFPs, required by the system speci-
fication.

Depending on target platform and available monitoring features, selected
EFPs can be monitored at a specific level of granularity and back-propagated
to the design model for, e.g., comparing expected with observed values. More
specifically, regarding applications generated targeting Linux we were able to
exploit specific APIs to monitor total execution time and allocated memory at
(component’s) function level. Concerning multi process applications for OSE,
we could gather a wider set of EFPs both at component and system level.

The way to perform the injection of monitoring results to BackM depends
on both code generation and output format of the monitoring activities; it could
in fact vary from M2M to T2M transformation (or the combination of both).
This can be considered a variable point of the round-trip approach in the sense
that it is hard to generalise for a multitude of different tools. In this work we
implement this injection by means of an in-place T2M transformation since the
monitoring activities (both in Linux and OSE) give a textual description of the
computations as output.

In the next sections we describe the mechanisms, in terms of model trans-
formations and involved intermediate artefacts, for code execution monitoring
and back-propagation for both function level monitoring in Linux and compo-
nent level monitoring in OSE.

9.1 Monitoring and Back-propagation at Function Level in Linux 65

9.1 Monitoring and Back-propagation at Function

Level in Linux

Once C++ for Linux is generated from the AAL2’s ChessM, we employ the
API getrusage [52] for monitoring its execution at function level. The mon-
itoring’s outcome is a log file made of a set of four-token lines formatted as:
ExecutableUnit ModelElementInstance.id Property Value.
In Listing 9.1, an example of the log file specific to our example is depicted. In
the first row we can see that a response time of 1201 milliseconds has been ob-
served for the function NCIClient_ci_node2clientResponseFail

in the component instance with ID = 13.

Listing 9.1: Monitoring Log File

N C I C l i e n t _ c i _ n o d e 2 c l i e n t R e s p o n s e F a i l 13 respT 1201
N C I C l i e n t _ c i _ n o d e 2 c l i e n t R e s p o n s e F a i l 13 m e m o r y S i z e F o o t p r i n t 8716
NCC_ci_nodeConnResp 2 respT 3402
NCC_ci_nodeConnResp 2 m e m o r y S i z e F o o t p r i n t 12327
N o d e C o n n H a n d l e r _ c i _ c l i e n t 2 n o d e C o n n e c t 12 respT 6004
N o d e C o n n H a n d l e r _ c i _ c l i e n t 2 n o d e C o n n e c t 12 m e m o r y S i z e F o o t p r i n t 4550
NetConn_c i_ne tConnReques t 3 re spT 1457
NetConn_c i_ne tConnReques t 3 m e m o r y S i z e F o o t p r i n t 6093
P o r t H a n d l e r _ c i _ n o d e C l i e n t R e q u e s t 7 re spT 3990
P o r t H a n d l e r _ c i _ n o d e C l i e n t R e q u e s t 7 m e m o r y S i z e F o o t p r i n t 8770
AAL2RIClient_ci_connNodeReq 14 respT 1805
AAL2RIClient_ci_connNodeReq 14 m e m o r y S i z e F o o t p r i n t 9982

The injecting in-place T2M transformation is implemented in Java and, taking
as input the BackM and the monitoring log file (LinuxMF), acts according to
Algorithm 5.

Algorithm 5 Log to BackM Injection Algorithm
for each line l in LinuxMF do

execUnit = l[1];
id = l[2];
property = l[3];
value = l[4];
BackMtrace = BackM.search(execUnit, id, property);
if BackMtrace! = NULL then

BackMtrace.property.value = value;
end if

end for

66 Chapter 9. Code Execution Monitoring and Back-propagation

LinuxMF is navigated and each line is tokenised according to the defined for-
mat; the tokens ExecutableUnit, ModelElementInstance.id and
Property represent the information for which a match has to be sought in
BackM. The identifier (represented by ModelElementInstance.id) re-
lated to the ModelElementInstance is crucial for identifying from which
component instance in the code the observed value is derived and thereby to
which trace element has to be injected in BackM. Once a match is found,
which is to say that there is a trace element BackMtrace linking Property
with ExecutableUnit and ModelElementInstance, then the token
Value is injected into the correct placeholder pointed by Property.

The resulting complete BackM for the AAL2 subsystem is shown in Fig-
ure 9.1.

Figure 9.1: Injection of the monitoring results to the back-propagation model

9.1 Monitoring and Back-propagation at Function Level in Linux 67

Note that, since during monitoring activities no values were gathered for the
properties defined for the functions of the NodeElem component, no value
is injected into BackM. At this point all the information to drive the back-
propagation to ChessM is stored in BackM. The injection of values is per-
formed through a QVTo in-place M2M transformation. Taking as input ChessM
and BackM, the transformation performs a set of in-place modifications on
ChessM to enrich it with the monitored values stored in the BackM.

As defined in Chapter 2, BackM is composed by a non-empty set of trace
elements TE defined as quadruples <ME, FU, EU, FUP> where ME is a model
element contained in a design model SM. FU represents an operation/method
defined in ME and FUP represents an EFP defined for FU and observed by
monitoring the execution of the executable unit EU. The transformation algo-
rithm (Algorithm 6) takes in input BackM and ChessM, as well as the meta-
models to which they conform to; the output will be an enriched version of
ChessM.

Algorithm 6 BackM to ChessM Injection Algorithm
for each trace element TE = (ME,FUP) in BackM do

ChessMproperty = ChessMproperty.search(ME,FUP);
if ChessMproperty exists then

SMproperty.value = FUP.value;
end if

end for

BackM is navigated and for each trace element TE a match is sought in ChessM;
if model element ME and property FUP traced by TE match with a correspond-
ing pair in ChessM then the value associated to FUP in TE is injected into the
matching property in ChessM.

In Figure 9.2 the AAL2 subsystem and its NCC composite component with
back-propagated values for execution time and allocated memory are shown.
More specifically the values are back-propagated to the apposite annotation
stereotyped as �CHRtSpecification�, which we defined in ChessMM as a
modified version of MARTE’s �RtSpecification�. In this case, since the
monitoring is performed at function level, the annotation is connected to the
provided port of the involved component, which is the place where the func-
tion is exposed. Since the same port can be typed to different interfaces and
expose several functions, through the property partWithPort we identify
the specific interface and, within it, through context we specify which of the
interface’s functions the annotation is related to.

68 Chapter 9. Code Execution Monitoring and Back-propagation

Figure 9.2: Back-propagation to AAL2 subsystem in CHESS

The back-propagated values are put in: execT, for execution time, and
memorySizeFootprint, for allocated memory. The round-trip process
has produced an extra-functionally decorated version of the design model and it
is now possible for the developing team to evaluate monitored EFPs. The deco-
rated ChessM could be employed, e.g., to perform analysis related to execution
time, such as Measurement-based Worst-Case Execution Time (WCET) [53]
which exploits the combination of model-based and code execution analysis
for improving WCET analysis in embedded real-time systems. Eventually, op-
timisation activities can be performed directly at modelling level rather than at
code level with a consequent conservation in terms of consistency among the
artefacts and their properties. The process is meant to be iterated at will until
the developer is satisfied with the resulting implementation.

9.2 Monitoring and Back-propagation at Component Level in OSE

69

9.2 Monitoring and Back-propagation at Compo-

nent Level in OSE

In order to enable component level1 monitoring in OSE, specific extensions to
the execution platform have been performed and presented in [54]. These ex-
tensions have been implemented mainly in the form of two additional system
processes: one for monitoring and another for logging. These two processes
are assigned lower priorities than the generated application ones. The monitor-
ing process is responsible for calculating and determining the values for EFPs
of interest for both the whole system as well as per component. The actual
task of logging this information is separated from the monitoring process and
performed by the logging one. This separation allows to mitigate the side ef-
fects of resource-demanding I/O activities. When a request for monitoring is
issued by one of the application processes, the monitoring process starts exe-
cuting and determining EFPs’ values. The information to be logged is sent to
the logging process by the monitoring one through apposite signals. Therefore,
if the logging process does not get the needed CPU time to perform its job, the
signals sent to it are pushed in its signal queue, maintained automatically by
OSE, and processed as soon as it gets to execute.

The implemented monitoring process is capable of determining values for
the following properties:

• System level properties: total CPU load, total number of generated sig-
nals in the system, system throughput (sent and received packets), total
number of processes in the system;

• Component level properties: total execution time of a component in-
stance (from the startup of the system including all invocations of it),
execution time (one invocation), response time, heap and stack usage,
number of signals generated, and CPU load.

In our example we are interested in the component level properties and, among
them, we take into account: total execution time of a component instance,
response time, heap and stack usage since they can be represented through
defined stereotypes at modelling level and therefore eventually used for model-
based analysis based on MARTE.

1From this point on, we employ component level and process level monitoring as synonyms
since, having a one-to-one relation, the values monitored for a specific process represent the values
related to the component instance allocated to it.

70 Chapter 9. Code Execution Monitoring and Back-propagation

To calculate execution and response times, swap_in and swap_out han-
dlers of OSE have been used. The former event handler is invoked each time
a process gets CPU to execute, and the latter is invoked when CPU is taken
from a process and it is preempted. The algorithms and mechanisms for the
calculation of execution and response times have been implemented into these
two event handlers. However, since they are invoked for every process in the
system, additional tweaks were made in order to filter their executions for only
the generated application processes which are of interest.

The monitoring activities give a textual description of the gathered values
as output. The results of monitoring the execution of the C++ code generated
from the AAL2’s ChessM and with the deployment configuration in Figure 8.2
are shown partially in Listing 9.2.

Listing 9.2: Monitored Properties

466 ,PROCID , mprocA ,1 0 0 3 c ,65596
476 ,S_CPU_LOAD , 29 .9780
476 ,S_NUMBER_OF_PROCESSES , 73476
476 ,S_NUMBER_OF_SIGNALS , 365
479 ,S_THROUGHPUT, 942 ,1676
479 ,P_HEAP_USAGE , 384 ,512
479 ,P_STACK_USAGE , 1536 ,0 ,2048
479 ,P_NUMBER_OF_SIGNALS , 2
579 ,P_EXECUTION_TIME , 14
579 ,P_RESPONSE_TIME , 1609984
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
579 ,PROCID , mprocE ,10040 ,65600
. . .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
612 ,PROCID , mprocC ,1 0 0 3 e ,65598
622 ,S_CPU_LOAD , 9 .8427
622 ,S_NUMBER_OF_PROCESSES , 73
622 ,S_NUMBER_OF_SIGNALS , 675
622 ,S_THROUGHPUT, 820 ,1676
623 ,P_HEAP_USAGE , 384 ,512
623 ,P_STACK_USAGE , 1536 ,0 ,2048
623 ,P_NUMBER_OF_SIGNALS , 2
623 ,P_EXECUTION_TIME , 11
623 ,P_RESPONSE_TIME , 1619979

The first column in Listing 9.2 indicates the time instance at which the moni-
toring has been performed (in system ticks unit). The second column identifies
the type of the monitored information; the properties beginning with ‘S_’ in-
dicate a system level value while the ones starting with ‘P_’ identify a process
level value (e.g., S_NUMBER_OF_SIGNALS: total number of signals in the

9.2 Monitoring and Back-propagation at Component Level in OSE

71

system at the moment of monitoring, P_NUMBER_OF_SIGNALS: total num-
ber of signals owned by a process). The values after the name of the process
(i.e., mprocA) indicates its ID (system unique identifier) in hexadecimal and
decimal format respectively. As it can be seen, some of the properties have
multiple values, in which case they mean different aspects related to the same
property. For instance, the first value related to P_HEAP_USAGE represents
the heap size requested by the process and the second one shows the actual heap
size allocated for the process by the operating system (the difference between
the two is due to factors such as memory paging and memory management
mechanisms of OSE).

The results of the back-propagation are shown by means of extra-functional
decorations of ChessM in Figure 9.3, where we can notice that values concern-
ing mprocA are back-propagated to instance 1 of NciClient while the ones
carried by mprocC apply to the single instance of AAL2RI_Client. This
correspondence is stored in BackM and originates from the deployment model
depicted in Figure 8.2. The back-propagation process is, even in this case, a
two-step chain consisting of an in-place T2M transformation from monitor-
ing log file to BackM and an in-place M2M transformation from BackM to
ChessM. The working principle is the same as the transformations presented
in the previous section, with practical differences in the tokenization of the log
file as well as the target elements for back-propagation in ChessM (compo-
nent instance deployed on a specific process instead of function of a specific
component). Once the monitored results have been back-propagated, the de-
veloper has at her disposal the modelled system enriched with actual values
gathered at runtime. The values depicted in Listing 9.2 and propagated back to
ChessM (in Figure 9.3) are related to the deployment configuration in which the
component instance NciClient[1] is deployed to mod1 through mprocA
and the component instance AAL2RI_Client[1] is allocated to mod3 via
mprocC.

As for the function level monitoring, the values are back-propagated to the
apposite annotation stereotyped as �CHRtSpecification�. In this case, since
the monitoring is performed at component level, the annotation is connected
directly to the component; through the property instance we identify the
specific instance the annotation is related to. The back-propagated values are
put in: heapSize, for heap usage, stackSize, for stack usage, respT, for
response time, and execT, for execution time. At this point, let us try out a dif-
ferent deployment configuration in which we allocate both NciClient[1]
and AAL2RI_Client[1] to mod1 since, e.g., the communication between
them is quite dense. Once the model is modified, the code can be regener-

72 Chapter 9. Code Execution Monitoring and Back-propagation

Figure 9.3: Decorated AAL2 model in CHESS

ated and its execution monitored. In Table 9.1 the monitoring results concern-
ing both the first as well as the tuned deployment configurations are depicted.
Configuration 1 represents the deployment of the two component instances on
separate modules, while 2 concerns the deployment of both instances on a sin-
gle module.

Configuration Component Instance Process Module Execution Time

1 NciClient[1] mprocA mod1 14
1 AAL2RI_Client mprocC mod3 11

2 NciClient[1] mprocA mod1 14
2 AAL2RI_Client mprocC mod1 3

Table 9.1: Different deployments that induce different monitoring results

As we can see, by changing the deployment configuration, in the specific case
by allocating the two instances on the same module, we actually experience a
decrease of the execution time of AAL2RI_Client from 11 to 3. Besides
this reduction which may not be relevant in the actual employment of the sys-

9.3 Summary and Related Work 73

tem, what we aimed at pointing out was the usefulness of having an automatic
mechanism for gathering and back-propagating runtime values to model level
for allowing thorough evaluation of the system’s deployment configuration.
While providing meaningful values at model level, the approach is not yet able
to provide hints on how to interpret them. Limitations of the current solution
in this sense as well a future enhancements towards further automation in the
tuning phase are discussed in the Chapter 11.

9.3 Summary and Related Work

In this chapter we described the details of our novel step of back-propagation
from runtime to modelling level for evaluating the preservation of selected
system properties. Starting from monitoring the execution of the generated
code on the specific platform, we showed how the values are gathered and the
transformation means that have been designed and implemented to allow the
annotation of design models with those values. Depending on the target plat-
form’s monitoring capabilities, we provided monitoring and back-propagation
at two different levels of granularity, namely function level in case of Linux
applications and component level in case of multi process OSE applications.
Moreover, a possible employment of component level monitoring and back-
propagation in deployment assessment has been depicted.

In the next paragraphs, our solution in terms of back-propagation, monitor-
ing and employment of system implementation values for deployment issues is
related to the state-of-the-art.

Back-propagation. Navabi et al. [55] in the early 90’s, and some years later
Mahadevan and Armstrong [56], came up with different approaches for back-
annotating behavioural descriptions with timing information; however, both
operate horizontally2 in terms of abstraction levels and no automation is pro-
vided. It is worth noting that having a mechanism to automatically annotate
the design model with monitored values is of critical importance in order to
assist the developer in understanding at a glance the relationships between ex-
pected behaviour and model entities at design level, without having to inspect
the related generated code.

2Horizontal and vertical are used for specifying the direction of data transitions among artefacts
either at the same (i.e., horizontal, from model to model) or at different (i.e., vertical, from code to
model) level of abstraction.

74 Chapter 9. Code Execution Monitoring and Back-propagation

In the literature, Varró et al. propose in [57] back-propagation for enabling
execution traces retrieved by model checkers or simulation tools to be inte-
grated and replayed in modelling frameworks; even though some similarities
to our approach might be found when dealing with traceability issues, the two
approaches aim at solving two different problems. The most similar approach
to ours is described by Guerra et al. in [58] where back-propagation of analysis
results to the original model by means of triple graphical patterns is described.
Nevertheless, the approach is meant to horizontally operate at modelling level
with propagation of data among models. While, dealing with embedded sys-
tems, our approach focuses on vertically propagating analysis results observed
at code level back to design models for better understanding of those EFPs that
cannot be accurately predicted at higher levels of abstraction.

Monitoring. Regarding measurements of EFPs at system implementation
level, besides runtime monitoring, other verification techniques (e.g., static
analysis) can be used for small and simple systems, but their application for
large and complex systems might not always be practical and economical [59].
Even in cases where such techniques are feasible, conditions that cause invali-
dation of the analysis results at runtime may happen. An example of such is the
difference between the ideal execution environment (considered for perform-
ing analysis) and the actual one which leads to the violation of the assumptions
that were taken into account when performing static analysis [6]. Therefore,
the information gathered through monitoring the execution of a system is not
only interesting and useful for observing the actual behaviour and to detect vi-
olations at runtime, but also to be used for making adaptation decisions, as well
as to induct enforcement and preservation of properties.

Saadatmand et al.’s work in [60] serves as an example of using monitoring
information for balancing timing and security properties in embedded real-
time systems. In [61], they provide an approach for improved enforcement and
preservation of timing properties in embedded real-time systems. Huselius and
Andersson in [62] present a method for the synthesis of models of embedded
real-time systems from the monitoring information collected from their exe-
cution. In this thesis, however, we exploit monitoring results, from which ob-
served values are extracted and used to refine design models with EFPs’ values
detected during the execution of the system.

Deployment Assessment. In the literature there exist approaches dealing
with deployment optimisation based on measurements at system implementa-
tion level as described in [63]. A dated approach by Yacoub in [64] introduces

9.3 Summary and Related Work 75

systematic measurements of system properties for component-based systems,
but no tool support is provided.

The COMPAS framework by Mos et al. [65] is a performance monitoring
approach for J2EE systems. Components are Enterprise Java Beans (EJBs)
and the approach consists of monitoring, modelling, and prediction. An EJB
application is augmented with proxy components for each EJB, which send
timestamps for EJB life-cycle events to a central dispatcher. Performance
measurements are then visualised with a proof-of-concept graphical tool and a
modelling technique is used for generating UML models with SPT annotations
from the measured performance indices. Then, for performance prediction of
the modelled scenarios, the approach suggests using existing simulation tech-
niques, which are not part of the approach.

Based on the COMPAS framework, two further approaches have been pro-
posed: AQUA, by Diaconescu et al. [66], and PAD, by Parsons et al. [67].
Both approaches expect working J2EE applications as input. AQUA focuses
on adapting a component-based application at runtime if performance prob-
lems occur. The main idea is that a software component (EJB) with perfor-
mance problems is replaced with one which is functionally equivalent from
a set of redundant components. Furthermore, the approach involves monitor-
ing the workload of a running application. PAD focuses instead on automatic
detection of performance anti-patterns in running component-based systems.
The approach targets EJB systems and includes performance monitoring, re-
construction of a design model, and anti-pattern detection.

The TestEJB framework by Meyerhöfer et al. [68] implements a profiling
technique, which is application independent and more lightweight than avail-
able commercial J2EE profiling tools. Besides the execution times of individ-
ual EJBs, the framework is able to determine call traces from single users. The
approach is based on the interceptor patterns and implemented as an extension
to the JBoss application server.

The goal of these approaches is to identify performance problems in the
running system and adapt the implementation (at code level) to make it able to
fulfil EFPs requirements. Instead, the uniqueness of our round-trip approach
consists in introducing a new dimension to deployment assessment at model
level with the help of measurements gathered at system implementation level.
In fact, when measurements are completed, the code is not manually tuned, but
changes to the system are rather performed at model level from where code
is re-generated. Doing so, consistency between models and code is kept and
thereby the validity of decisions made at model level is likely to be preserved at
code level (and the other way around). Moreover, by exploiting the accuracy of

76 Chapter 9. Code Execution Monitoring and Back-propagation

system implementation level measurements at modelling level, the developer
is relieved from complex code inspection and error-prone manual tuning of
code.

Chapter 10

Validation

The round-trip approach proposed in this thesis has been validated both in-
house and in industrial settings [69] at Ericsson Nikola Tesla (Zagreb, Croatia)
under the leadership of Ericsson AB (Stockholm, Sweden). The generated
code for the complete AAL2 system was compiled and executed on the actual
target platform.

Concerning scalability, we analysed the behaviour of the approach from
the perspective of the entire process as well as stepwise. Moreover, within the
same case-study we tested several model sizes, as depicted in Table 10.1, on a
machine running a 2.6GHz CPU and 8GB RAM in order to evaluate the trans-
formations performance.

Component instances # Port instances # Generated lines Generation time

14 66 4270 52 sec
253 1600 6498 113 sec
2003 14000 20216 831 sec

Table 10.1: Details about size of models and related generation results

From the numbers reported in the table, one can notice that the increment in
the number of generated lines is not proportional for the three presented cases.
This is due to the fact that, since we consider instances rather than types, dec-
larations in the header and implementations are only defined once per set of
instances (at classifier level), while forward declarations as well as instantia-
tion and initialisation are generated for each of the instances (at instance level).
Given n as the greatest number of instances per component, m as the greatest

77

78 Chapter 10. Validation

number of instances per port and k as the number of hierarchical composi-
tion levels, the general limit behaviour of the computation is represented by
O((n ∗m)k); this is due to the fact that, in order to generate explicit instances
and links, the model is navigated up to (n∗m) times to perform one step down
from a higher hierarchical level to a lower one (for a total of k levels). Overall,
from a process-wise perspective, the proposed solution on a model with k = 2,
resulted very scalable up to n+m = 103 (i.e., within 5 minutes) while degrad-
ing going toward n+m = 104 (i.e., over 30 minutes); in any case the process
always accomplished its goals.

Analysing this result from a stepwise perspective, we noticed, on the one
hand, that the least scalable tasks were those responsible for the code gener-
ation. The reason stems from the computational complexity of the involved
transformations. On the other hand, regarding the time needed for monitor-
ing activities, it heavily depends on the duration of the code execution since
the measurements themselves are mostly performed by parallel processes dur-
ing the execution. Nevertheless, the calculation of more complex EFPs could
introduce additional complexity hence requiring additional computation time.

Concerning back-propagation tasks, they resulted to be very scalable thanks
to the detailed information, concerning the path to the specific model element
to be annotated, carried by the back-propagation model. This means that most
of the needed computation is carried out when generating the back-propagation
model, while the actual values injection, first from monitoring results to back-
propagation model and therefore from the latter to the design model only in-
volves an update of specific values with no need of complex searches nor nav-
igations.

The better scalability of back-propagation tasks (e.g., monitoring results
management and actual back-propagation to design model) resulted to be less
dependent on the design model’s size. Intermediate artefacts’ size may grow
proportionally to design model’s; the fact that they are meant to be transparent
and handled only by the process itself relieves the developer of the burden
of understanding and managing them and lowers possible overheads deriving
from their graphical rendering.

Generally, the number of iterations for reaching the desired EFPs depends
on the accuracy of measurements as well as the modeller’s ability in both mod-
elling the system and also effectively employ the back-propagated values to
tune the models accordingly. That is to say that the developer is supposed
to be able to understand the back-propagated values in relation to the ex-
pected behaviour and thereby tune the models accordingly to generate a better-
performing implementation. In aid to the modeller, model-based analysis and

79

deployment optimisation techniques could be exploited to minimise the num-
ber of iterations.

On the Model Transformations The round-trip approach consists of a set
of model transformations. In Table 10.2 we depict them with details regarding
number of transformation rules as well as number of lines. Having the solution
divided into smaller and separated transformation steps provides a number of
advantages:

• Debugability: testing a transformation process of this size is not a triv-
ial task. Having it divided into separated steps that are sequentially exe-
cuted helps in debugging and verifying the transformation process. For
instance, the single transformations have been tested1 one by one (and
within them rule by rule) focusing on coverage and determinism of the
correspondence source-target;

• Adaptability: changes to the source modelling language (e.g., CHESS-
ML) as well as the action language (e.g., ALF) may lead to the necessity
of adapting the transformation process to account them. Since separated
transformations have been defined for the translation of structural and
behavioural concepts, changes to the one would not affect the other and
vice versa, making the adaptation task less intricate;

• Reusability: the single transformation steps are independent from each
other making them eligible, even individually, for reuse in other devel-
opments and tools.

Task Transformation Language Type # Lines # Rules

Code Generation ChessM to InstanceM QVTo M2M 419 13
Code Generation ChessM to InterM QVTo M2M 1257 43
Code Generation AlfM to InterM QVTo In-place M2M 3296 104
Code Generation InterM to C++ Xpand M2T 823 82
Back-propagation Log to BackM Java In-place T2M 589 —
Back-propagation BackM to ChessM QVTo In-place M2M 125 10

Table 10.2: Details about involved model transformations

Moreover, the exploitation of intermediate modelling artefacts (i.e., intermedi-
ate metamodel) gives us the possibility to easily extend the approach to enable

1Note that the transformation testing phase was mostly manual due to the scarcity of reliable
automatic testing mechanisms for such intricate multi-source and multi-target transformations.

80 Chapter 10. Validation

the generation of code in programming languages different from C++. This can
be achieved by acting only on the M2T transformation, which represents the
least intricate transformation step in the generation chain. Generation of C++
sister languages such as Java or C# would require lightweight adaptations to the
existing M2T transformation while, for generating other types of languages,
the M2T transformation might need to be reimplemented from scratch.

The translation of ALF to C++ (via intermediate model) was not trivial due
to several reasons, ranging from different semantics of similar concepts to gaps
in expressive power as well as differences in the allowed programming patterns
the two languages comprise. In order to achieve a deterministic transformation
able to generate C++ from a limited set (within the minimum conformance)
of ALF constructs, we had to identify and find a solution for the languages’
misalignment. In some cases, assumptions made in CHESS helped us out in
this task.

An example of this could be, e.g., the way the two languages manage mem-
ory and objects. ALF, in many ways similar to Java, instantiates objects explic-
itly with the new expression. Declaring a variable with the type of a class or
interface only declares a reference to an object. Moreover, in ALF the object
instance is destroyed whenever there are no more references to it, and memory
released by a garbage collector. C++ does not provide any automatic memory
management; memory is in fact manually managed through new and delete
expressions or the C constructs malloc and free. This semantic gap can be
handled in many different ways; one solution could be to use the smart pointer
design pattern or an intrusive reference counting pointer. Anyhow, since one of
the core assumptions made in CHESS for ensuring preservation of certain EFPs
from models to code is that dynamic instantiation of objects is forbidden, the
code generation process could be relieved from issues regarding memory man-
agement. In fact, this assumption prevents the user from modelling memory
allocations in terms of ALF constructs. Consequently, memory management
(i.e., allocation and release) are only statically defined at transformation level
depending on the target programming language when generating interprocess
communication in terms of message passing.

Chapter 11

Discussion

In this section we present a discussion regarding the research challenges in
relation to the solutions we propose for tackling them. Moreover we elaborate
on general aspects related to the techniques and technologies that have been
considered and exploited to achieve the presented solution.

11.1 Research Challenges and Solutions

Research challenge 1: “Define an automated process to enable the genera-

tion of full-fledged code from design models”.

The round-trip approach is meant to operate on models defined through UML
and its profiles, hence the necessity of handling the ambiguity of UML soon
arose. More specifically, since we employed the component-based design pat-
tern defined in UML, we had to deal with the fact that, while the number of
instances of components and ports can be precisely specified, the port-to-port
links are not equipped with a detailed specification of the component instances
they connect.

That is the reason why we developed means to automatically generate the
set of actual links between explicit component instances by (i) defining seman-
tic rules for fixing the UML’s semantic variation point concerning this issue,
(ii) identifying and developing appropriate means for storing the generated in-
formation (i.e., instance metamodel), (iii) and developing the actual transfor-
mation rules that would follow the defined semantic rules to generate instances
and links. Concerning the semantic rules, since any combination of multiplic-

81

82 Chapter 11. Discussion

ities of components and ports is allowed in UML we had to circumscribe the
problem and define a solution within our scope.

In this activity, we took advantage of one of the constraints given when
defining the CHESS-ML according to which, for ensuring guarantees at run-
time of the properties modelled at design time, dynamic instantiation of com-
ponents is not allowed. Therefore in our solution we entail only prefixed car-
dinalities whose values are defined as concise (i.e., [n]) while range values
(e.g., [n..m]) are left as future enhancement. In addition, the connectors
linking components via ports have fixed multiplicity (i.e., [1]) thus leaving
components’ and ports’ multiplicity as variables for the interconnections cal-
culation and generation, and only binary connections are considered, leaving
n-ary possibilities as future work.

The code generator presented in this work targets single process application
for Linux and multi process applications for OSE. Future work are planned be
directed to the enhancement of the approach for enabling multicore optimized
code generation.

Research challenge 2: “Define and implement translational execution of

ALF towards non-UML platforms”.

The employment of action languages for specifying complex behaviours within
design languages is not new. Many different approaches can be found in the
literature as described in Section 7.3. Nevertheless, there is an issue, often un-
derestimated or even ignored, with many of those approaches which employ
programming languages (e.g., Java or C) as action language: consistency at
modelling level is very hard to keep since the abstraction gap between mod-
elling and programming languages does not permit native code to be aware of
modelling concepts. For this reason we decided to exploit a modelling for-
malism, namely ALF, for the definition of complex behaviours within design
models. This decision, while preferable due to the aforementioned reasons,
came at a cost. In fact, in the case of using programming languages for be-
haviour descriptions, no complex transformation is needed for translating it to
the target language since they coincide. While in our solution, since ALF is a
modelling formalism, a proper set of model transformation rules were needed
in order to translate its concepts to our target language. Moreover, no doc-
umented attempt at translating ALF to target languages can be found in the
literature. We provided a solution towards the translational execution of ALF
through mechanisms able to transform ALF action code first into intermediate
concepts and thereby to the target language.

Also in this task we had to define some constraints in order to achieve de-

11.1 Research Challenges and Solutions 83

terminism in our code generation process. In fact, in its specification, ALF
provides three levels of syntactical conformance, namely minimum, full, and
extended. In our solution we provide a solution targeting the minimum con-
formance and we provide translation of most of the entailed concepts (see
Appendix C). This choice is motivated by the fact that the set of translated
concepts, although limited if considering the expressiveness provided by ALF,
reflects the ones which have a correspondence in the target language (and tar-
get domain).

Research challenge 3: “Define and implement an automated process to en-

able the back-propagation of monitoring results to design models”.

The main goal of the round-trip approach is to aid the developer in assessing,
at modelling level, the preservation of those properties defined in the design
model and monitored at runtime. Therefore, while the generation process im-
plements the forward translation from design model to executable code, a back-
ward transformation process is needed to propagate results coming from code
execution monitoring back to the design model. More specifically, appropriate
means had to be defined and implemented for (i) generating explicit trace links
between design model elements and code, (ii) monitoring the generated code,
and (iii) back-propagating the gathered values to the design model.

The solution we propose for this challenge encompasses the definition and
implementation of intermediate modelling structures for breaking down the
back-propagation into smaller and reusable steps as well as the definition and
implementation of the transformations in charge of performing the injection of
values all the way up from the monitoring artefacts to the design model. More-
over, in order to enable back-propagation activities we needed to define and
store precise traceability information along with the code generation process;
this has been achieved through the definition of a specific enhanced traceability
metamodel (i.e., back-propagation metamodel) as well as ad-hoc transforma-
tion rules for generating explicit trace links when code is generated from design
models.

In the literature we could not find any documented evidence of similar at-
tempts operating vertically from models to code and back for preservation of
system properties. Anyhow, approaches that operate horizontally (model to
model or code to code) in terms of abstraction levels can be found even though
full automation is usually not targeted. Since we focus on embedded systems,
it was crucial for our approach to provide vertical propagation of analysis re-
sults gathered at system implementation level back to design models for bet-
ter understanding of those EFPs that cannot be accurately predicted at higher

84 Chapter 11. Discussion

levels of abstraction. Moreover, we supply an automated mechanism for back-
propagation features in order for the developers to skip overcomplicated and
error-prone manual inspections of the code.

In any case, the developer has control over design models and generated
code and therefore, by modifying any of them, she may cause inconsistencies
during the back-propagation phase and hence jeopardise the reliability of the
back-propagated values. That is the reason for which, in order for the proposed
approach to guarantee that gathered information is correctly and consistently
back-propagated to the design models, generated code is not meant to be man-
ually edited, and once the model is edited, the previously generated code is
considered as obsolete and therefore re-generated in compliance to the current
model version.

Research challenge 4: “Demonstrate how the round-trip approach can be

employed to guide engineering decisions based on back-propagated EFP val-

ues”.

In our solution to code generation we provide two options: (1) highly resource
efficient (in terms of inter-system communications) single process applications
and (2) multi process configurations to run in parallel on multicores. Thanks
to this variability at deployment level, we were able to demonstrate how the
round-trip approach can be employed to guide engineering decisions at mod-
elling level based on measurements gathered at system implementation level;
focus was on deployment assessment.

While there is evidence of approaches that target the identification of per-
formance problems and their fix at implementation level, our approach intro-
duces the possibility to assess deployment goodness at a more abstract mod-
elling level still employing values computed at lower abstraction levels (run-
time). Once again, this characteristic aims at relieving the developer from com-
plex code inspections and error-prone manual code editing.

11.2 General Issues

Interplay of MDE and CBSE. In this research work we exploited the in-
creasingly popular synergy between MDE and CBSE for modelling, generating
and analysing applications in the embedded domain. While some advantages
of those approaches as well as their interplay have been described in Chapter 1,
in this section we highlight some of the issues coming from their interwoven
employment that are often omitted by MDE supporters. On the one hand, one

11.2 General Issues 85

of the goals of MDE is to generate the final application from the design models,
and, as in our case, sometimes the target is the production of the full-fledged
application that can be executed more or less directly after its generation. On
the other hand, CBSE lays its foundations on the notion of component as a
replaceable entity and that software is more and more built by reusing pre-
existing units (e.g., commercial off-the-shelf (COTS)) [2].

The word “reuse” here may create a conflict between the full generation of
MDE and the reuse of components, and thereby legacy code, of CBSE. So what
do we do in such a situation, regenerate everything or reuse existing code? The
answer probably resides in the middle. In fact, for analysability reasons as well
as consistency between artefacts, guarantee and correctness-by-construction of
the generated code, the favourable choice would be to regenerate the code ac-
cording to the actual development process and constraints. On the opposite,
due to safety, security and certification reasons, components might have to be
kept as they are including related code. Combining these reasons, a possible
solution could be to model the components to be reused as “blackboxes” and
treat them as stubbed and therefore implemented by means of external bina-
ries or libraries to be included at code level. In order to achieve this, proper
interfaces between these blackboxes and the rest of the system shall be defined
and implemented according to specific constraints, such as contracts [70], for
defining what the component maintains, what it expects from the surroundings
and what it guarantees both functionally and extra-functionally.

In our research work we did not exploit CBSE in its broader sense, but
rather employed its design pattern (as defined in the UML superstructure) for
encapsulation and concerns-separation reasons. That is to say that a component
might have been modelled as a class or another modelling concept without af-
fecting the applicability of the solution. Thus, in our case code is generated
for the whole model hence leaving open the possibility to interact with ex-
isting binaries by treating them as libraries at model (especially action code)
level. Anyhow, an interesting future direction could be to approach CBSE in
its foundational sense through the introduction of the notion of reusable com-
ponents as well as the definition of the means to describe interactions between
legacy components and the surrounding system.

Model Versioning. One of the main motivations behind the kind of research
work presented in this thesis is to strengthen the willingness from industry
to favour MDE to the detriment of error-prone and costly code-centric ap-
proaches. In order to do that, automation and support to the developer shall be
provided at least at the same level available for code-centric approaches. In this

86 Chapter 11. Discussion

thesis we described in detail our solution for model-driven development of em-
bedded systems with focus on properties preservation through full-fledged code
generation, execution monitoring and back-propagation from code to model.

Nevertheless, many related issues remain open. Let us consider, for in-
stance, versioning of development artefacts. Version Control Systems (VCSs)
have been proven successful in code versioning, but they are only partially suit-
able for handling versioning in the modelling domain. In fact, differences and
conflicts between versions of a same artefact are usually detected at file-level
through line-oriented text comparison. However, even if taking into account
model XMI serialisations (standardised for UML) as [71], the abstraction mis-
match between text and models may lead to erroneous detection of differences
and hence conflicts [72, 73]. Therefore, a number of research works have been
and still are devoted to versioning models [74] and metamodels [75] at the ap-
propriate level of abstraction, that is to say at modelling level rather than at
underlying textual level, advancing the state of the art in (meta)model differ-
encing, versioning, and related co-evolution problems.

While in this research work we did not focus on versioning problems, fu-
ture extensions could entail versioning features in order to enable distributed
development while keeping intact the integrity of the guarantee-oriented na-
ture of our approach. In order to do this, our contributions related to model
versioning [76, 77, 78], which are not part of this thesis, would be exploited.

UML Profiles or Domain-Specific Modelling Languages. The approach
presented in this thesis aims at generally showing that MDE should contem-
plate the possibility that, in many development processes the task of code gen-
eration may be a transitional step rather than a final non-coming back one. This
applies in particular when the focus is on preservation of system properties and
when some EFPs cannot be predicted with accuracy at early stages. Studying
the literature and from the experiences matured during this research work, in
several applicative domains we can identify cases in which such a need arises.
This makes us believe that the idea of enforcing full automation in generating
code as well as the ability to employ data gathered at system implementation
level and back-propagated for optimising models (and thereby code) rather than
employing them for optimising code with manual activities will (and at some
extend already does) draw significant interest in the community.

The basic technologies on which we built our approach upon were mod-
elling languages and model transformations. More specifically regarding the
languages to design the system under development as well as to host back-
propagated information, we employed the CHESS-ML which leverages on a

11.2 General Issues 87

subset of UML, ALF and MARTE. The idea behind CHESS-ML is to provide
a language which is not as general-purpose as UML nor tailored to one single
domain. Rather it should be able to provide means for diverse domains with
common needs (i.e., automotive, aerospace, telecommunication, railways) in
terms of EFPs and constraints to exploit it for the development of embedded
(real-time) systems.

In the MDE community, the usage of UML and its profiling mechanisms
for the definition of domain-specific languages fires up endless debates due
to several reasons [79]. Being one of the main goals to provide a “unified”,
therefore as generic as possible, language, many concepts as well as different
nuances of them have been introduced as part of language throughout the years.

On the one side this can be positively seen as a way to represent a wide
range of concepts with no major limitation, but on the other side one could
argue that practically only very few concepts at a time are employed in a devel-
opment process, making the language way too expressive and heavy in both its
abstract and concrete syntax than actually needed in many cases. At this point
a possible solution could be the employment of profiling mechanisms to tailor
the UML to a specific domain and somehow circumscribe its expressiveness
and focus on selected aspects. Also in this case a debate usually arises; does a
UML profile really incarnate the notion of domain-specific modelling language
(DSML)? The answer depends on the perspective.

According to UML backers, exploiting profiling for tailoring UML to a spe-
cific domain should bring along several advantages, first of all the possibility
to systematically introduce new language elements without having to re-create
the whole modelling ecosystem (including model transformations and model
editors), but also the prevention of metamodel pollution as well as the possi-
bility to reuse existing tools and analysis mechanisms defined for UML and
its profiles. On the other side, supporters of DSMLs as brand new languages
defined for and dedicated to a specific domain struggle to agree with the vi-
sion of a UML profile as such. In fact, extending a large, general-purpose
language (as UML), although tempting given the possibility to exploit exist-
ing language’s syntax and semantics, does not diminish the fact that such a
language is usually too generic and broad for any specific domain [80]. The
work of adding concepts and semantics to a large existing language seems of-
ten to be a harder work than starting from scratch [79]. At the same time, when
defining a DSML from scratch one has to pay attention in the balance between
generality and specificity, since too much emphasis on domain-specific aspects
may make further changes or extensions to the DSML overcomplicated or even
infeasible.

88 Chapter 11. Discussion

In our experience we could profit from some of the features provided by the
UML family, such as ALF for a model-aware definition of complex behaviours,
and MARTE for modelling EFPs and deployment concepts as well as UML
tools (i.e., Papyrus). At the same time we experienced drawbacks, like the fact
that the modelling ecosystem, especially model transformations and editors,
actually needs adaptation, sometimes quite tedious, when UML existing con-
cepts are stereotyped or when the profile itself undergoes modifications. Our
feeling is that the choice of defining a DSML or exploit UML profiling is not
an easy task and should be taken without preconceptions considering a wide
set of variables such as size of the domain, end user’s preferences and will-
ingness in eventually changing current toolset (in case of industrial processes),
expected lifetime of the language to be defined, just to mention a few.

Full Code Generation: Is It Really Worth the Effort? Usually in order
to achieve full code generation more or less extensive amount of information
needs to be modelled. Usually modelling activities lead to the so called ac-

cidental complexity [81], meant as an additional effort introduced in the de-
velopment process by activities which are not directly essential to the solution
of the problem. This would mean that, in some cases, the effort required by
modelling activities to reach the level of details necessary for full generation of
code is equal or even higher than the effort that would be needed to implement
the application by hand.

In our approach we target a full code generation since the overall goal was
to provide support for preservation of system properties. Allowing the possi-
bility to edit the system be means of manual fixes at code level would in fact
break the consistency between models and generated code, thus the results of
any analysis performed at modelling level could become invalid at code level
and the other way around. But what about accidental complexity in our case?
The fact that the employed modelling language (i.e., CHESS-ML) restricts to a
minimum the set of UML-MARTE concepts available to the user through pro-
filing and that the CHESS methodology itself provides means to drive1 the user
in the modelling activities helped us in containing accidental complexity. Any-
how, in comparison to traditional model-driven processes where only skeletons
are meant to be generated, the additional effort required by our approach is rep-
resented by the definition of behaviours through action code. In any case, the

1The CHESS methodology drives the user in modelling activities mainly in two ways: (1)
separated design views defined at metamodel level and enforced by constraints at tool level, and
(2) constraints, on-the-fly checks and validators in editors and palettes at tool level.

11.2 General Issues 89

employment of a fully model-aware formalism (i.e., ALF) provides a number
of benefits, described in Chapter 7.

Finally, we believe that code generators are very useful tools as long as
accidental complexity is somehow limited. This is usually easier to achieve
when entailing a domain-specific language that naturally incarnates the char-
acteristics of a specific domain, while more intricate when employing general-
purpose languages (for the reasons mentioned in the previous paragraph). From
our experience, a solution is feasible even in the latter case as long as we de-
limit context, and usually domain, at modelling level (through constraints at
both language and tool level) in which the code generator is meant to be used.

Chapter 12

Conclusions and Future

Work

Growth of power and miniaturization of modern systems, especially in the em-
bedded domain, are inevitably correlated to an increment of their complexity.
In turn, such an increment may run against manufacturers’ common goals of
reducing costs and time-to-market. In this scenario, code-centric approaches
are slowly but continuously loosing their predominant position in develop-
ment processes due to several reasons, ranging from error-proneness to the
difficulty of testing the system under development at very early stages and
thereby the costly and time consuming task of testing and adjusting the sys-
tem at product level. It has been repeatedly shown over the last 15 years that
abstraction, separation of concerns, smart reuse, early analysis and automation
are among the keys to simplify the development and therefore tackle modern
systems’ ever-increasing complexity. Among them, model-driven engineer-
ing and component-based software engineering have grown consideration for
their ability to provide these key features and in this research work we ex-
ploit a combination of model-driven development mechanisms together with
component-based design pattern.

One of the core goals of a model-driven approach is the provision of auto-
mated code generation from design models; however, this goal is too often seen
as the very final step of the development process. This means that while ex-
ploiting new powerful development mechanisms, we are unconsciously going
back to a waterfall-like process, were the generated implementation ratifies the
end of the development. But, what happens for those extra-functional prop-

91

92 Chapter 12. Conclusions and Future Work

erties that could not be analysed at earlier stages? The answer seems to be
simple: generated code is executed, properties are measured and, if not satis-
factory, code is edited accordingly. In other words, we would void the ben-
efits we achieved through abstraction, separation of concerns, early analysis
and automation by, once again, costly and time consuming manual activities
with possible introduction of errors and broken consistency among develop-
ment artefacts (i.e., models and generated code).

As possible answer to this issue, the outcome of this research work is a
model-driven technique that aids the preservation of system properties from
models to generated code by introducing the novel notion of back-propagation

across different abstraction levels (i.e., from runtime to model). The proposed
solution is represented by a round-trip approach consisting of four steps: (1)
system modelling, (2) automatic full-fledged code generation, (3) monitor-
ing of the execution of the generated implementation and computing extra-
functional properties of interest, and finally (4) back-propagation of monitoring
results to the design model.

In this thesis we exposed the details concerning both problems, defined as
a set of research challenges, and solutions, defined as a set of thesis contri-
butions. Moreover we provided information concerning the validation of the
approach both in-house and in industrial settings. A discussion of the contri-
butions in relation to the research challenges they attempt to solve is provided
together with a discussion on diverse general aspects related to the techniques
and technologies that have been exploited to achieve the solutions.

Enhancement of Back-propagation. Future research directions could en-
compass the extension of the proposed approach by taking into account man-
agement and evaluation of properties like safety and security, which usually
differ from properties measurable by means of computed values. Moreover,
new generation EFPs, such as energy-related properties, could be taken into
consideration for future evaluations and possible extensions of the provided
solution.

Dealing with multicore platforms, where EFPs may vary depending on
the execution instance we refer to, back-propagation capabilities could be en-
hanced to entail incremental decoration of the design model with multiple val-
ues, for the same EFP, gathered from the monitoring of different execution
instances. Extra-functional values in relation to a specific execution instance
(and platform configuration) can be helpful for the developer to, e.g., analyse
whether and how different configurations or even simply different execution
instances of a same configuration affect EFPs. In order to enable this kind of

93

feature appropriate concepts at modelling level for hosting the related informa-
tion in a structured manner should be identified, if they exist, and refined, if
they do not fully provide support for our needs.

Additionally, given the ability of the approach of supporting different levels
of granularity both for traceability and back-propagation, a possible enhance-
ment could also be the possibility for the developer to select the wished level
(or levels) of granularity at modelling level at the beginning of a round-trip
iteration.

Model Execution and Simulation. In the development of complex systems,
the ability to simulate prototypes already at very early design phases has gained
increasing attention [82]. Diverse simulation environments based on mathe-
matical foundations have been exploited to deal with the interaction between
system under development and surrounding environment [82, 83], while others
transform the system specification into formal representations to emulate the
system’s behaviour [84].

With the introduction of model-driven engineering and its abstractive ca-
pabilities, a new opportunity of employing design models for simulation has
bloomed. In the case of UML, the formalisation of a precise execution seman-
tics for a subset of the language in terms of the fUML, together with the intro-
duction of an action language (i.e., ALF) compliant to it for the specification
of complex behaviours, gives the possibility to build simulation environments
for UML models.

One interesting and challenging future work could be the exploitation of
these formalisms, together with the specification of a more detailed platform
model, to define a model simulation and execution environment able to show
control and data flows by means of animation on models based on a model
interpreter. This kind of feature could allow testing and validation of relevant
system properties before generating the implementation by simulating it, in a
way similar to monitoring of code execution but at an earlier stage. Such an
environment may help in decreasing the number of iterations of the round-trip
approach needed by the developer to reach the wished level of system quality.

Code Generation and Multi-platform Runtime Environment. Thanks to
satisfactory results achieved in running the industrial case-study, our approach
has been recognised as promising and possibly useful as compliment to cur-
rently used tools. Particularly relevant would be the possibility to extend the
current approach to provide a standalone runtime execution component to be

94 Chapter 12. Conclusions and Future Work

used to deploy models at runtime (motivations for this have already been de-
picted in the previous paragraph). The overall idea would be to enable the de-
ployment of design models onto platforms like Linux and OSE. Focus would
be on providing a runtime component which produces code optimised for mul-
ticore.

In order to achieve this, the current code generator shall be enhanced in
different directions. One of them is to take into account hierarchical nested
states as well as orthogonal regions. For hierarchical nested states (or hier-
archical state-machines) we mean a decomposition which can be seen as an
exclusive-OR operation applied to states meaning that, if a system is in a su-
perstate (OR-state), then it is in one of the substates. For orthogonal regions we
mean the possibility of having AND-decomposition. This means that a com-
posite state may contain several orthogonal regions and that being in this state
entails being in all its orthogonal regions at the same time. The ability of the
code generator to account these concepts brings along several challenges espe-
cially regarding the definition of execution patterns for orthogonal behaviours
in relation to the deployment platform.

Moreover, in this work we provide a preliminary solution for multicore-
aware generation of code, though leaving most of the multicore-related deci-
sions to the operating system (i.e., OSE). In this sense we just opened Pandora’s
box since many details regarding memory, tasks division and allocation, should
be both modelled as well as properly taken into account by the transformation
process to enable multicore optimised generation of code; some work in this
direction has already begun.

Heterogeneous Applications. In several domains (e.g., medical, automo-
tive, aerospace) embedded systems are expected to process massive amounts of
data, even in real-time. Aiding in fulfilling these expectations, the development
of hardware technologies towards heterogeneous configurations makes embed-
ded systems able to handle, e.g., very high input data rates. A typical scenario
would be represented by input data coming into a multicore socket, which in
turn may exploit one or more GPUs as coprocessors for parallel processing of
large blocks of data [85]. Such a technology shift from homogeneous to het-
erogeneous hardware configurations raises a number of new research issues on
both the modelling and coding of embedded systems.

On the one hand, the introduction of heterogeneity gives us the possibility
to enable faster computation and generally increase the performances of the
generated implementation. On the other hand, it adds an additional level of
complexity in the hardware and deployment configuration and therefore com-

95

plicates the code generation process. Due to the fact that CPUs and GPUs
employ different formalisms and mechanisms for code execution, as well as
different programming languages, the transformation process has to be en-
hanced in order to be able to map model entities to code artefacts written in
different target languages (e.g., C++ to be run on CPUs and OpenCL or CUDA
to be run on GPUs) [85]. Moreover, the transformation will have to generate
the communication code needed for the interaction between CPUs and GPUs.

Towards this goal we already achieved some preliminary results in gener-
ating heterogeneous applications [85]. Since thorough validation of the code
generator as well as monitoring and back-propagation features for these sce-
narios were not in place yet, the results have been left out from this thesis.

Bibliography

[1] J. Bezivin. On the unification power of models. Software and Systems

Modeling, 4:171–188, 2005.

[2] I. Crnkovic. Component-based software engineering for embedded sys-
tems. In Proceedings of International Conference on Software Engineer-

ing (ICSE), pages 712–713. ACM, 2005.

[3] R. Land, J. Carlson, S. Larsson, and I. Crnkovic. Project Monitoring and
Control in Model-driven and Component-based Development of Embed-
ded Systems – The CARMA Principle and Preliminary Results. In Pro-

ceedings of International Conference on Evaluation of Novel Approaches

to Software Engineering (ENASE), pages 253–258, 2010.

[4] Object Management Group. Model Driven Architecture. http://www.
omg.org/cgi-bin/doc?omg/00-11-05.pdf, November 2000.

[5] D. Cancila, R. Passerone, T. Vardanega, and M. Panunzio. Toward Cor-
rectness in the Specification and Handling of Non-Functional Attributes
of High-Integrity Real-Time Embedded Systems. IEEE Transactions on

Industrial Informatics, 6(2):181–194, May 2010.

[6] S. E. Chodrow, F. Jahanian, and M. Donner. Monitoring and debugging
of distributed real-time systems. In Jeffrey J. P. Tsai and Steve J. H. Yang,
editors, Run-time monitoring of real-time systems, pages 103–112. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1995.

[7] N. Siegmund, M. Rosenmuller, M. Kuhlemann, C. Kastner, and G. Saake.
Measuring Non-Functional Properties in Software Product Line for Prod-
uct Derivation. In Proceedings of Asia-Pacific Software Engineering Con-

ference (APSEC), pages 187 –194, 2008.

97

98 Bibliography

[8] S. Kent. Model Driven Engineering. In Proceedings of International

Conference on Integrated Formal Methods (IFM), 2002.

[9] K. Czarnecki and S. Helsen. Feature-based survey of model transforma-
tion approaches. IBM Systems Journal, pages 621–645, 2006.

[10] Object Management Group. UML Superstructure Specification V2.3.
http://www.omg.org/spec/UML/2.3/Superstructure/

PDF/, 2011.

[11] N. Delgado, A.Q. Gates, and S. Roach. A taxonomy and catalog of run-
time software-fault monitoring tools. IEEE Transactions on Software En-

gineering, 30(12):859 – 872, 2004.

[12] R. Chapman. Correctness by construction: a manifesto for high integrity
software. In Proceedings of Australian workshop on Safety critical sys-

tems and software (SCS), pages 43–46, 2005.

[13] CHESS Consortium. CHESS Project Website. http://www.

chess-project.org/, February 2009.

[14] A. Cicchetti, F. Ciccozzi, S. Mazzini, S. Puri, M. Panunzio, A. Zovi, and
T. Vardanega. CHESS: a model-driven engineering tool environment for
aiding the development of complex industrial systems. In Proceedings

of International Conference on Automated Software Engineering (ASE),
pages 362–365. ACM, 2012.

[15] B. Selic. Unified Modeling Language (UML). In Wiley Encyclopedia of

Computer Science and Engineering. 2008.

[16] Object Management Group. Systems Modeling Language (SysML), Ver-
sion 1.3. http://www.omg.org/spec/SysML/1.3/PDF/, 2012.

[17] Object Management Group. UML Profile For MARTE: Modeling And
Analysis Of Real-Time Embedded Systems, v1.1. http://www.omg.
org/spec/MARTE, June 2011.

[18] S. Gérard, C. Dumoulin, P. Tessier, and B. Selic. Papyrus: A UML2 Tool
for Domain-Specific Language Modeling. In Model-Based Engineering

of Embedded Real-Time Systems, pages 361–368, 2007.

[19] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T.J. Grose. Eclipse

Modeling Framework. Addison Wesley, 2003.

Bibliography 99

[20] Object Management Group. Action Language For FoundationalUML -
ALF. http://www.omg.org/spec/ALF/, Oct 2010.

[21] J.M. Nahman. Dependability of Engineering Systems: Modeling and

Evaluation. Springer. 2002.

[22] B. Gallina and S. Punnekkat. Fi4fa: A formalism for incompletion, incon-
sistency, interference and impermanence failures analysis. In Proceedings

of International workshop on Distributed Architecture modeling for Novel

Component based Embedded systems (DANCE), pages 493–500, 2011.

[23] M. Bordin, M. Panunzio, and T. Vardanega. Fitting Schedulability Anal-
ysis Theory into Model-Driven Engineering. In Euromicro Conference

on Real-Time Systems (ECRTS), pages 135–144, 2008.

[24] Enea. The Architectural Advantages of Enea OSE in Telecom Applica-
tions. http://www.enea.com/software/solutions/rtos/.

[25] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Model-

ing Languange. Addison-Wesley Professional, 2004.

[26] M. Alras, P. Caspi, A. Girault, and P. Raymond. Model-Based Design
of Embedded Control Systems by Means of a Synchronous Intermediate
Model. In Proceedings of International Conference on Embedded Soft-

ware and Systems (ICESS), pages 3–10, may 2009.

[27] M. Usman, A. Nadeem, and Tai hoon Kim. UJECTOR: A Tool for Ex-
ecutable Code Generation from UML Models. In Proceedings of Inter-

national Conference on Advanced Software Engineering and Its Applica-

tions (ASEA), pages 165–170, 2008.

[28] T.G. Moreira, M.A. Wehrmeister, C.E. Pereira, J.-F. Petin, and E. Levrat.
Automatic code generation for embedded systems: From UML specifi-
cations to VHDL code. In Proceedings of International Conference on

Industrial Informatics (INDIN), pages 1085–1090, 2010.

[29] F. Ciccozzi, A. Cicchetti, and M. Sjödin. Round-trip Support for Extra-
Functional Property Management in Model-Driven Engineering of Em-
bedded Systems. Information and Software Technology, 55:1085–1100,
2013.

[30] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni. Model
traceability. IBM Systems Journal, 45:515–526, 2006.

100 Bibliography

[31] G. K. Olsen and J. Oldevik. Scenarios of traceability in model to text
transformations. In Proceedings of European Conference on Modelling

Foundations and Applications (ECMDA-FA), pages 144–156. Springer-
Verlag, 2007.

[32] R. Händel, M.N. Huber, and S. Schröder. ATM Networks Concepts, Pro-

tocols, Applications. Addison-Wesley, 1994.

[33] S. Boyko, R. Dvorak, and A. Igdalov. The Art of Model Transformation
with Operational QVT. http://www.eclipse.org/m2m/qvto/
doc/EclipseCon_2009.ppt, March 2009.

[34] C. Bock. UML 2 Composition Model. Journal of Object Technology,
3(10):47–74, 2004.

[35] F. Chauvel and J.-M. Jezequel. Code Generation from UML Models with
Semantic Variation Points. In Proceedings of International Conference on

Model Driven Engineering Languages and Systems (MoDELS), volume
3713 of Lecture Notes in Computer Science, pages 54–68. Springer Berlin
Heidelberg, 2005.

[36] F. Fleurey, Z. Drey, D. Vojtisek, C. Faucher, and V. Mahé. Kermeta
Language, Reference Manual. http://www.kermeta.org/docs/
KerMeta-Manual.pdf, 2006.

[37] E. Börger, A. Cavarra, and E. Riccobene. A precise semantics of UML
state machines: making semantic variation points and ambiguities ex-
plicit. In Proceedings of Workshop on Semantic Foundations of Engi-

neering Design Languages (SFEDL), pages 1–20, 2002.

[38] I. Oliver and V. Luukala. On UML’s Composite Structure Diagram.
In Proceedings of Workshop on System Analysis and Modelling (SAM),
2006.

[39] A. Cuccuru, S. Gérard, and A. Radermacher. Meaningful Composite
Structures. In Proceedings of International Conference on Model Driven

Engineering Languages and Systems (MoDELS), volume 5301 of LNCS,
pages 828–842. Springer, 2008.

[40] I. Ober and I. Dragomir. Unambiguous UML Composite Structures: The
OMEGA2 Experience. In Theory and Practice of Computer Science

(SOFSEM), volume 6543 of LNCS, pages 418–430. Springer, 2011.

Bibliography 101

[41] A. Radermacher, A. Cuccuru, S. Gerard, and F. Terrier. Generating exe-
cution infrastructures for component-oriented specifications with a model
driven toolchain: a case study for MARTE’s GCM and real-time annota-
tions. In Proceedings of International Conference on Generative Pro-

gramming and Component Engineering (GPCE), volume 45, pages 127–
136. ACM, 2009.

[42] M. Panunzio and T. Vardanega. On Component-Based Development and
High-Integrity Real-Time Systems. In Proceedings of International Con-

ference on Embedded and Real-Time Computing Systems and Applica-

tions (RTCSA), pages 79–84, 2009.

[43] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: el-

ements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[44] M. Brun, J. Delatour, and Y. Trinquet. Code Generation from AADL to a
Real-Time Operating System: An Experimentation Feedback on the Use
of Model Transformation. In Proceedings of International Conference on

Engineering of Complex Computer Systems (ICECCS), pages 257–262,
april 2008.

[45] M. Fredj, A. Radermacher, S. Gerard, and F. Terrier. eC3M: Optimized
model-based code generation for embedded distributed software systems.
In Proceedings of International Conference on New Technologies of Dis-

tributed Systems (NOTERE), pages 279–284, june 2010.

[46] W. Haberl, M. Tautschnig, and U. Baumgarten. Generating Distributed

Code From COLA Models, volume 33 of Lecture Notes in Electrical En-

gineering, chapter 20. Springer, March 2009.

[47] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P. Diguet. A
co-design approach for embedded system modeling and code generation
with UML and MARTE. In Proceedings of Design, Automation and Test

in Europe (DATE), pages 226–231, april 2009.

[48] C. Xi, L. JianHua, Z. ZuCheng, and S. YaoHui. Modeling SystemC de-
sign in UML and automatic code generation. In Proceedings of Asia and

South Pacific Design Automation Conference (ASP-DAC), pages 932–
935. ACM, 2005.

102 Bibliography

[49] Q. Long, Z. Liu, X. Li, and H. Jifeng. Consistent code generation from
UML models. In Proceedings of Australian Software Engineering Con-

ference (ASWEC), pages 23–30, 2005.

[50] Object Management Group. Foundational Subset For Executable UML
Models (FUML). http://www.omg.org/spec/FUML/1.1/, Last
Accessed: July 2013.

[51] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley, and
K. Wong. Reverse engineering: a roadmap. In Proceeding of Conference

on The Future of Software Engineering (ICSE), pages 47–60. ACM, 2000.

[52] Linux Die. Linux 2.6.9 Manual. http://linux.die.net/man/

2/getrusage, 2006.

[53] I. Wenzel, R. Kirner, B. Rieder, and P. Puschner. Measurement-based
worst-case execution time analysis. In Proceedings of International

Workshop on Software Technologies for Future Embedded and Ubiqui-

tous Systems (SEUS), pages 7–10. IEEE, 2005.

[54] F. Ciccozzi, M. Saadatmand, A. Cicchetti, and M. Sjödin. An Automated
Round-trip Support Towards Deployment Assessment in Component-
based Embedded Systems. In Proceedings of International Symposium

on Component-Based Software Engineering (CBSE). ACM, 2013.

[55] Z. Navabi, S. Day, and M. Massoumi. Investigating Back Annotation of
Timing Information into Dataflow descriptions. In Proceedings of VHDL

International User Forum, pages 185–195, 1992.

[56] G. Mahadevan and J. R. Armstrong. Investigating Back Annotation of
Timing Information into Dataflow descriptions. In Proceedings of VHDL

Interational User Forum (VIUF), 1995.

[57] Á. Hegedüs, G. Bergmann, I. Ráth, and D. Varró. Back-annotation of
Simulation Traces with Change-Driven Model Transformations. In Pro-

ceedings of International Conference on Software Engineering and For-

mal Methods (SEFM), pages 145–155, 2010.

[58] E. Guerra, D. Sanz, P. Díaz, and I. Aedo. A transformation-driven ap-
proach to the verification of security policies in web designs. In Pro-

ceedigs of International Conference on Web Engineering (ICWE), pages
269–284, Berlin, Heidelberg, 2007. Springer-Verlag.

Bibliography 103

[59] A. Wall, J. Kraft, J. Neander, C. Norström, and M. Lembke. Intro-
ducing Temporal Analyzability Late in the Lifecycle of Complex Real-
Time Systems. In Proceedings of International Conference on Embedded

and Real-Time Computing Systems and Applications (RTCSA). Springer
Berlin Heidelberg.

[60] M. Saadatmand, A. Cicchetti, and M. Sjödin. Design of adaptive security
mechanisms for real-time embedded systems. In Proceedings of Interna-

tional Symposium on Engineering Secure Software and Systems (ESSoS),
pages 121–134. Springer-Verlag, 2012.

[61] M. Saadatmand, M. Sjödin, and N. U. Mustafa. Monitoring Capabilities
of Schedulers in Model-Driven Development of Real-Time Systems. In
Proceedings of International Conference on Emerging Technologies &

Factory Automation (ETFA), 2012.

[62] J. Huselius and J. Andersson. Model Synthesis for Real-Time Systems.
In Proceedings of European Conference on Software Maintenance and

Reengineering (CSMR), pages 52–60. IEEE Computer Society.

[63] H. Koziolek. Performance evaluation of component-based software sys-
tems: A survey. Journal of Performance Evaluation, 67(8):634–658,
2010.

[64] S. Yacoub. Performance Analysis of Component-Based Applications. In
Software Product Lines, LNCS, pages 299–315. Springer Berlin Heidel-
berg, 2002.

[65] A. Mos and J. Murphy. A framework for performance monitoring, mod-
elling and prediction of component oriented distributed systems. In
Proceedings of International Conference on Performance Engineering

(WOSP), pages 235–236. ACM, 2002.

[66] A. Diaconescu and J. Murphy. Automating the performance management
of component-based enterprise systems through the use of redundancy.
In Proceedings of International Conference on Automated Software En-

gineering (ASE), pages 44–53. ACM.

[67] T. Parsons and J. Murphy. Detecting Performance Antipatterns in Com-
ponent Based Enterprise Systems. Journal of Object Technology, pages
55–91, 2008.

104 Bibliography

[68] TESTEJB - A Measurement Framework for EJBs. In Proceedings of

International Conference on Component-Based Software Engineering

(CBSE), LNCS, pages 294–301. Springer Berlin Heidelberg, 2004.

[69] N. Katanic and M. Perse. Application of CHESS Methodology: A Tele-
com Use Case Study. In Proceedings of International Conference on Soft-

ware, Telecommunications and Computer Networks (SoftCOM), 2012.

[70] Z. Liu, H. Jifeng, and X. Li. Contract oriented development of component
software. In Exploring New Frontiers of Theoretical Informatics, pages
349–366. Springer, 2004.

[71] H. Oliveira, L. Murta, and C. Werner. Odyssey-VCS: a flexible version
control system for UML model elements. In Proceedings of International

Workshop on Software Configuration Management (SCM), pages 1–16.
ACM, 2005.

[72] M. Alanen and I. Porres. Difference and Union of Models. In UML 2003

- The Unified Modeling Language, volume 2863, pages 2–17, 2003.

[73] D.S. Kolovos, R.F. Paige, and F.A.C. Polack. Model comparison: a foun-
dation for model composition and model transformation testing. In Pro-

ceedings of International Workshop on Global Integrated Model Man-

agement (GaMMa), pages 13–20. ACM Press, 2006.

[74] K. Altmanninger, M. Seidl, and M. Wimmer. A survey on model ver-
sioning approaches. International Journal of Web Information Systems,
5(3):271–304, 2009.

[75] B. Meyers and H. Vangheluwe. A framework for evolution of modelling
languages. Science of Computer Programming, 76(12):1223–1246, De-
cember 2011.

[76] A. Cicchetti, F. Ciccozzi, and T. Leveque. Supporting Incremental Syn-
chronization in Hybrid Multi-View Modelling. In Proceedings of Inter-

national Workshop on Multi-Paradigm Modeling (MPM). Springer, De-
cember 2011.

[77] A. Cicchetti, F. Ciccozzi, and T. Leveque. A Solution for Concurrent
Versioning of Metamodels and Models. Journal of Object Technology,
August 2012.

Bibliography 105

[78] F. Ciccozzi and A. Cicchetti. Towards Migration-Aware Filtering in
Model Differences Application. In Proceedings of International Work-

shop on Models and Evolution (ME), October 2012.

[79] S. Kelly and R. Pohjonen. Worst Practices for Domain-Specific Model-
ing. IEEE Software, 26(4):22–29, 2009.

[80] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling - Enabling Full

Code Generation. Wiley, 2008.

[81] R. France and B. Rumpe. Model-driven Development of Complex Soft-
ware: A Research Roadmap. pages 37–54, 2007.

[82] F. Boulanger and C. Hardebolle. Simulation of multi-formalism models
with modhel’x. In Proceedings of International Conference on Software

Testing, Verification, and Validation (ICST), pages 318–327, 2008.

[83] MathWorks. Simulink Simulation and Model Based Design.
http://www.tufts.edu/~rwhite07/PRESENTATIONS_

REPORTS/simulink.pdf, 2013.

[84] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the use of graph
transformations in the formal specification of model interpreters. Journal

of Universal Computer Science, 9:1296–1321, 2003.

[85] M. Arora, S. Nath, S. Mazumdar, S. Baden, and D. Tullsen. Redefining
the Role of the CPU in the Era of CPU-GPU Integration. Micro, IEEE,
(99), 2012.

Appendix A

Intermediate Metamodel in

Ecore

107

Figure A.1: Subsystem portion of InterMM

Figure A.2: Statement portion of InterMM

Figure A.3: Expression portion of InterMM

Appendix B

QVTo Transformation for If

Statement

111

Figure B.1: Transformation from ALF’s If statement to InterMM’s If state-
ment

Appendix C

Coverage of ALF

Expressions and Statements

113

ALF Expressions Status

Literal Expressions supported
Name Expressions supported
this Expressions supported

Parenthesized Expressions supported
Property Access Expressions supported

Invocation Expressions supported
Tuples supported

Behavior Invocation Expressions not supported
Feature Invocation Expressions not supported
Super Invocation Expressions not supported
Instance Creation Expressions supported
Link Operation Expressions not supported

Class Extent Expressions not supported
Sequence Construction Expressions supported

Sequence Access Expressions supported
Sequence Operation Expressions not supported
Sequence Reduction Expressions not supported
Sequence Expansion Expressions not supported

Increment and Decrement Expressions supported
Boolean Unary Expression supported

BitString Unary Expressions supported
Numeric Unary Expressions supported

Cast Expressions partially supported
Isolation Expressions not supported
Binary Expressions supported

Arithmetic Expression supported
Shift Expressions supported

Relational Expressions supported
Classification Expressions not supported

Equality Expressions supported
Logical Expressions supported

Conditional Logical Expressions supported
Conditional-Test Expressions not supported

Assignment Expressions supported

ALF Statements Status

Annotated Statements not supported
In-line Statements supported
Block Statements supported
Empty Statements not supported

Local Name Declaration Statements supported
Expression Statements supported

if Statements supported
switch Statements supported
while Statements supported

do Statements supported
for Statements supported

break Statements supported
return Statements supported
accept Statements not supported

classify Statements not supported

Appendix D

Generated C++ Files

115

Figure D.1: Portion of resulting .h file

Figure D.2: Portion of resulting .cpp file

