
Technical Report
MDH-MRTC-284/2014-1-SE

Objects-Based Slicing

Husni Khanfar
husni.khanfar@mdh.se

May 2014
School of Innovation, Design and Engineering

Malärdalen University

1

Contents

1 Introduction 5

2 Background 6
2.1 While Language . 6
2.2 The Syntax of the WHILE language . 6
2.3 Strongly Live Variables(SLV) . 7

3 Object-Based Program Representation 7
3.1 Dividing the source code into individual Objects 8
3.2 The Interfaces . 9
3.3 The Type of the Objects . 9

4 Objects-Based Slicing 9
4.1 The Slicing Criterion . 10
4.2 Strong Live Variable (SLV) . 10
4.3 period . 10
4.4 Single-Set SLVs . 10
4.5 Calculating Start and Stop Properties . 11
4.6 Calculating Period From: Start,Stop, HeaderLine and LastLine Properties 13
4.7 Detecting a Data Dependency . 14
4.8 Finding all the Data Dependencies inside an Object 14
4.9 Detecting the Data Dependencies between the Objects 17
4.10 Detecting the Control Dependencies . 18
4.11 IF .. ELSE block . 19

5 The Algorithm 22
5.1 The Scanning Stage . 22
5.2 The Main Algorithm - Slicing Program . 22
5.3 The Algorithm of the Slicing Function . 23

6 Experiments 25
6.1 Number of the Variables and Number of the Iterations 25
6.2 Excluding the Parsing Time . 25
6.3 Variation in the number of the lines . 25
6.4 Testing the Scalability . 27
6.5 Memory Saving . 27

7 Results and Discussions 28

2

Preface

This project is one of the part of my PhD study in the Computer Science. I would like to thank
my supervisors Professor Bjorn Lisper and Dr. Masud Abu Naser for continuous encouragement
and feedback. Im very thankful to Prof. Bjorn for providing concrete ideas and Dr. Masud for
cooperating both in terms of time and frequency.

Husni Khanfar,
Mälardalen University, May 2014

3

Abstract

Object-Based Program Representation (OBPR) consists of Objects and Interfaces. Each
object represents a set of statements by properties. OBPR divides the source code into
objects which are connected by Interfaces. Every interface describes an opposite direction
path of an execution flow between two different objects. OBPR does not make detailed
a prior analysis to calculate the data and control dependencies like Program Dependence
Graph(PDG).

Object-Based slicing is a technique for slicing well-structured codes. In this technique,
the objects work individually in order to find the internal data and control dependencies. The
slicing algorithm detects the internal data dependencies inside each object by implementing
the Strong Live Variable dataflow analysis.

Object-Based slicing provides: a 100% slicing accuracy in comparison with PDG-based
slicing. In addition, detecting the dependencies is simultaneous with the slicing process, thus
the slicing is done on the fly as well as the control and data dependencies are detected on
demand.

Practical experiments measure the gotten speedup from applying Object-Based Slicing.
Conventional PDG-Based Slicing is used as a baseline. In terms of the total time, including
parsing, we obtain speedups up to 11.6 and in average 3.98. By comparing the analysis times
only after excluding the parsing times, the average time that is obtained equals 21. In some
cases, the speedup reaches to about 800.

4

1 Introduction

Many computer science disciplines use the slicing like software debugging, software testing,
software measurement, program comprehension, software maintenance and program paral-
lelization. Slicing extracts the statements that influence the value of a variable in a particular
program location.[1, 15].

Program Dependence Graph (PDG) and Systems Dependence Graph (SDG)[6] are the
main program representations used by the major slicing algorithms since 1985[2]. In PDG-
Based Slicing, all the control and data dependencies of the source code are concluded and
determined beforehand regardless of whether they are needed by the slicing algorithm. Thus,
the amount of the computations is mainly proportional to the number of the statements and
not to the dependencies that are checked by the slicing algorithm

For instance, assume the outcome of slicing 10,000 statements according to a specific
slicing criterion is only two consecutive statements. Apparently, there is only one data
dependency that is used by the slicing algorithm. The problem appears when we know that
all the data and control dependencies must be determined and calculated in order to build
the PDG of this 10,000 statements. Thousands of dependencies relations must be found in
order to use eventually one of them. Consequently, the vast majority of the computations
and resources, which are consumed in determining these dependencies, are useless.

Practically, large industrial software systems may consist of millions of lines. When one
of PDG slicing algorithms is used to represent one of these enormous industrial systems,
then extraordinary number of data and control dependencies should be calculated by a very
detailed analysis. Hence, a massive task takes place.

This paper proposes a new slicing method for well-structured codes. This method accu-
rately detects the control and data dependencies on demand during the analysis and get rid of
finding beforehand all the dependencies. The new proposed approach is defined Object-Based
Slicing

In Object-Based slicing, the source code is represented by Objects as well as Interfaces
. Within this description, Block refers to a condition and a set of statements that are
immediately dominated by this condition. For example, while and if blocks. In Object-
based Program Representation, each Block is modeled by an Object. Interface refers to
any two consecutive statement belonging to two different objects. The primary feature of
the Object is that it collects a set of sequenced statements, ordered in accordance to the
flow of the executions. In other words, every statement inside the Object is considered as
an immediate predecessor to the statement that is after it in the Object. In OBPR, the
statement does not have more than one predecessor that belongs to the its object. This
sequenced statements set is defined as unique-predecessor environment.

In the abstract level of Objects-based program representation; the source code is divided
into sequenced sets, which are connected by unidirectional Interfaces. Each Object is con-
sidered as an independent entity that is in charge of finding its internal data and control
dependencies.

In contrast to the unique-predecessor environment, PDG is used to handle the fact that
each statement may have many predecessors and many successors. This environment can be
defined as many-predecessors. Changing the environment and the program representation
will indeed change the slicing algorithm, which in its turn may increase or decrease the
performance of the slicing process. Hence, we are not talking here about two different slicing
methods, but we are talking also about two different program representations.

For detecting the data dependencies, a new light-weight method is improved to suit the
unique-predecessor environment existing in Object. The method is defined as Single-Set
Strong Live Variable (SLV) analysis[4]. From its name; this method is derived from the
standard SLV dataflow analysis[4] but differs from Standard SLV analysis in the way of
storing the SLVs. Single-set SLV analysis collects the SLVs of every Object in a single-set.
Conversely, standard SLV analysis stores the SLVs in the program points. On other side,
Single-Set SLV analysis inherits from the Standard SLV analysis the ability to start the
analysis from a particular location with a specific subset of variables.

Finally, Objects-Based Slicing provides us with the following interesting contributions:

1. Use of SLV analysis avoids building the data dependency graph (DDG), doing the
slicing on the fly.

5

Figure 1:

2. Capturing the control dependencies in the object-based program representation avoids
having to build the control dependence graph (CDG).

3. A technique to avoid having a set of SLV’s in each program point, using a single SLV
for each block, which also avoids the extra iterations to check for convergence done by
a traditional fixed-point iteration.

4. The control and data dependencies are detected on demand.

Fig.1(A) exemplifies the concept of Objects and Interfaces. Fig.1(A) shows three objects:
MainTrack object, which has the lines {1,2,6,7,11}. ob1 object has the lines{3,4,5} and ob2
has the lines {8,9,10}. In this example, we can consider ob1 and ob2 child blocks in MainTrack
block.

There are four interfaces, that connect the individual objects:
{(11, 10), (8, 7), (6, 5), (3, 2)}.

Figure 1(B) shows the abstract level of the code in Fig.1(A).

2 Background

2.1 While Language

The language that is used in the slicing is WHILE language, which is a simple model language.
WHILE lacks some features like pointers, arrays, unrestricted GOTO, and function calls.

2.2 The Syntax of the WHILE language
1 The following are the syntactic categories in WHILE language:
a ∈ AExp: AExp is the set of the arithmetic expressions
b ∈ BExp: BExp is the set of the boolean expressions
S ∈ Stms: Stms is the set of all statements
We assume some countable set of variables is given; numerals and labels will not be further
defined and neither will the operators:

x,y ∈ Var Varaibles
n ∈ Num Numerals

1The material of this subsection is pasted from: F. Nielson, H. Nielson, C. Hankin, Principles of Program
Analysis, Springer

6

` ∈ Lab Labels
opa ∈ OPa Artihmetic Operators
opb ∈ OPb Boolean Operators
opr ∈ OPr Relational Operators

The syntax of the language is given by the following abstract syntax:
a ::= x | n | a1 opa a2
b ::= true | false | not b | b1 opbb2| a1 opr a2
S ::= [x:=a]` | [Skip]` | s1; S2 |
if [b]` then S1 else S2 |
while [b]` do S

2.3 Strongly Live Variables(SLV)

Dataflow analysis technique calculates on each program point the variables that may
reference other SLVs. kill/gen functions of SLV analysis are:

kill([x := a]`) = {x}
kill([skip]`) = φ

kill([b]`) = φ
gen([x := a]`) = FV (a)

gen([skip]`) = φ
gen([b]`) = FV (b)

(1)

FV(x) denotes the variables used on expression a.
SLV-dataflow equations are:

SLVentry(`) =(SLVexit(`)\killSLV (B`) ∪ {genSLV (B`)}
where(B` ∈ STATEMENTS(S∗) ∧ killSLV (B`) ⊆ SLVexit(B`)

(2)

SLVentry(`) =SLVexit(`)

where(B` ∈ STATEMENTS(S∗) ∧ killSLV (B`) 6⊆ SLVexit(B`)
(3)

SLVexit(`) =

{
φ if` ∈ final(S∗)⋃
{SLVentry(`′)|flow(`′, `) ∈ FlowR(S∗)} otherwise

(4)

The reference of these equations and functions are: [4]

3 Object-Based Program Representation

An Object-Based Program Representation (OBPR) consists essentially of Objects and In-
terfaces. Each Object represents a basic block consisting of a set of consecutive statements
and directly controlled by a single control predicate. The while and if blocks of C language
are examples of basic blocks and hence objects.

In case of nested control predicates, the inner block forms the child object and the outer
block forms the parent object where any statement in the child object does not belong to
the parent object.

OBPR always considers the statements of the object as consecutive statements, in terms
of the flow execution, even though the object contains a child object.

The Interface is a pair of two statements (`2, `1) which connects two objects obj1 and
obj2 such that `1 belongs to obj1 and `2 belongs to obj2. The interface says that there is a
direct flow direction from `1 to `2. In other words, `1 may be executed immediately before
`2

OBPR overcomes the Program Dependence Graphs in that it does not need to calcu-
late and conclude all the control and data dependencies in advance. In OBPR, the data
dependencies are hidden inside the objects and they are concluded on demand. The control
dependencies are also concluded on demands due to the fact that each object knows its
parent object.

7

3.1 Dividing the source code into individual Objects

In the Object-Based Program Representation(OBPR), the source code is divided into indi-
vidual blocks.
Each Object represents a basic block consisting of a set of consecutive statements and con-
trolled by a single control predicate. The while and if blocks of C language are examples
of basic blocks and hence objects.
In addition, the body of any Function is considered also as a block.

Each Block is represented by an Object. The Object describes and encapsulates the
properties of its corresponding Block. The following list has some properties used by Objects-
Based Slicing:

1. Header Line: The label of the Header Line

2. Last Line: The label of the Last Line

3. ID : The unique ID of the block

4. Parent ID: The unique ID of the parent block

5. Statement Set: this property stores all the statements of the block, which are con-
trolled directly by the header of the block.

6. Single Set: will be explained later

7. Begin Scope: determines the start of the block by a left curly brace ’{’ or the statement
’Begin’

8. End Scope: determines the end of the block by a right curly brace ’}’ or the statement
’End’

The factor which determines whether this statement belongs to the block is: whether the
header of the block controls directly the execution of the statement. Hence, the statements
of the child block belong to the child block and not to the parent block.

Sequenced Set of Statements: The Statement Set property in the object is a sequenced
set because the statements in it are ordered according to their execution flows. Each
statement in the Sequenced Set is considered as a predecessor to the statement that is
after it in the set. The order of the statements in the sequenced set is highly important.

Example 1. The source code in Fig.1(A) has three objects: ob1, ob2 and MainTrack. The
propreties of these three object are:

1. ob1: Header Line=3, Last Line=5, ID= ob1, Parent ID=MainTrack, Statement Set =
[3, 4, 5]

2. ob2: Header Line=8, Last Line=10, ID= ob2, Parent ID=MainTrack, Statement Set =
[8, 9, 10]

3. MainTrack: Header Line=1, Last Line=11, ID= MainTrack, Parent ID=NULL, Statement Set =
[1, 2, 6, 7, 11]

because IF ELSE block has two branches, then it has additional properties:

• Instead of Statement Set, IF ELSE has two set of statements: Statement Set IF, State-
ment Set ELSE.

• Two header lines: Header Line IF, Header Line ELSE

• Else Statement, Begin Else Scope, End Else Scope

• Two last lines: Last Line IF and Last Line Else.

Example 2. Fig.2 is an example of modeling an IF ELSE block by an object. In this figure,
IF ELSE object has two statement set: statement set IF=[3,4,5]. and statement set ELSE=[3,7,8].

8

Figure 2:

3.2 The Interfaces

If there is a direct execution flow from `1 to `2 and these two statements belong to two
different objects, then the The Interface (`2,`1) is created. Notice, that the interface describes
the reverse direction of the flow.

Because there is a flow from the last statement in the while loop to the header of the
while loop. and then from the header of the while loop to the immediate successor statement
of the while loop, then we can create an interface from the immediate successor to the last
statement directly. This is because while header does not kill any SLV according to Eq.1.
In Fig.1, there is a direct flow from stm5 to stm3 and then from stm3 to stm6. but in OBPR,
the interface is created in this case from stm6 to stm5 directly.

Example 3. In fig. 1, there are four interfaces:

(Stm3,Stm2), (Stm6,Stm5), (Stm8,Stm7) and (Stm11,Stm10)
According to the above interfaces, Fig.1(B) is a complete Object-Based program repre-

sentation for the source code in Fig. 1(A)

Because IF ELSE block has two last lines: Last Line IF and Last Line Else. Therefore,
there are two interfaces which are created from MainTrack to obj1 in Fig. 2, the first one is
from statement 9 to statement 5 and the second one is from statement 9 to statement 8.

3.3 The Type of the Objects

There are mainly two types of Objects:

Linear Object The flow is only consecutively from the first statement to the last statement.
there is no any flow from the last statement to the beginning again. The standard blocks
like if and if else are examples of this kind of object.

Circular Object There is a consecutive flow from the first statement to the last. and
then, there is a flow from the last statement to the first statement. This indeed causes
a circular aspect of this kind of objects. The standard block while and for in C
language are examples of the circular blocks.

4 Objects-Based Slicing

Objects-Based Slicing consists essentially of an OBPR (From Claim1) and an Object-Based
slicing algorithm designed to work on the OBPR.

The Object-Based slicing algorithm is designed to find the internal data dependencies
of each object. The Object-Based slicing algorithm implements the standard Strong Live

9

Variable (SLV)[4] dataflow analysis in order to find the data dependencies. Implementing
SLV in Objects-Based Slicing varies than Standard SLV analysis by the following points:-

1. Standard SLV dataflow analysis stores the SLVs in the program points[4]. In Objects-
Based Slicing; the SLVs of each object are collected together in a one set called Single-
Set. In order to know the place of each SLV, each one is stored with associated prop-
erties.

2. Objects-Based Slicing exploits the gen and kill functions of the SLV dataflow analysis
in slicing the statements, as soon as one of the statements kills one of the SLVs, then
this statement is sliced.

3. in Standard SLV analysis, the SLV in a specific entry statement point is copied to the
exit points of the predecessor statements in order to check later whether the predecessor
statements kills the SLV. Objects-Based Slicing distinguishes between two types of the
predecessor statements:

• The predecessor statement which belongs to the same object, in this case, the
slicing algorithm visits directly the predecessor statement.

• The predecessors which belong to other objects, in this case, the SLV is reproduced
in the object which the predecessor belongs to.

4.1 The Slicing Criterion

The slicing criterion is a pair < x;n >, where x is a variable and n is a label of a program
statement. The function of the slicing is to find all the statements in the source code that
may influence the value of x at n. In other words, we need to find all the statements that
the slicing criterion is a data or control dependent on. In the slicing applications, we may
have many slicing critera. SLV are generated and killed by the Equations in Eq.1

4.2 Strong Live Variable (SLV)

if we have the following statement:

100: x=a+b

if x variable influences the slicing criterion, then the slicing program starts searching for all
the statements which influence the value of a and b. However, a and b are not considered
as new slicing criterea < a, 100 > and < b, 100 >, they are considered as new Strong Live
Variables. Notice here that the slicing criteria are converted to SLVs.

4.3 period

Period: if we assume that we have a slicing criterion or an SLV defined by the pair < x, n >,
where x is the variable and n is the statement. n belongs to the object obj1. Then the
set of the statements in obj1 that may influence the value of x at n is called period.
The statements in the period are ordered in ascending manner according to its distant
from n.

The distant from n = How many statements are executed till executing n.

Hence, the statements in the period are ordered from the aftermost to furthermost.

Example 4. Figures [3,4,5] are examples to the period definition.

4.4 Single-Set SLVs

Every Object has a Single Set property. Single Set stores all the slicing criteria and the SLVs
inside it. In the Single Set, each SLV is stored with its properties; start and stop. Thus, the
items are stored in a triple format:

obji.Single Set = {(slv1, start1, stop1), .., (slvn, startn, stopn)} (5)

10

Figure 3:

Figure 4:

start property: if `k ∈ obj.Statement Set, then in obj.Statement Set: The aftermost state-
ment to `k that may influence the value of `k is: start(`k, obj)

stop property: if `k ∈ obj.Statement Set, then in obj.Statement Set: The furthermost
statement to `k that may influence the value of `k is: stop(`k, obj)

Example 5. In Fig. 6(A), there are two objects; MainTrack, which its Statement set=[1,2,3,4,5,6]
and Obj1 which its Statement Set=[7,8,9,10,11,12,13]. if the user inserts two slicing criteria:
< x, 11 > and < m, 13 >. Because the statements 11 and 13 belong to obj1, then these two
slicing criteria will be created in obj1.Single Set. obj1.Single Set={(x,11,12),(k,13,7)}.

However, the coming section explains in depth and more how to calculate start and stop
properties:

4.5 Calculating Start and Stop Properties

In order to describe the period of the SLV, two properties associate with each SLV start and
stop. The value of start property depends mainly on:

1. Is the SLV internally generated or externally inserted.

2. Where the SLV is generated or inserted.

The value of stop property depends on:

1. The type of the object: circular or linear

2. the boundaries of the object: the label of the header line and the label of the last line.

Standard SLV dataflow analysis considers that the statements are represented by nodes.
Every node has two points, entry point which is immediately before the node and the exit
point which is immediately after the node. The SLVs are stored in these nodes. In this
description:

• When we need to say that the the SLV is stored at the exit point of the statement `,
we say that SLV is inserted at `. In this case, the statement ` becomes the first line
in the period that may affect the value of the SLV. The SLVs are inserted when they
are reproduced from other objects or when the slicing criterion becomes an SLV.

11

Figure 5:

• When we need to say that the SLV is stored at the entry point of the statement `, we
say that the SLV is generated from `. The SLVs are generated from the statement
` by gen functions when ` is sliced because it has killed one of the previous SLVs. gen
function are mentioned in Eq.1

if s3 is a linear sequenced statements. s3 = [`1, `2, `3, `4, `5, `6]. The variable (x) is
inserted as an SLV in `4. The closest line to `4 is itself and the farthest is `1, thereupon
start = `4 and stop = `1. period(x, `4) = [`4, `3, `2, `1]. Notice here that `4 is the first line
in period because itself may make an impact on the value of x at `4.

Calculating start property for linear and circular objects in the Insertion case: Eq.6 consid-
ers start property = the same line where the SLV is externally inserted.

stop: Linear object, Insertion and Generation: in the linear objects, the farthest line from
any line - where SLV is either inserted or generated - is the header line. This what is
reported in Eq.7 and Eq.12

In the circular object; any statement may influence directly on any another statement.
Since s4 is a circular object and s4 = [`1, `2, `3, `4, `5, `6], any SLV is inserted in `4 has the
period : [`4, `3, `2, `1, `6, `5]. Notice here that the statements are ordered in the period in
ascending with respect the distant between every statement and `4.

In the following descriptions and examples, we assume that we have a set of statements
belongs to one of the objects, and the SLV is generated or inserted in `k

stop: Circular object, Insertion and Generation: Eq.8 determines the value of stop in two
different cases;

• When `k < Lastline : then stop = `k+1 because in this case: `k+1 is the farthest
statement to `k in the object

• When `k = LastLine: then `k+1 does not belong to object. in this case, stop =
HeaderLine because it is the farthest element to `k

start:Circular and Linear Objects, Generation: Eq.9 and Eq. 11 shows that the start
property excludes always (`k).

The following equations show how the start and stop properties are calculated for different
type of objects (circular or linear) and for different kind of creating SLV (externally inserted
or internally generated). In these equations consider the following:

12

Figure 6:

Start Ins(`k, obji) = `k (6)

Stop Ins Linear(`k, obji) = obji.HeaderLine if`k ≥ obji.HeaderLine (7)

Stop Ins Circular(`k, obji) =

{
`k+1 if`k < obji.LastLine

obji.HeaderLine if`k = obji.LastLine
(8)

Start Gen Circular(`k, obji) =

{
`k−1 if `k > obji.HeaderLine

obji.LastLine if` = obji.HeaderLine
(9)

Stop Gen Circular(`k, obji) =

{
`k+1 if`k < obji.LastLine

obji.HeaderLine if`k = obji.LastLine
(10)

Start Gen Linear(`k, obji) =

{
`k−1 if`k > obji.HeaderLine

φ if`k = obji.HeaderLine
(11)

Stop Gen Linear(`k, obji) = obji.HeaderLine if`k ≥ obji.HeaderLine (12)

4.6 Calculating Period From: Start,Stop, HeaderLine and LastLine
Properties

The period set of the SLVs is calculated according to the following equations:

period initial(slv, objk) =[slv.start, slv.start− 1, ..., slv.stop+ 1, slv.stop]

if slv.start ≥ slv.stop (13)

period initial(slv, objk) =[slv.start, slv.start− 1, ..., objk.HeaderLine+ 1, objk.HeaderLine,

objk.LastLine, objk.LastLine− 1, ..., slv.stop+ 1, slv.stop]

if slv.start < slv.stop (14)

period(slv, objk) =period initial(slv, objk)[i] | period initial(slv, objk)[i] ∈ objk
if 1 <= i <= length(period initial(slv, objk) (15)

Example 6. In Fig.6(A) and in accordance to Eq.15: period({x,11,12},obj1)={11,10,9,8,7,15,14,13,12}.
period({k,13,14},obj1)={13,12,11,10,9,8,7,15,14}

13

When the object has a child object, then all the statements that belong to the child
object must be excluded from the period. Study the following example:

Example 7. In Fig.6(B) and in accordance to Eq.15: period({k,13,14},obj1)=[13,8,7,15,14]

4.7 Detecting a Data Dependency

In the source code, every statement may have many immediate predecessors or many imme-
diate successors in terms of the execution flow. However, the Statement Set of the object
has maximally one immediate predecessor for every statement storing in it. Similarly, it does
not contain more than one immediate successor for every statement. OBPR consider the
Statetment Set of the object as a sequenced set of statements, where every statement is a
predecessor to the statement existing after it in the set.
if slv is generated from the line `k. `m, `k ∈ obj1.Statement Set. `m has the index m in
period(slv, obj1) `k is a data dependent on `m if the following conditions are satisfied:

• `m ∈ period(slv, obj1)

• `m kills slv.var

• There is no statement, which exists from period(slv, obj1)[1] to period(slv, obj1)[m−1],
kills slv.

According to these three conditions, Eq.16 is formed:

DataDependentOn(slv, obji) =period(slv, obji)[m] | kill(period(slv, obji)[m]) = slv.var ∧
(¬∃period(slv, obji)[j] | j < m ∧ (kill(period[j]) = slvi.var))

if j&mare indexes in period(slv, obji)

(16)

Example 8. In Fig.7; obj1.Statement Set= [8, 9, 10, 11, 12, 13, 14, 15]. if we assume that we
have the following slicing criterion: < r, 13 >. From Eq.[6,8]: obj1.Single Set = [(r, 13, 14)].
period((r,13,14),obj1)= [13,12,11,10,9,8,7,15,14] . Hence, DD({r, 13, 14}, obj1) = period[5] =
9. 5 is the index of statement 9 in period((r,13,14),obj1). Statement 13 is a data dependent
on statement 9, for the following reasons:

• It assigns a value to r. Thus, the condition kill(period[5]) = r is satisfied.

• Line 9 is one of the items in period((r,13,14),obj1)

• There is no statement from period[1] to period[4] assign a value to r. Thus, the condi-
tion (¬∃period[j] | j < 5 ∧ (kill(period[j]) = r)) is satisfied.

4.8 Finding all the Data Dependencies inside an Object

The data dependencies are detected inside the object by a special function called Slicing
Function. Each Object has its own Slicing Function. The data dependencies are detected
by the following steps:

1. Fetching individually the SLVs from the Single-Set SLV .

2. Creating a period for every fetched SLV

3. The Slicing Funciton visits the statements of the period in ascending according to the
indexes . At every statement, the Slicing Function checks whether the current SLV
is defined in this statement. if the current visited statement defines the current SLV,
then:

(a) if the current statement is not sliced before:

i. the slicing function slices it

ii. All the current variables in the right hand side of the statement are generated
as SLVs and are stored in a triple format in the Single-Set SLV after calculating
its start and stop properties. in this case, the new SLVs are: generated

(b) The current SLV is killed

14

Figure 7:

(c) The slicing function stops checking other statements in the period set and returning
back to the first item in this list.

4. if all the statements are visited and no statement in the period defines the current SLV,
then the current SLV is killed by removing it from the Single-Set SLV.

Figure 8:

Example 9 (Fig.8(A)). obj1 is a circular object. if we assume that we have the slicing
criterion: < r, 19 >. Then the Slicing Function do the following:

• obj1.Statement Set=[11,12,13,14,15,16,17,18,19,20].

• Slicing Criterion=< r, 19 >→ From Eq.[6,8], start = 19, stop = 20 → Single Set =
{(r,19,20)}.

• Slicing Function fetches (r, 19, 20)

1. From Eq.15, period((r,19,20),obj1)=[19,18,17,16,15,14,13,12,11,20]

15

2. DataDependentOn((r,19,20),obj1)=19 → Sliced Lines={19}
3. (r,19,20) is killed → obj1.Single Set=φ

4. From Eq.[1], gen(19)={y}
5. From Eq.[9,10], Start Gen Circular(19,obj1)=18, Stop Gen Circular(19,obj1)=20
→ obj1.Single Set= {(y,18,20)}.

• Slicing Function fetches (y, 18, 20)

1. From Eq.15, period((y,18,20),obj1)=[18,17,16,15,14,13,12,11,20]

2. DataDependentOn((y,18,20),obj1)=16 → Sliced Lines={19,16}
3. (r,18,20) is killed → obj1.Single Set=φ

4. From Eq.[1], gen(16)={k,j}
5. From Eq.[9,10], Start Gen Circular(16,obj1)=15, Stop Gen Circular(16,obj1)=17
→ obj1.Single Set= {(k,15,17),(j,15,17)}.

• Slicing Function fetches (j, 15, 17)

1. period((j,15,17),obj1)=[15,14,13,12,11,20,19,18,17]

2. DataDependentOn((j,15,17),obj1)=18 → Sliced Lines={19,16,18}
3. (j,15,17) is killed → obj1.Single set={(k,15,17)}
4. From Eq.[1],gen(18)= φ → No new SLVs

• Slicing Function fetches (k, 15, 17)

1. period((k,15,17),obj1)=[15,14,13,12,11,20,19,18,17]

2. DataDependentOn((k,15,17),obj1)=20 → Sliced Lines={19,16,18,20}
3. (k,15,17) is killed → obj1.Single Set=φ

4. From Eq.[1],gen(20)={m}
5. From Eq.[9,10]: Start Gen Circular(20,obj1)=19, Stop Gen Circular(20,obj1)=11

6. obj1.Single Set={(m,19,11)}
• Slicing Function fetches (m, 19, 11)

1. period((m,19,11),obj1)=[19,18,17,16,15,14,13,12,11]

2. DataDependentOn((m,19,11),obj1)=13 → Sliced Lines={19,16,18,20,13}
3. (m,19,11) is killed → Single Set = φ

4. gen(13) = φ

• Because there is no longer SLVs in obj1.Single Set.So, Slicing Function stops

Example 10 (Fig.8(B)). obj1 is a circular object. if we assume that we have the slicing
criterion: < a, 53 >. Then the Slicing Function will do the following steps:

• obj3.Statement Set IF=[41,42,43,44], obj3.Statement Set ELSE=[47,48,49,50,51,52,53,54]

• From slicing criterion < a, 53 >: obj3.Single Set={(a,53,47)} .Eq.[6,7] are used to
calculate start and stop properties.

• obj3.Slicing Function has fetched (a,53,47):

1. period((a,53,47),obj3)={53,52,51,50,49,48,47}
2. DataDependentOn((a,53,47),obj3)=53 → Sliced Lines={53}
3. (a,53,47) is killed → Single Set = φ

4. gen(53)={b,c} → obj3.Single Set=(b,52,47),(c,52,47).

• Slicing Function fetches (b,52,47)

1. period((b,52,47),obj3)={52,51,50,49,48,47}.
2. DataDependentOn((b,52,54),obj3)=51 → Sliced Lines={53,51}
3. (b,52,47) is killed → obj3.Single Set={(c,52,47)}.
4. gen(51)={d} → obj3.Single Set= {(c,52,47),(d,50,47)}

• Slicing Function fetches (c,52,47)

1. DataDependentOn((c,52,54),obj3)=47 → Sliced Lines={47,53,51}
2. (c,52,47) is killed → obj3.Single Set={(d,50,47)}

16

3. gen(47)= φ

• Slicing Function fetches (d,50,47)

1. DataDependentOn((d,50,47),obj3)= φ

2. (d,50,47) is killed → obj3.Single Set= φ

The lines that are sliced from obj3 are:{47,51,53}

4.9 Detecting the Data Dependencies between the Objects

The interfaces are used to reproduce the SLVs in two cases. Let us setup the following
common assumption in order to illustrate these two cases:

• there are two objects(obj1 & obj2)

• In the program, there are two statements: (stm1 ∈ obj1 and stm2 ∈ obj2)

• there is an interface: interface(stm2,stm1). Notice here that stm2 is the FROM side.

• The slicing function of obj2 has fetched slvi from obj2.Single Set

• stm2 ∈ period(slvi).

• if the slicing function visits stm2 in order to check the condition: (kill(stm2) = slv.var).
At this point, we have two cases:

1. if stm2 does not satisfy the condition (kill(stm2) = slv.var): then slvi.var
is reproduced in obj1. Take in your consideration that the reproducing is an
insertion case when start and stop properties are calculated for slvi in obj1.

2. if stm2 satisfies the condition (kill(stm2) = slv.var):, then the Slicing Func-
tion of obj2 kills slvi by removing it from obj2.Single Set. Then the Slicing Func-
tion of obj2 applies the function: gen(stm2) in Eq.1. All the new SLVs, which are
generated from stm2, are reproduced in obj1.

Figure 9:

In both of the two source codes in Fig.9(A), we have two main objects, obj1.Statement Set=[6,7,12,13].
obj2.Statement Set=[8,9,10]. In addition, there are two interfaces. The first interface is from
obj1 to obj2: (12,10) and the second interface is from obj2 to obj1: (8,7)

Example 11 (Fig.9(A)). By assuming that the slicing criterion is < j, 13 >

• obj1.Single Set={(j,13,6)}
• period((j,13,6),obj1)=[13,12,7,6]

17

• Because DataDependentOn((j,13,6),obj1)= 13
then−−−→(j,13,6) is killed from obj1 and

(y,12,6) is generated

• Single Set={(y,12,6)}.
• period((y,12,6),obj1)=[12,7,6]

• Slicing Function of obj1 visits orderly the statement 12, 7, then 6 to find the first
statement statisfying the the condition kill(period[m]) = y

• The Slicing Function of obj1 visits statement 12, because stmt12 does not satisfy the
condition kill(12) = y and because statement 12 is the FROM side in the interface

(12,10)
then−−−→ ’y’ is reproduced in obj2.

• obj2.Single Set += {(y,10,8)}. start and stop properties are calculated from Eq.[6,7]

• The Slicing Function of obj1 goes on visiting the rest of the period ..

• The Slicing Function of obj2 is fired later..

Example 12 (Fig.9(B)). By assuming that the slicing criterion is < j, 13 >:

• obj1.Single Set={(j,13,6)}
• Slicing Function of obj1 fetches (j,13,6)

– period((j,13,6),obj1)={13,12,7,6}
– DataDependentOn((j,13,6),obj1)= 13

then−−−→ statement 13 is sliced.

– (j,13,6) is killed and (r,12,6) is generated

– obj1.Single Set={(r,12,6)}.
• Slicing Function of obj1 fetches (r,12,6):

– period((r,12,6),obj1)={12,7,6}
– DataDependentOn((r,12,6), obj1)= 12 → statement 12 is sliced.

– (r,12,6) is killed in obj1 and (y,11,13) is created → obj1.Single Set={(y,11,6)}
– y is reproduced in obj2 → obj2.Single Set={(y,10,8)}

• Slicing Function of obj1 fetches (y,11,6). period((y,11,6),obj1)=[7,6]continue as
before

• Slicing Function of obj2 fetches (y,10,8). period((y,10,8),obj2)=[10,9,8]continue as
before

4.10 Detecting the Control Dependencies

In order to find all the statements that the slicing criterion is directly or indirectly a control
dependent on :

1. One of the statements in the object is sliced

2. The Slicing Function tests whether the header line is sliced before. if not:

(a) The header line is sliced.

(b) The statements that determine the scope of the corresponding block like BEGIN
... END or the curly braces ’{’ ’}’ are also sliced.

(c) All the variables involved in the header line are generated as SLVs and are added
to the Single Set of the object.

(d) The object sends a signal to the parent object in order to let it repeat the steps
from (2).

Example 13 (Fig.10). There are three objects: MainTrack, obj1, obj2. MainTrack.Statement Set=[1,2,3,4,5,6].
obj2.Statement Set=[7,8,9]. obj3.Statement Set=[10,11,12,13]

if we assume that there is the unique slicing criterion = < k, 13 >, then:

• The SLV ’k’ is inserted at statement 13. Thus, obj2.Single Set={(k,13,10}.
• From Eq.15, period((k,13,10),obj2)=[13,12,11,10]

• DataDependentOn((k,13,10),obj2)=13:

18

Figure 10:

1. Statement 13 is sliced

2. (k,13,10) is killed and (y,12,10) is generated

3. obj2.Single Set={(y,12,10)}
4. The statements 10, 14 are sliced

5. gen(10) = x
then−−−→ obj2.Single Set={(y,12,10),(x,13,11)}

6. Due to the existence of the interface (10,9) and to generating (x,13,11)
then−−−→

obj1.Single Set={(x,9,7)}
7. Because obj2.ID Parent = obj1 → obj2 sends a signal ’Slice Header’ to obj1

8. obj1 checks whether its Header statement is sliced, if it is not sliced, then:

– statement 7 and 15 are sliced.

– gen(7) = m
thus−−−→ obj1.Single Set={(x,9,7),(m,7,7)}

– because obj1 is connected with MainTrack by the interface(7,6) and statement

7 has generated the new SLV(m)
then−−−→ the SLV m is reproduced in MainTrack

object

– MainTrack.Single Set={(m,6,1)}
– object1.Parent ID= MainTrack. The header line of MainTrack is sliced by

default.

4.11 IF .. ELSE block

Inserting a child block like IF block or WHILE block in a parent block does not damage the
original data dependencies in the parent block. This is because the slicing is a MAY solution
which means all of the statements that may influence the slicing criterion are sliced. On
other side, IF block and WHILE blocks have an only one branch which it might be executed
or not. Hence, the original data dependencies in the parent block is not affected by inserting
a child block except for some cases.

Example 14 (Fig.11). Notice that in Fig.11(A): the statement 8 is a data dependent on
line 7. However, in Fig.11(B), a WHILE child block is inserted between the lines (7,8) in
Fig.11(A). The outcome of this insertion is shown in Fig.11(B). Notice that in Fig.11(B),
there is also a data dependency from line 12(8 previously) to 7. Hence, inserting a child
WHILE block does not damage the original data dependencies. For this reason, in calculating
the period and concluding the Statement Set sequenced sets, statement 12 (as an example)
is considered an immediate successor to statement 7.

19

Inserting an IF..ELSE block is an exception to the above assumption in some cases. The
problem of IF..ELSE block is that it has two branches and one of them must be executed.
Hence, if there is a variable (x) defined in the two branches of a child IF ELSE block, then
the SLV (x) in the parent block can not skip the child IF ELSE block like what (y) does in
Fig.11(B). Assume that we have the following assumption:

1. There is a parent object called obparent and it has two consecutive statements: `1 and
`2

2. An IF ELSE object: obchild is inserted in obparent between `1 and `2

3. The variable x is defined in both of the two branches of the child IF ELSE block.

4. if x variable is generated as an SLV in obparent and its period has the two statements:
`1 and `2. Then, the period of x must be truncated after `2

Defined Two Branches property This set exists only in IF ELSE object. This set is filled
by all the variables that are defined in both of the two branches in the corresponding
IF ELSE block. variable y in Fig.12 is an example.

Eq.15 can be improved in order to handle this issue:

period(slv, objk) =period initial(slv, objk)[i] | period initial(slv, objk)[i] ∈ objk∧
(¬∃ i > m | period initial(slv, objk)[m] ∈ objif else∧
slv.var ∈ objif else.Defined Two Branches)

where i andm are indexes in period initial(slv, objk) (17)

According to Eq.17, all the statements in the period, which come after a child IF ELSE
block defining in its two branches the current SLV, are removed from the period. The coming
example illustrates this concept:

Example 15. In Fig.12, statement 16 is not a data dependent on line 6 because y is defined
in both of the two branches of the IF..ELSE block and one of these two branches is indeed
executed.

Example 16 (Fig.12). There are two objects:

1. obj1 is the parent block and its Statement Set=[5,6,15,16]

2. obj2 is an IF ElSE block and its Statement Set=[7,8,9,12,13]

period initial((y,15,5),obj1)=[15,13,12,11,9,8,7]. Statement 13 has index 2 in period initial
set. Because statement 13 belongs to an IF ELSE block that defines the target SLV ’y’ in both
of its two branches, thus, period((y,15,5),obj1) does not accept from period initial((y,15,5),obj1)
any statement that its index ≥ 2. Accordingly, period((y,15,5),obj1)=[15]

20

Figure 11:

Figure 12:

21

5 The Algorithm

The Slicing Program is the main algorithm that is in charge of slicing all the lines in the
source code. The Slicing Function is in charge of detecting the data dependencies in its
object.

5.1 The Scanning Stage

The scanning stage builds and fills the intermediate data structure -Objects and Interfaces-
where the slicing algorithms apply its analysis on.

5.2 The Main Algorithm - Slicing Program

The Algorithm of the Slicing Program is illustrated in Fig.13. The OBJECTS input refers
to the objects that are constructed in the scanning stage. SLICING CRITERIA input
is a collection contains the slicing criteria, which each is a pair of < var, location >. The
SLICED STATEMENTS output are the code statements that are sliced by the Slicing Func-
tions.
Slicing Program begins the analysis in considering the variable in each slicing criterion as
SLV. The function FindObject returns the object that the sc.location of the slicing crite-
rion is one of its statements. The function Insert SLV injects the var of the slicing criterion
in the single set of the found object. Insert SLV uses the equations [6,8,7] in calculating
start and stop properties.
Afterward, the Slicing Function of each object is invoked. Since the termination condi-
tion is the emptiness of all the single sets, then, the function IsEmpty checks this condition
over all the objects. Line 11 setup a new iteration if any ob.single set is not empty.
It is worth noting that Each Slicing Function is responsible in killing its SLVs, but some-
times, the object receives new SLVs from other objects. Thus, the Slicing Program may
make many iterations until satisfying the termination condition.

SlicingProgram(OBJECTS ,SLICING CRITERA)

Input OBJECTS -

SLICING CRITERA -

Output SLICED - the modified code

1. foreach sc in SLICING CRITERA do

2. object = FindObject(sc.location)

3. Insert SLV(object, sc.var, sc.location)

4. flag new Iteration := true

5. while flag new Iteration do

6. foreach ob ∈ OBJECTS do

7. SLICED := Slicing Function(ob, SLICED)

8. flag new Iteration = false

9. foreach ob ∈ OBJECTS do

10. if !IsEmpty(ob.single set)then

11. flag new Iteration := true

12. return SLICED

Figure 13: The Algorithm of SlicingProgram

22

5.3 The Algorithm of the Slicing Function

Fig.14 shows the algorithm of the Slicing Function. Slicing Function fetches the SLVs
from the single set individually,(line 1) . The current SLV is stored in slv. The period path
of slv is calculated by Period function (line 2) . The inputs of Period function are the
SLV in its triple format as well as the object that the SLV is stored in it.
Afterward, the Slicing Function starts orderly visiting the statements in the period, the
current visited statement is (`)(line 3). In (line 4) , (`) is checked whether it is a FROM side
of one of the interfaces, if yes, the interface is stored in the variable ı.

line 5 checks whether the current visited statement ` kills slv, if no(line 5) , then the
Slicing Function reproduces slv in the another side of the interface ı, (line 6 and 7).
if ` kills slv (line 8) and if ` is not sliced before (line 9,10), then the following steps take
place:

1. ` is sliced by adding it to SLICED STATEMENTS, (line 11)

2. New SLVs are generated from `, and all of these SLVs are added to ob.Single Set after
calculating their start and stop properties(lines 12,13,14,15,16).

3. if the HeaderLine of the object is not sliced before, then it is sliced as well as the
determiners of its scope. Then:

• All of the variables involved in the ob.HeaderLine are generated as SLVs and added
to the ob.single Set (line 17,18,19,21,22,23,24)

• If the ob.HeaderLine is a FROM side in an interface connecting obj2 with `, then
all the new SLVs are reproduced in obj2 (line 19,20,21,22,23,24,25,26).

4. the object sends a signal to its parent object in order to slice its ob.HeaderLine if it is
not sliced before. (lines 27,28)

slv is killed by removing it from the ob.single set, (line 29). Finally, the Slicing Function
returns SLICED STATEMENTS (line 30).

23

Slicing Funciton(ob, SLICED)

Input ob - The object which the Slicing Function is going to detect its internal dependencies

SLICED STATEMENTS - The set of the already sliced statements.

Output SLICED STATEMENTS -

1. foreach slv in ob.single set do

2. period = Period(slv, ob)

3. foreach ` ∈ period do

4. ı = Interface From(`)

5. if kill(`) 6= slv then

6. if ı 6= NULL then

7. Reproduce(slv.var, ı)

8. else

9. if ` ∈ SLICED STATEMENTS then

10. break

11. SLICED STATEMENTS := SLICED STATEMENTS + `

12. GEN VARS := GEN(`)

13. foreach var ∈ GEN VARS do

14. start := Start(`, ob, case.generation)

15. stop := Stop(`, ob, case.generation)

16. ob.single set+ = {var, start, stop}
17. if ob.HeaderLine 6∈ SLICED STATEMENTS then

18. SLICED STATEMENTS+ = ob.HeaderLine+Begin Scope+ End Scope

19. GEN VARS = Gen(ob.HeaderLine)

20. ı = Interface From(ob.HeaderLine)

21. foreach var ∈ GEN VARS do

22. start := Start(`, ob, case.generation)

23. stop := Stop(`, ob, case.generation)

24. ob.single set+ = {var, start, stop}
25. if ı 6= NULL then

26. Reproduce(var, ı)

27. if ob.PARENT 6= NULL then

28. Slice Header(ob.PARENT)

29. Remove SLV(slv, ob)

30. return SLICED STATEMENTS

Figure 14: The Algorithm of SlicingFunction

24

6 Experiments

According to our estimations; the processing time of the slicing analysis has four main
factors regardless of the applied approach; The number of the variables, the number of
the lines, the number of the Fixed Point Iterations and the number of the blocks. Our
experiments endeavor to study carefully the trace of each factor in both of the two slicing
appraoches, Objects-Based Slicing and PDG-Based Slicing. A particular Program Generator
Tool generates 21 source code files to be tested and measured.

6.1 Number of the Variables and Number of the Iterations

The first twelve experiments measure the effect of changing the number of the variables
or/and the number of the fixed point iterations. As known, in all of the dataflow analysis
techniques, a one fixed point iteration is not enough if there is a WHILE loop includes all
the source code lines because all the reaching definitions records exist in the last exit point
of the WHILE loop block must be copied again to the first entry point of the WHILE loop.
if there is a nested two WHILE loops, then we need three fixed point iterations. The number
of the lines of those twelve experiments is 1000 lines. The number of the variables vary from
10, 20, 40, to 100 and the number of the iterations vary from 1,2 to 3 iterations. Hence, the
results of the measurements consists of an array where the rows have constant number of
variables and the columns have constant number of iterations.
Table 1 shows the measurements of PDG-Based slicing. Table 2 shows the corresponding
measurements in Objects-Based Slicing approach. Table 3 shows the amount of the speed-up
that we get from applying objects-based slicing instead of PDG-Based slicing.

6.2 Excluding the Parsing Time

The definition of the parsing time is: ”the required time to read and realize the type, the
assigned variable and reference variables of each line. This process may be implemented by
many ways. Our implementation aims to decrease the much of time consumed in comparing
the strings by converting the strings of the variables to integers. The parsing time is identical
for the two compared approaches -PDG-Based Slicing and Objects-Based Slicing-. The
parsing time for the above 12 source code files appear in Table

From this table, we can calculate the analysis time in Table 1 and in Table 2 by sub-
tracting from each cell the value in the corresponding cell in Table 4. However, from the new
analysis values which do not contain the parsing times, the speed up values of the analysis
times can be calculated and shown in Table

6.3 Variation in the number of the lines

Second group of files were designed to measure the effect of increasing the number of the
source code lines. Table. 6 shows the measurments of different line number that are 100,
250, 500, 750 and 1000. The first and second columns shows the much of the time of 2
iterations, 20 variables and the line number which is written at the corresponding cell in the
first column. The second and third columns compares the total analysis time for each file
and the fourth column shows the SpeedUp for every file.

Table 1: PDG-Based Slicing - Variations in the Number of Variables and Iterations - 5000
Executions, 1000 Lines

Variables
Number of Iterations

1 2 3

10 vars 77,1734 sec. 125,3591 sec. 178,8082 sec.
20 vars 82,3397 sec. 132,5435 sec. 196,2672 sec.
40 vars 99,5716 sec. 171,1097 sec. 247,7401 sec.
100 vars 157,4370 sec. 362,0000 sec. 588,6480 sec.

25

Table 2: Objects-Based Slicing - Variations in the Number of Variables and Iterations - 5000
Executions, 1000 Lines

Variables
Number of Iterations

1 2 3

10 vars 29,0496 sec. 30,0817 sec. 28,3076 sec.
20 vars 31,5558 sec. 33,1718 sec. 34,1609 sec.
40 vars 39,7702 sec. 41,8113 sec. 43,9855 sec.
100 vars 59,7344 sec. 67,7538 sec. 69,0389 sec.

Table 3: Speed Up : Table1/Table2

Variables
Number of
Iterations

1 2 3

10 vars 2,66 4,17 6,32
20 vars 2,61 4,00 5,75
40 vars 2,50 4,09 5,63
100 vars 2,64 5,34 8,53

Table 4: Parsing Times - Variations in the Number of Variables and Iterations

Variables
Number of Iterations

1 2 3

10 vars 24,2655 sec. 25,0994 sec. 24,9979 sec.
20 vars 27,7292 sec. 28,696 sec. 28,9642 sec.
40 vars 34,336 sec. 34,3204 sec. 35,1163 sec.
100 vars 48,077 sec. 48,525 sec. 48,534 sec.

Table 5: Speed Up Table - Analysis Time - 5000 executions and 1000 lines

Variables
Number of
Iterations

1 2 3

10 vars 11,06 20,12 46,47
20 vars 14,27 23,20 32,19
40 vars 12,00 18,26 23,97
100 vars 9,38 16,30 26,34

Table 6: The Variation of the Lines Numbers

Lines
Total Time

PDG Objects SpeedUp

100 4,70 sec. 3,16 sec. 1,48
250 12,31 sec. 7,80 sec. 1,58
500 40,45 sec. 15,30 sec. 2,64
750 82,26 sec. 22,43 sec. 3,67
1000 132,54 sec. 33,17 sec. 4,00

26

6.4 Testing the Scalability

In order to test the scalability, the line numbers 984 and 985 are modified in the file that
has 1000 lines, 100 variables and 3 iterations. Manually, these two lines are modified to:

a82=1;

a69=a82;

By conisdering the slicing criterion is < a69, 985 > , we get the following results: PDG-Based
Slicing consumes 575.13 seconds/5000 executions . Analyzing this file by Objects-Based
Slicing approach takes 49.275 seconds/5000 executions. The speed up of the total time is
11.67. This file is parsed by 48.68 seconds/5000 executions. if the speed up is calculated in
terms of analysis time only, then we get a speed up equals 886.

6.5 Memory Saving

Table 7 shows the memory savings that is gotten by using Objects-Based Slicing rather than
the conventional method: ”PDG-Based Slicing”.

The measurements exclude the Parsing time. in the PDG-Based slicing method, the data
fields that are included in reserved-memory measurements are:

• The reaching definition records in every program point.

• The data dependencies edges. Every line points to the lines, which it is a data dependent
on.

• The control dependency edge. Each line points to the line, which it is a control depen-
dency on.

• The control flow edges of each program line.

The calculations and the measurements tend to favor PDG-Based Slicing method over
Objects-Based Slicing. Thus, rather than considering every RD record consists of two fields;
it is considered in our measurements as a one field only. This makes a significance drop in
the Saving Rate.

The data fields in the Objects-Based Slicing included in the measurements are:

• The main properties of each block: headerLine, endLine, startLine, indexParent,indexBlock.

• The maximum size that the single-set of each object reaches.

• The interface set, specialized in reporting the SLVs reproduced through the interface.

• Two data fields stored in every line; indexObject, pointing to the object that the line
belongs to, and interface edge, if Interface edge ≥ 0, then this line is a From point side
in an interface and Interface edge points to the To point in the interface.

27

Table 7: Memory Saving

File
Name

PDG Objects Saving Rate

20 vars,100 line,2 Itr. 5,708 230 25
20 vars,250 line,2 Itr. 15,607 542 29
20 vars,500 line,2 Itr. 29,517 1048 28
20 vars,750 line,2 Itr. 44,292 1560 28
10 vars,1000 line,1 Itr. 30,864 2,234 14
10 vars,1000 line,2 Itr. 32,359 2,545 13
10 vars,1000 line,3 Itr. 33,717 2,711 12
20 vars,1000 line,1 Itr. 50,522 2,137 24
20 vars,1000 line,2 Itr. 56,334 2,939 19
20 vars,1000 line,3 Itr. 61,519 3,407 18
40 vars,1000 line,1 Itr. 89,282 2,074 43
40 vars,1000 line,2 Itr. 104,809 3,067 34
40 vars,1000 line,3 Itr. 127,914 4,627 28
100 vars,1000 line,1 Itr. 200,501 2,041 98
100 vars,1000 line,2 Itr. 301,045 6,147 49
100 vars,1000 line,3 Itr. 332,425 7,543 44

7 Results and Discussions

Tables [1,2] shows the execution times of twelve source codes, involving in the experiments.
Those tables motivates the fact that the total execution time for both of the two methods
is proportional to the number of the iterations as well as the number of the variables. Fur-
thermore, table 6 illustrates the proportional of the execution time with the number of the
lines.

Tables [3,6] illustrates that the Speed Up is proportional mainly to the number of the
iterations as well as the lines. Less importantly, to the number of the variables.

The Parsing technique used in implementing both of the two methods is same. it mainly
depends on Regular Expression Library in Visual C#.NET 2012. Because the Parsing tech-
nique could be replaced by a lighter technique and in order to accurately compare between
the two methods, Table 5 shows the speed up of the Analysis Times, where the parsing is
not included. The speed-up in table 5 is significantly increased to reach to 46 as a maximum
and to 9 as a minimum.

Section 6.4 shows a speed up reaches to 886 for the file: file 100vars 1000lines 3Iterations.txt.
This file is Working with small sizes of problems, such as the one mentioned in Section, shows
an extraordinary significance. The speed up in this case 886. This proves that the analyses
in Objects-Based grow with the problem.

28

References

[1] C. Sandberg,A.Ermedahl,J. Gustafsson ,B. Lisper, Faster WCET Flow Analysis by Pro-
gram Slicing

[2] Ottenstein, K. and Ottenstein, L. 1984. The program dependence graph in a software
development environment. In Proceedings of the 1st ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments. ACM Press,
New York, NY, USA

[3] J. Ferrante, K. Ottenstein, J. Warren,The program dependence graph and its use in
optimization, ACM Transactions on Programming Languages and Systems, 1987

[4] F. Nielson, H. Nielson, C. Hankin, Principles of Program Analysis, Springer

[5] M. Weiser, Program Slicing,Proceeding ICSE ’81 Proceedings of the 5th international
conference on Software engineering

[6] J. Sliva, A Vocabulary of Program Slicing-Based Techniques, ACM Computing Surveys
(CSUR), June 2012

[7] A. Lucia, Program Slicing: Methods and Applications, Proceeding. First IEEE interna-
tional workshop on Source Code Analysis and Manipulation. 2001

[8] M. Weiser, Program slices: formal, psychological, and practical investigations of an au-
tomatic program abstraction method, PhD thesis, University of Michigan, Ann Arbor,
MI, 1979.

[9] M. Weiser,, Programmers use slices when debugging, Communications of the ACM, vol.
25, 1982, pp. 446-452.

[10] M. Weiser, Program Slicing, IEEE Transactions on Software Engineering, vol. SE-10,
no. 4, 1984, pp. 352-357.

[11] S. Danicic, M. Harman, and Y. Sivagurunathan, A parallel algorithm for static program
slicing,Information Processing Letters, vol. 56, no. 6, 1995, pp. 307-313.

[12] H. Agrawal, On slicing programs with jump statements, ACM Sigplan Notices, vol.
29,no. 6, 1994, pp.302-312.

[13] T. Ball and S. Horwitz, Slicing programs with arbitrary control-flow, Proceedings of 1st
International Workshop on Automated and Algorithmic Debugging, Linkping, Sweden,
Springer Verlag, New York, 1993, pp. 106-222.

[14] M. Harman and S. Danicic, A new algorithm for slicing unstructured programs, Journal
of Software Maintenance: Research and Practice, vol. 10, no. 6, 1998, pp. 415-441.

[15] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A Brief Survey
of Program Slicing. SIGSOFT Softw. Eng. Notes, 30(2):136, 2005.

[16] Johan Kraft, Enabling Timing Analysis of Complex Embedded Software Systems,
Mlardalen University Press Doctoral Theses, 2010

29

