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Abstract. Worst-Case Execution Time (WCET) analysis has been around for
some time now, but has so far not been much used to analyse real production
codes. Here, we present a case study where static WCET analysis was used to find
upper time bounds for time-critical regions in a commercial real-time operating
system. We report on practical experiences from the work, like the reverse engi-
neering required to find these regions and prepare them for the analysis. We give
the results of the WCET analysis and discuss the precision. We also present some
qualitative and quantitative data on the program structure of the regions. This in-
formation is useful to judge whether WCET analysis could provide any useful
results for this class of real codes, without excessive manual labour. Finally, we
present a “wishlist” for features of WCET analysis tools, which has emerged dur-
ing the project, and comment on the feasibility of implementing these features.

1 Introduction

Real-time systems have timing requirements. Thess requirements imply upper limits on
the execution times of codes in the systems: in order to guarantee that these require-
ments are met, it must be verified that the codes execute within their time limits. The
purpose ofWorst-Case Execution Time(WCET) analysis is to find upper bounds for the
execution times of codes on certain processors. Apparently, some form of WCET anal-
ysis is needed to ensure the formal correctness of real-time systems. It is thus important
to develop and evaluate such techniques.

Real-time systems most often use real-time operating systems. Certain parts of the
operating system code will then be time-critical. An example isdisable interrupt re-
gions (or DI regions, for short), which execute with the interrupts turned off. A DI
region can for instance be a critical section, where some shared resource is accessed.



The execution of DI regions can potentially delay any other activity in the system. It is
therefore important to establish bounds on their execution times.

In this case study, a prototype tool for static WCET analysis was used to find upper
bounds to the execution time for a number of DI regions in the delta kernel of the Enea
OSE operating system [8]. The case study was done as an M. Sc. thesis project [2].

The purpose of the study was at least twofold. For the operating systems vendor, it
is interesting to find DI regions that may have long execution times, so they can be op-
timized. This will improve the responsiveness of the operating system for soft real-time
applications. Furthermore, guaranteed upper bounds on the execution times of these re-
gions provide an increased confidence in the hard real-time properties of the operating
system. Testing, which is the current method to validate real-time properties, does not
provide any strict guarantees. Furthermore, testing the individual DI regions is hard.
Measuring their execution times in isolation would require a costly instrumentation of
the operating system code, with possible probing effects that could render the results
useless anyway. Therefore, it is interesting to investigate whether WCET analysis can
provide a feasible way to bound the execution times of the regions at a reasonable cost.

For the WCET analysis research, it is very important to be able to test analysis
techniques on real programs. Toy benchmarks may fail to uncover the true difficulties.
Time-critical parts of real-time operating systems is an interesting class of target codes
for WCET analysis. Case studies like this can provide valuable information about the
properties of such codes, that can be fed back to tune the analysis to handle this class of
codes better.

Finally note that other formal techniques for verifying real-time properties will typ-
ically depend on the correctness of given WCET bounds for time-critical activities, so
the absence of a formal WCET analysis reduces their applicability.

The rest of this paper is organized as follows. In Section 2, we give a brief in-
troduction to WCET analysis and related work in the area. In Section 3 our current
prototype WCET tool is described. Section 4 gives a short description of the OSE op-
erating system. Sections 5 and 6 describe the chosen target processor for the analysis,
the experimental setup, and the reverse engineering required to find the DI regions. In
Section 7 we give the results, both the WCET estimates and facts about the structure of
the analyzed code. Finally, in Section 8, we draw some conclusions and give ideas for
further research.

2 WCET Analysis and Related Work

WCET analysis is usually divided into three parts: a fairly machine-independentflow
analysisof the code, where information about the possible program flow paths is de-
rived, a low-level analysiswhere the execution time for atomic parts of the code is
decided from a performance model for the target architecture, and a finalcalculation
where the information from these analyses is put together in order to derive the actual
WCET bounds. The flow analysis is usually called “high-level analysis”, since it is of-
ten done on the source code, but it can equally well be done on intermediate or machine
code level.



The flow analysis can be done by hand. The information must then be communi-
cated through annotations, either integrated in the code [29] or provided separately [14,
17, 19, 30]. However, to some extent the flow analysis can be automated [4, 13, 15–17,
23, 33].

The low-level analysis can be further divided into two stages.Global low-level anal-
ysis takes features requiring a global view (caches, branch predictors) into account [5,
14, 16, 18, 20, 21, 24, 25, 33, 36].Local low-level analysis considers features with local
effects, like pipelines and superscalar instruction execution [9, 10, 16, 21, 22, 32, 33].

Three classes of calculation methods are mainly used:tree-basedcalculation,path-
basedcalculation, and theImplicit Path Enumeration Technique(IPET). The tree-based
approach is limited to well-structured codes, and assumes that the execution time bounds
for programs can be directly derived from time bounds on their parts through simple
rules [3, 28]. Path-based techniques explicitly explore the execution paths of a program
fragment [16, 33, 34]. IPET, finally, models possible program flows with arithmetic con-
straints [11, 14, 17, 19, 27, 30]. IPET is formulated for (possibly unstructured) program
flow graphs, with basic blocks connected by edges. Each entityi in the graph is given
an execution timeti by the low-level analysis, and an execution countxi. The WCET
is estimated bymax(

P
i
xiti) subject to the constraints given by the flow analysis. If

these constraints are linear, then the optimization problem can be solved by integer lin-
ear programming (ILP) techniques. IPET can handle complex flow constraints, but this
may come at the cost of an expensive calculation.

The only other work we know, where WCET techniques have been used to analyse
operating system kernels, is by Colin and Puaut [6]. They analyse some operating sys-
tem functions of RTEMS, a small, open-source real-time kernel. Their WCET analysis
tool is based on the tree-based approach, which requires manual annotations to bound
the number of loop iterations, and well-structured code. Some unstructured parts of
RTEMS had to be rewritten in order to fit the tool.

We extract control flow graphs from object code for WCET analysis. This has also
been done by Theiling [35].

3 The WCET Tool

Our WCET analysis tool targets embedded systems. The ultimate goal is to be able to
analyse optimized code for such systems, generated by a compiler for full C, with rea-
sonable precision for an interesting range of real embedded programs. For an overview,
see [12].

The tool consists of an automatic flow analyser, currently under construction, a low
level analysis, that basically estimates execution times for basic blocks, and a calcula-
tion that can be either IPET- or path-based. For the case study, the tool was extended
with a “frontend” to extract DI regions from object code, and build control flow graphs
for them. The current architecture, without the automatic flow analysis, is shown in
Fig. 1.

The flow analysis will work on an intermediate format for an optimizing C compiler,
that is currently under development [31]. This format is close to a control flow graph,
and will accurately describe the control structure of the generated binary code. The
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Fig. 1. Architecture of our WCET analysis tool.

reason to perform the flow analysis on this format, rather than on the source code, is
that optimisations that change the program flow then are taken into account. The control
flow graphs may correspond to unstructured programs, which excludes some methods to
estimate the program flow. However, classical abstract interpretation [7] handles general
control flow graphs, and our analysis will be based on an abstract interpretation that
estimates the value ranges of artificial counter variables (see below).

The main part of our low-level analysis is a pipeline analysis coupled with a simu-
lator, see Fig. 1. Currently we can analyse code for NEC V850E [26] and ARM9 [1],
but the modular architecture of the tool makes it possible to simply plug in low-level
analyses of new processors as the need arises. We have also implemented an instruction
cache analysis similar to the one described by Ferdinand et al. [14], but we have not
used this analysis in the current experiments. See [9, 10] for details.

Information about possible program flows is communicated to the low-level analysis
and WCET calculation throughflow facts, a certain constraint format [11]. Flow facts
are constraints on execution counters that give the number of times certain edges or
nodes in the control flow graph are traversed, possibly in the context of an iteration
of an enclosing loop. Flow facts are defined relative toscopes, basically subgraphs to
the control flow graph that constitute loops (or other repeating constructs). Scopes are
hierarchically nested as trees. Each scope also has an upper bound on its number of
iterations.

The tool can currently use two calculation methods to produce the final WCET
bound: an IPET-related method that uses ILP, and a faster but less general path-based
method [11].

4 The OSE Operating System

The OSE operating system1 is a real-time operating system that is used in embedded
applications, like in mobile phones and aircrafts. It is one of the major operating sys-
tems in the world for these kinds of applications. OSE supports a process model with
priorities, where processes can be organized in blocks that have their own shared mem-
ory areas. Since it handles concurrent processes with shared resources, there are plenty

1 www.ose.com



of situations where the operating system must be able to complete some task without
interruption. Thus, it contains many DI regions. Since it is intended for real-time ap-
plications it is important that the execution time of the DI regions is kept short, which
motivates the study reported on here.

OSE is available for a number of target processors, mostly towards the high-end
spectrum of embedded processors. The delta kernel of OSE, which has been used in this
study, is available for ARM, StrongARM, PowerPC, Motorola 68k, and MIPS R3000.

5 The ARM9 Processor

We selected the ARM9 Processor as target architecture, since it is an important archi-
tecture to support for OSE, and widely used overall. We implemented a simulator for it
during the course of the project.

ARM9 is a 32-bit RISC processor with a five-stage pipeline. It can switch into
THUMB mode, where it executes a 16-bit instruction set, which is useful in applications
where code size is critical. All instructions can be executed conditionally, which can be
used to reduce the number of branches in the code.

ARM has three kinds of jump instructions: Branch, Branch-with-link, and Branch-
and-exchange. Branch instructions are used when the there is no need to save a return
address. Branch-with-link instructions are used for subroutine calls, when the return
address must be saved. These instructions take an address as argument, which is saved
in a special link register. Branch-and-exchange instructions, finally, are typically used
when returning from a subroutine. They take a register as argument, which holds the
jump address. This register can be the link register but may also be some other register.

Interrupts are enabled (EI) and disabled (DI) by setting some bits in a status register.
This is done with a Move-register-to-status-register instruction. Thus, an EI or DI will
be executed depending on the contents in the source register.

6 Experimental Setup

The task at hand was the following: extract the DI regions from the binaries for the
kernel, find the control flow graph for these regions, constructscope graphsthat contain
the scope definitions and flow facts for the regions, and finally use the WCET tool to
calculate upper bounds for the WCET of each DI region. In order to do this, we had
to use a mix of semiautomated and manual routines. We believe this is a fairly typical
situation in practice, when tools are to be applied, and thus it could be of some interest
to describe this work.

We had access to the object code binaries in ELF (Executable Linkable File) format,
and the source code. The ELF files were generated by tools from ARM, and they contain
symbol tables which were helpful to relate binary code to its source code. (Alas, this
information is non-standard, and thus our tools are dependent on the object code being
generated by the ARM tools.) The source code is written both in C and assembler.

We made prototype tools to extract the DI regions, and to build the control flow
graph for the extracted regions. The tool to find the regions is anawk text processing



script, which filters out the functions in the source code where instructions affecting the
interrupt state are detected, and then finds the actual regions by syntactical means. The
corresponding binary code is then extracted from the ELF format files. See Fig. 1.

A DI region is defined as the code between a DI and the next EI executed. This
definition has some problems, since these regions in principle can be different between
different executions. For instance, DI regions may have multiple entries and exits. This
can be dealt with by considering all possible paths through the region. The DI regions
we found were mostly single entry/single exit, and the few others had a simple control
structure, so in practice this was not a problem. (As a side note, we found a few cases
where several DI’s are executed before any EI: the DI region then starts with the first
DI.) A more serious problem was that the instruction used to enable/disable interrupts
uses the current value in a register, and thus it may be data-dependent whether an in-
stance of the instruction in the code disables or enables the interrupt! We could identify
three categories, depending on the contents of the source register:

– the source register is set or cleared just before the status register is changed,
– the contents of the source register is restored from the stack, and
– the contents of the source register originates from somewhere else.

For the first category, it is easy to decide whether a DI or EI is executed. The second
category is typically used to end a DI region, where the current status of the register
is saved on the stack before executing the initial DI: the effect is that the interrupt
state before entering the region is restored upon exit. A typical situation is when a DI
region appears within a subroutine, which should not change the interrupt state of the
caller. The third category may appear when, for instance, the value used to set/clear the
interrupt enable bits originates from an argument to a function.

Our simpleawk tool only detects DI regions delimited by DI’s and EI’s from the
first category. Thus, some regions of the OSE delta kernel were not analyzed in the
experiment. A more sophisticated tool, that uses a data flow analysis to find the source
of the register contents used to set the interrupt bits, could probably find more regions.

A second tool constructs control flow graphs from the extracted binaries for the
detected DI regions. This reverse engineering is a necessary step in many analyses of
object code, not just WCET analysis of DI regions, and therefore this tool could be used
in many other contexts. The tool uses a straightforward algorithm, tracing the jumps in
the code, to find the basic blocks and the edges between them. Calls to subroutines and
functions are also identified. Here, we had to assume some calling conventions how to
use the instruction set, when calling and returning from a subroutine. In particular, we
assumed that every Branch-and-exchange operation implemented a return from subrou-
tine, even in cases where the target jump address came from another register than the
link register. We also had to handle the fact that some regions of the kernel code execute
in THUMB mode. These regions are detected by finding the instructions that switch to
and from THUMB mode, much like the detection of DI regions. This was not hard to
implement.

Conditionally executed instructions posed a potential problem. In the worst case,
one would have to create a separate, conditionally executed basic block for each such
instruction, which would lead to a very expensive WCET calculation. Our solution was
to simply assume that all instructions (except, of course, jumps) are unconditionally



executed. This may lead to larger WCET estimates, but can never cause an underes-
timation on the ARM9. (On some other architectures than ARM9 this may actually
happen, though, see [9] for how to handle conditional code in general.) An alternative
would be to perform a more sophisticated analysis of the conditions, to find sequences
of instructions with conditions always evaluating to the same result. These could then
be put in the same, conditionally executed basic block.

Finally, the scope graphs were computed. The WCET tool has a module that con-
structs scope graphs from control flow graphs. This tool essentially identifies loops
hierarchically and creates the corresponding scopes. The flow facts for the scopes had
to be provided by hand, in the absence of an automatic flow analysis. Of particular im-
portance was to provide upper limits for loop iterations. We believed these could be
possible to decide from the source code, but in practice this was hard. A reason for
this is that the DI regions often cross function and subroutine boundaries, so the source
code for a region can be widely scattered. This made it hard for us to trace back the
different parts of DI regions to their origins in the source codes. Another reason for our
difficulties was that entities that give upper bounds for the number of loop iterations,
like sizes of data structures, were not always explicitly declared in the source code.

The most time-consuming part of this work was to implement the tool that creates
control flow graphs from the binary code. However, it also took some time to figure out
how to detect DI/EI-instructions.

7 Results

We identified 612 DI regions in the delta OSE kernel. This is approximately half of
the total number of interrupt regions, but as explained in Section 6 we collected only
those that could be surely identified by our simple tool. Of these, 554 regions contained
at most three basic blocks. This confirms the common belief that this kind of region
typically is small and has a simple control structure. The belief is further validated by
the size distribution of the regions, which is shown in Fig. 2. Loops were found in
about 5% of the regions, but rarely more than one loop per region. Only two of the
regions contained nested loops, in both cases a single, doubly nested loop. There were
no function pointers.

We selected ten DI regions for a closer investigation. We wanted to test regions
that were potentially challenging for WCET analysis, with a relatively complex control
structure, so several of the regions contain loops. The typical region is shorter, contains
no loops, and has few if any branches. The control flow graphs for three of the selected
regions are shown in Fig. 3. (All ten are given in [2].)

The estimated WCET’s for the selected regions, together with some statistics about
their control structure, are shown in Table 1. The unknown upper loop iteration bounds
were all set to 100. This is probably a gross overestimation. The estimates were calcu-
lated for an ARM9 processor without cache. We used a path-based calculation method.
Due to the limited time of this study, we could not perform any real measurements on
the execution time for the interrupt regions. Note that DI regions can stretch over func-
tion calls: each function call gives a new scope, and therefore the number of loops and
the number of scopes may differ.
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Chain Size (bytes)Basic blocksLoops NestedScopesWCET (cycles)
DI156588-EI156828 244 11 2 – 4 2564
DI159444-EI159608 168 7 – – 2 45
DI181296-EI147608 200 9 – – 2 85
DI182248-EI147608 308 16 – – 2 89
DI183924-EI183796 160 11 1 – 3 2351
DI183924-EI184392 160 11 1 – 3 2363
DI185276-EI185524 248 11 – – 2 86
DI194280-EI194376 100 6 – – 2 31
DI230288-EI230508 240 12 3 1 5 26729
DI261180-EI261432 212 9 3 1 5 26228

Table 1.WCET estimates for ten selected DI regions. For regions with loops, an upper iteration
bound of 100 has been assumed except for the inner loops in the two last regions which both were
found to have iteration bound 32.

8 Conclusions and Further Research

The most interesting result of this study is not the calculated WCET estimates. They are
probably large overestimates of the real WCET on the assumed target system, since the
assumed loop bounds most likely are way too large. Also, the ARM9 simulator has not
yet been verified against the real hardware (see [9] for how to do this). Furthermore, our
target system is an ARM9 system with fast memory and no cache, while the OSE oper-
ating system often is used on systems with cache. (Note, however, that potentially long
execution times on systems without cache and with cache should correlate positively,
so the analysis results might still be useful for detecting potentially long-executing DI
regions that are candidates for optimization.) More interesting is the information gained
about the typical structure of DI regions: those inspected here turned out to be simple in
structure, with few, mostly well-structured loops, very few nested loops, and no func-
tion pointers. The last fact is very important since code with function pointers needs a
sophisticated analysis to find the possible program flows, with a risk of loss in preci-
sion. We therefore do believe that this kind of code is amenable to WCET analysis of
the kind we currently are developing.

The case study was done by one person during five months. Due to the limited time,
our tool set to find DI regions and construct their control flow graphs has some short-
comings, but most of them seem straightforward to overcome. There is a need for a data
flow analysis on low-level code, in order to statically determine the values of registers.
Similarly, an analysis to decide whether the conditions for subsequent conditionally ex-
ecuted instructions always evaluate to the same value would also be useful, to find a
more detailed control flow graph (and thus a tighter WCET estimate) where the num-
ber of basic blocks is still reasonable. There is also a need to make relevant high-level
information available on object-code level. Standards for attaching metadata to object
code are needed, or tools will become vendor-dependent even when they work on bi-
nary code level. Finally, one must map the WCET info back to the source code. This
can probably be done using debug info from the compiler used.



It is also clear that the usefulness of analyses like WCET analysis grows fast with
the level of automation. In our experiment, even simple means of automation made
a huge difference in the amount of engineering work necessary. Besides the analyses
already mentioned, we will intensify our efforts to develop an automated flow analysis.

In discussions with Enea OSE Systems, we have learned that absolute WCET bounds
seldom are very interesting. The operating systems are often run in certain modes, and
the absolute WCET’s are often obtained only for very particular modes, which rarely
appear in practice (combinations of high levels of error detection, lots of processes,
etc.). Rather, one would like to know the WCET conditionally, given that the system
runs in a certain mode. Modes, or sets of modes, can often be encoded as value-range
constraints on program variables (settings of flags, bounds on number of processes,
etc.). Program flow constraints can also be expressed as value-range constraints, but on
execution count variables. Thus, it seems of great importance to develop means to com-
municate such information to the analysis in order to constrain the possible program
flows for the given mode. Existing means for bounding the number of loop iterations
in WCET calculation do not seem sufficient for this [14, 17, 19, 29, 30]. A more general
language to express constraints on variable values would be useful and could also be
potentially interesting to use for other program analyses.
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