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ABSTRACT 
 
An abstract model of a cortical hypercolumn is presented. 
This model could replicate experimental findings relating 
to the orientation tuning mechanism in the primary visual 
cortex. Properties of the orientation selective cells in the 
primary visual cortex like, contrast-invariance and 
response saturation were demonstrated in simulations. We 
hypothesize that broadly tuned inhibition and local 
excitatory connections are sufficient for achieving this 
behavior. We have shown that the local intracortical 
connectivity of the model is to some extent biologically 
plausible. 

 

1. INTRODUCTION 
 

Most neurons in the primary visual cortex (V1) 
respond to specific orientations even though relay cells in 
the lateral geniculate nucleus (LGN), that carries the 
information from retina to V1, does not show evidence of 
orientation selectivity. It is not known in detail how 
orientation selectivity of the cells in V1 emerges and the 
issue is hotly debated (for a recent review see Ferster et 
al., [9]). Hubel and Wiesel [10] proposed that orientation 
selectivity of simple cells in V1 was a consequence of 
synaptic input from LGN. Still today the Hubel and 
Wiesel feedforward model serves as a model of thalamic 
input to cortex. However many of the properties of 
orientation selective cells in V1 cannot be predicted by 
such a feedforward model. Contrast-invariance of 
orientation tuning seen by simple and complex cells is 
perhaps the most striking example. As contrast increases 
the height of the response curve increases while the width 
remains almost constant [11,12,13]. 

It was also shown that response to contrast stimulus 
increases over approximately 50-60% of the response 
range and this behavior is followed by a rapid saturation 
and normalization of the cells activity [13]. The saturation 
level seems to be determined by stimulus property 
(orientation, spatial frequency) and not by electrical 
properties of the cells. Maximum response to non-

preferred stimulus was reported to be lower than to 
preferred stimulus. 

According to the findings by Hubel and Wiesel [16] 
the primary visual cortex has a modular structure. It is 
composed of orientation minicolumns each one 
comprising some hundreds of pyramidal cells and a 
smaller number of inhibitory interneurons of different 
kinds. Contrast edge orientation is coded such that the 
cells in each orientation minicolumn respond selectively 
to a quite broad interval of orientations. Further, the 
orientation hypercolumn contains orientation minicolumns 
with response properties distributed over all angles, and 
thus represents the local edge orientation pertinent to a 
given point in visual space. A similar modular 
arrangement is found in many other cortical areas, e.g. 
rodent whisker barrels [15]. 

The Bayesian Confidence Propagation Neural 
Network model (BCPNN) has been developed in analogy 
with this possibly generic cortical structure [14]. This is 
an abstract neural network model in which each unit 
corresponds to a cortical minicolumn. The network is 
partitioned into hypercolumn-like modules and the 
summed activity within each hypercolumn is normalized 
to one. 

The above network model relates to the so-called 
normalization models of V1 proposed by Albrecht et al. 
[20] and Heeger [21] that address properties of simple 
cells mentioned above. These assume that input from the 
LGN grows linearly with contrast stimulus. This input is 
divided by a linearly growing inhibitory input. The effect 
is division of the input from the LGN and that the 
summed activity of the cells in a hypercolumn is 
normalized. This would correspond to saturation of a cells 
activity. Later Carandini et al. [22,23] proposed that a 
pool of cells with different preferred orientations and 
spatial frequencies drives the shunting inhibition. 

Cross-orientation inhibition is yet another feature of 
cortical simple and complex cells. Response to 
superposition of two gratings is less than sum of each 
response alone [8,25]. Morrone et al. [8] suggested that 
this inhibition arises from a pool of cells with different 
orientations. The cross-inhibition effect could be  



Figure 1. A, The hypothesized repetitive layout of the cat V1 
demonstrated by 7 hypercolumns. B, The partial 
hypercolumn model used during the simulations consisted 
of 17 minicolumns. C, A scheme showing one of the 
subsampled orientation minicolumns and the basket cell 
representing the pool of inhibitory cells. Excitatory cells 
in the input layer are connected to the basket cell, and the 
basket cell inhibits the excitatory cells in the output layer. 

D, A scheme showing the activity of the excitatory cells 
in two minicolumns with preferred orientation (bottom 
solid lines) and non-preferred orientation (bottom dashed 
lines). Input layer excitatory cells (exponential curves) are 
driving the basket cell (thick top curve). The output layer 
excitatory cells (sigmoidal curves) are normalized when 
the basket cell’s activity increases linearly. 
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explained by a shunting inhibition proposed by the 
normalization models [22,23]. 

Here we present an abstract model of a cortical 
hypercolumn derived from the above-mentioned BCPNN 
architecture. Our main intention has been to address 
response saturation and contrast-invariance of orientation 
tuning behaviors of cortical cells. Initial tests were 
showing that cross-orientation inhibition was also 
prominent. All these behaviors could be achieved by a 
very simple network architecture (Fig. 1). 
 

2. NETWORK MODEL 
 
The foundation of our network model is the columnar 

organization seen in V1 and elsewhere in the cortex [16]. 
We assume that V1 is composed of repetitive structures, 
so-called minicolumns, and that these minicolumns rotate 
around hypothetical centers [18], and form hypercolumns 
(Fig. 1a). In our model a hypercolumn is represented by a 
finite number of minicolumns, each representing a 
particular orientation (Fig. 1b). For sake of simplicity we 
decided to use a partial hypercolumn model composed of 
17 subsampled orientation minicolumns, ranging from 0° 
to 180°, with the angular distance of 11.25° between two 
successive ones (Fig. 1b). The diameter of the cylinder 
shaped minicolumns was 56 µm, as a consequence of the 
study done by Peters et al. [17] on cat V1. In that study, it 
was reported that apical dendrites of layer V pyramid cells 
formed clusters with a center-to-center spacing of about 
56 µm, which provides an estimate of the mean distance 
between two successive minicolumns. The circular 
arrangement of the minicolumns gives the biologically 
plausible hypercolumn diameter of 900 µm for cat V1. 
The minicolumns has a height of 600 µm, and are 
abstractions of the layer II-IV of cat V1 [17]. Each of the 
subsampled minicolumns is composed of 28 neurons (Fig. 
1c) and the neuron population is heterogeneous with all 
values sampled from a uniform distribution with a 
standard deviation of 10%. 

The hypercolumn model consists of two separate 
layers with two different tasks in order to achieve 
normalization behavior proposed by the BCPNN model 
(Fig. 1c). It will be shown later that the excitatory neuron 
in the output layer replicates experimental findings 
relating to the orientation tuning mechanism in V1.  

There were no connections between these two layers, 
and thus the interaction between them was through one 
basket cell, representing a pool of inhibitory cells (Fig. 1b 
and 1c). This layout resulted in feedforward connectivity 
inside the hypercolumn model. Every input layer 
excitatory cell was connected to the basket cell, and thus 
could drive it. The basket cell was connected to every 
excitatory cell in the output layer. There were no 
connections between excitatory cells situated in different 
orientation minicolumns. Connection probability between 

two excitatory neurons inside a minicolumn layer was a 
function of the distance between them [6]. 

The implication of this scheme for the output layer is 
that, the distribution (in terms of orientation) of the 
inhibitory input to an excitatory cell is broader than the 
excitatory input. This is because the basket cell represents 
a pool of orientation specific neurons inhibiting a pool of 
excitatory neurons with all possible preferred orientation. 
Even though the connectivity pattern seen in the output 
layer is very simple, it is still biologically plausible. 
Kisvárday et al. [27] reported that, in an area of the size of 
cat V1 hypercolumn, 56 % of the excitatory and 47 % of 
the inhibitory connections were at iso-orientation, while 
cross-inhibition was shown by 14 % of excitatory and 20 
% of inhibitory connections respectively. This indicates 
that, the inhibitory network is less orientation specific 
than the excitatory network. A study based on ferret 
prefrontal microcircuits is also pointing in the direction of 
the basket cells as responsible for gain control of the local 
cortical network [26].  

Besides the basket cell, there were other inhibitory 
cells in the model. These cells were the local inhibitory 
chandelier cells [28] located inside the minicolumns, and 
hence inhibiting excitatory cells with the same orientation 
preference. In the input layer three chandelier cells 
inhibited an excitatory cell, while two chandelier cells 
inhibited the excitatory cells in the output layer. 

Cortical neurons are known for their irregular spiking 
activity [3,4], and were thus modeled as Poisson 
processes. As the kernel of the Poisson process we used a 
leaky integrate-and-fire model [1,2]. The role of the leaky 
integrate-and-fire model was to sum the presynaptic 
inputs to generate the membrane potential of the cells. 
Maximum frequency of the excitatory and the inhibitory 
neurons were 100 Hz and 300 Hz respectively. Half-
height of the IPSPs were 10 ms, and 15 ms for the EPSPs. 
Mean amplitudes of the EPSPs inside the minicolumns 
were 0.94 mV for the input layer, and 9.4 mV for the 
output layer. The strength of the synaptic connection 
between the input layer excitatory cells and the basket cell 
was set to give an EPSP of 3.5 mV. IPSPs generated by 
the chandelier cells had a mean of -3.2 mV, and that of the 
basket cell was -55.1 mV. Observe that the values are 
exaggerated, specially the IPSP generated by the basket 
cell, for compensating the small number of cells used in 
the network model. It is assumed that in cortex some 20 % 
of the cells are various inhibitory cells [31]. The PSP 
values and number of connections, especially inhibitory 
ones, were calculated to preserve this ratio between the 
inhibitory and the excitatory populations in V1. The PSP 
values were sampled from a uniform distribution with a 
standard deviation of 10%. 

An axonal diameter of 0.3 µm [29] resulted in a spike 
propagation velocity of 0.85 m/s [30]. 
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Figure 2. Contrast response function curves corresponding to 
mean activity of excitatory cells situated in the output 
layer. Top curve corresponds to cells situated in the 
minicolumn having the same orientation preference (90°) 
as the input to the hypercolumn. The thick curve in the 
middle corresponds to mean activity of cells in all 17 
minicolumns. The bottom curve corresponds to activity of 
cells having a 45° orientation preference. 
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Figure 3. Contrast-invariance demonstrated by the network. 

Selectivity remains constant while the peak increases as a 
function of increasing contrast. 

 
3. SIMULATION RESULTS 

 
One important assumption made was the linear response 
of the LGN cells to the contrast stimulus increase. This 
assumption was in line with the normalization models 
mentioned above. Results by Movshon et al. [24] indicate 
that the majority of LGN cells (namely P cells) have linear 
response functions and shows very little or no sign of 
saturation as a function of contrast stimulus increase. Our 
model does not have a LGN component, hence the LGN 
input is modeled as a constant current. During the 
simulations we defined the input to the modeled cells in 
the following way. The simulated LGN had two 

components, both constant currents. The first was a 
function of the contrast stimulus increase, and the second 
was, besides of contrast, also a function of the orientation 
of the postsynaptic cell. Tuning of this second component 
was 40° half-width at half-height [19] both for the 
excitatory and the chandelier cells. Observe that the 
basket cell did not receive any input from the LGN. The 
orientation dependent LGN input at 100 % contrast, for 
cells with the preferred orientation was 2.7 nA for 
excitatory cells, and 0.9 nA for chandelier cells. 
Orientation independent part of the LGN input was 0.9 
nA for all excitatory cells, and 0.32 nA for all chandelier 
cells. Observe that input to cells having non-preferred 
orientation during high contrast might exceed input to 
cells having preferred orientation during low contrast as a 
results of the orientation independent part of the LGN 
input. As the background activity all excitatory cells 
received additional current input. Excitatory cells in the 
output layer received 2 nA, while input layer excitatory 
cells received 1 nA. To guarantee that the inhibitory cells 
were active in their logarithmic range these cells received 
3.5 nA throughout the simulation. The current values were 
sampled from a uniform distribution with a standard 
deviation of 10%. 

Experimental findings related to the orientation tuning 
mechanism in V1, and thus normalization in the BCPNN 
framework [14] is possible to achieve by assuming that 
excitatory and inhibitory cells are active in specific 
regions of their gain functions, and that these regions 
define their ranges. The sigmoidal gain function of the 
Poisson neuron could be divided roughly into two 
regions; the low activity region (<50 %) would 
correspond to the exponential function, and the high 
activity region (≥ 50%) to the logarithmic function. We 
assume here that the excitatory cells are in their low 
activity region and the inhibitory cells are in their high 
activity region. 

In order to analyze the network behavior we start with 
the input layer, and later continue with the output layer. 
Excitatory cells in the input layer of the hypercolumn 
model behaved like cells in a Hubel and Wiesel 
feedforward model [10]. This was not a surprise because 
orientation tuning of these cells was a function of the 
LGN input. Remember that the excitatory cells 
approximated the exponential function, and hence 
amplified their input. This resulted in the narrowing of the 
orientation tuning. Carandini et al. [19] reported that the 
half-width at half-height of the tuning of the spike 
responses was approx. 23° while membrane responses 
were approx. 38°. Their finding could motivate the 
narrowing of the half-width at half-height of the 
orientation tuning. At the same time, activity of the cells 
having non-preferred orientation was increased above 
resting activity levels as an effect of the increased 



contrast. This resulted in widening of the orientation 
tuning curve.  

However, activity shown by the excitatory cells in the 
output layer (Fig. 2) corresponded well to the reported 
results of the nonlinear behavior of simple and complex 
cells [13]. The first region corresponded to the dynamic 
response range of the cortical cells. During this phase the 
activity of the cells increased monotonically as a function 
of increased contrast. This phase was followed by a rapid 
saturation. During the last phase the cells were normalized 
i.e. their activity was constant even though the contrast 
was increasing. It should be stressed that saturation of 
activity was evident in all cells independent of their 
orientation preferences, and that, this level was not a 
function of the cells electrical properties as reported by 
[13]. 

It was shown by Albrecht et al. [13] that the contrast 
response function could be approximated by a hyperbolic 
function 
 

Response(C) = Rmax·(Cn / (Cn + C50
n)) 

 
where C50

n defined contrast value that was required to 
produce 50% of the cell’s maximum response. Rmax was 
the cell’s maximum response rate. It was also reported in 
that study that contrast response curves were shifted 
vertically downward as the stimulus orientation diverged 
from the preferred orientation. This would mean that Rmax 
changed while C50 and n remained relatively constant. 
This behavior was believed to be important for preserving 
the relative frequency response function independent of 
the contrast [12,13]. The excitatory cells in the output 
layer of the model hypercolumn had all these properties 
(Fig. 2). The Rmax levels, <12 Hz, were below maximum 
frequency levels (≈100 Hz) governed by the electrical 
properties of the cells (Fig. 2). C50 levels (approx. 24%) of 
modeled cells were biologically plausible (Fig. 2). 

Contrast dependent inhibition was reported by Sclar et 
al. [11]. According to their results, as the contrast 
increased activity of the cells having orientation 
preference that differed significantly from the stimulus 
orientation decreased below their spontaneous activity 
levels. This behavior was also demonstrated in our 
simulation, as seen when comparing the low and high 
contrast curves (Fig. 3). Cells having orientation 
preference that differed more than approximately 50° 
from the stimulus orientation were inhibited below their 
spontaneous activity levels. Contrast-invariance of 
orientation tuning in simple and complex cells could be 
seen as an effect of this contrast dependent inhibition. 

Both contrast response function and contrast-
invariance of orientation tuning could be explained by our 
network architecture. In order to explain interactions in 
detail we would like to focus on the connections from the 
excitatory cells in the input layer to the basket cell, and 

from the basket cell to the excitatory cells in the output 
layer. Remember that linear increase of the contrast 
results in exponentially increased activity of the input 
layer excitatory cells, and that these cells are driving the 
basket cell. The basket cell linearizes the input from these 
cells, because the response function of the basket cell is 
logarithmic. As a result, the basket cell responds to 
contrast in a linear fashion. Output from the basket cell is 
then fed into the output layer excitatory cells. The main 
part of the input received by these excitatory cells is from 
the LGN input and this intracortical inhibition. Observe 
that, in theory, both these inputs increase linearly with 
contrast. This means that these two inputs have constant 
and positive slopes. Consequently, the relative difference 
between them corresponds to a constant value, and hence 
defines a cells activity during the normalized phase. 

Within the dynamic response range (contrast < 50%), 
net input to excitatory cells is increasing. The reason for 
this is that the excitatory cells in the input layer cannot 
drive the basket cell. When a certain threshold (contrast ≈ 
40 %) is reached the input to the basket cell is strong 
enough (Fig. 2) to drive it. 

The cross-inhibition effect was also tested during the 
simulations (not shown here). In the presence of one 
additional line stimulus the basket cell’s activity increased 
resulting in a stronger inhibition of the excitatory cells 
than in case with a single line stimulus. It is also 
straightforward to see that activity of the basket cell is 
dependent of the contrast of the additional line stimulus. 

 
4. DISCUSSION 

 
We have presented an abstract model of a cortical 

hypercolumn derived from the BCPNN architecture. This 
model could replicate important experimental findings 
relating to the orientation tuning mechanism in the 
primary visual cortex. Properties of the orientation 
selective cells in the primary visual cortex like, contrast-
invariance and response saturation were demonstrated. 
One important assumption made was the linear response 
of the LGN cells to the contrast stimulus increase. As a 
result of this assumption, we showed that the 
normalization of the cells in the output layer could be 
explained by the local connections inside the 
hypercolumn.  

Narrowing of the orientation tuning was possible 
through the reinforcement of the LGN input by the 
excitatory cells. As a side effect, cells having non-
preferred orientation were excited above their resting 
activity levels, and this affected their orientation tuning 
negatively. The divisive inhibition of the excitatory cells 
in the output layer by the basket cell resulted in 
sharpening of the orientation tuning curves and 
normalization of their activity. The basket cell represented 
a pool of inhibitory cells with a mixture of preferred 



orientations. The activity of the basket cell was a function 
of the excitatory cells in the input layer, and thus 
represented the total activity inside the hypercolumn. This 
network configuration is supported by studies made on cat 
V1. 

It is well known that the long-range horizontal 
intracortical connections play an important role in V1. 
The impact of such connections to the orientation tuning 
mechanism of the cortical cells will be addressed in the 
near future. One experiment will be to simulate cortical 
plasticity in the framework of the BCPNN incremental 
learning algorithm. In these experiments, stimuli defined 
as lines with random orientations moving across the 
model cortex will provide the activity patterns required 
for the learning algorithm to form assemblies of 
connected minicolumns. Our intention is to look into how 
well these resemble cortical connectivity patterns seen in 
V1 and how they influence the response dynamics of the 
network. 
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