
Generation of Safety Case Argument-Fragments
from Safety Contracts

Irfan Sljivo, Barbara Gallina, Jan Carlson, and Hans Hansson

Mälardalen Real-Time Research Centre, Mälardalen University,
Väster̊as, Sweden

{irfan.sljivo, barbara.gallina, jan.carlson, hans.hansson}@mdh.se

Abstract. Composable safety certification envisions reuse of safety case
argument-fragments together with safety-relevant components in order to
reduce the cost and time needed to achieve certification. The argument-
fragments could cover safety aspects relevant for different contexts in
which the component can be used. Creating argument-fragments for the
out-of-context components is time-consuming and currently no satisfying
approach exists to facilitate their automatic generation. In this paper we
propose an approach based on (semi-)automatic generation of argument-
fragments from assumption/guarantee safety contracts. We use the con-
tracts to capture the safety claims related to the component, including
supporting evidence. We provide an overview of the argument-fragment
architecture and rules for automatic generation, including their applica-
tion in an illustrative example. The proposed approach enables safety
engineers to focus on increasing the confidence in the knowledge about
the system, rather than documenting a safety case.

Keywords: Safety Case Argument-fragments, (Semi-)automatic Generation,
Safety Contracts, Composable Certification, Out-of-context Components

1 Introduction

The cost for achieving certification is estimated at 25-75% of the development
costs [16]. As a part of certification, a safety case in form of a structured argument
is often required to show that the system is acceptably safe to operate. To reduce
cost and time-to-market, more and more safety standards are offering support for
reuse within safety cases. Safety Element out of Context (SEooC) is an example
of a concept for reuse proposed by the automotive ISO 26262 standard [12].
Building on such reusable elements, an approach to composable certification
has been proposed [5]. The approach aims at achieving incremental certification
by composing reusable argument-fragments related to safety elements, whose
behaviour is specified through safety contracts. We define argument-fragments
as parts of the system safety argument that argue about safety aspects relevant
for the individual components.

In our previous work [15] we developed a safety contract formalism to facili-
tate reuse of components developed out-of-context. The safety contracts capture



safety-relevant behaviours of the components in assumption/guarantee pairs.
The semantics of such a pair is that if the assumption holds then the guarantee
will also hold. The assumption/guarantee pairs are characterised as being either
strong or weak. The strong contract assumptions are required to be satisfied
in all contexts in which the component is used, hence the strong guarantees
are offered in every context in which the component can be used. On the other
hand, the weak contract guarantees are only offered in the contexts in which the
component can be used and that satisfy the corresponding weak assumptions.

The strong and weak contracts allow us to distinguish between properties
that hold for all contexts and those that are context-specific. Since every context
has specific safety requirements, argument-fragments for out-of-context com-
ponents may partially cover safety aspects relevant for several contexts. Cre-
ating argument-fragments for components developed out-of-context is a time-
consuming activity. (Semi-)automatic generation of such argument-fragments
from safety contracts would speed up the activity and allow for generation of
context-specific argument-fragments. Moreover, the safety engineers would have
the possibility to focus on increasing the confidence in the knowledge about the
system, rather then on clerical tasks such as documenting a safety case [13].

Currently, no satisfying approach exists that facilitates generation of argu-
ment-fragments for out-of-context components. The main contribution of this pa-
per is that we propose such an approach, capable to (semi)automatically generate
argument-fragments from safety contracts and related safety requirements and
evidence. As the basis for our approach we developed a meta-model that captures
relationships between the safety contracts, safety requirements and evidence. To
support the generation of argument-fragments from the safety contracts we pro-
vide conceptual mapping between the meta-model and argumentation notation
elements. To perform the generation we provide the resulting argument-fragment
architecture and a set of rules to generate the argument-fragments.

We demonstrate our approach on a Fuel Level Estimation System (FLES)
and its variants that are used within Scania’s trucks and busses. We focus on a
single component of FLES that estimates the fuel level in the tank. This com-
ponent represents a good candidate to be developed as SEooC as it is used with
slight variations in many different variants. We use the safety contracts not only
to capture the knowledge we have about the behaviour of the component, but
also the evidence supporting the guaranteed behaviour. Moreover, by connecting
in-context safety requirements with the weak safety contracts that address the
requirements, we enable only those safety properties of the component relevant
for the particular context to be used when developing the argument-fragment.
This allows us to support more efficient creation of the argument-fragments as
well as generation of context-specific arguments that contain information rele-
vant for the context in which the component is used.

Compared to existing works, we focus on generation of argument-fragments
for components developed and prepared for safety certification independently
of the system in which they will be used. Approaches to generating safety case
arguments [9, 3] usually extract the necessary information to build an argument



from artefacts provided to satisfy some process, e.g., mandated by a safety stan-
dard. In our approach we utilise the safety contracts to capture the necessary
information about a component from artefacts obtained out-of-context and show
how argument-fragments can be generated for such components.

The structure of the paper is as follows: In Section 2 we present background
information. In Section 3 we present the rationale behind our approach and
how the generation of argument-fragments can be performed. In Section 4 we
illustrate the approach for the Fuel Level Estimation System, and in Section 5 we
provide a discussion of our approach. We present the related work in Section 6,
and conclusions and future work in Section 7.

2 Background

In this section we introduce FLES that we use to illustrate our approach. We
also provide some brief information on safety contracts based on our previous
work; and Goal Structuring Notation, the argumentation notation we use for
documenting safety case argument-fragments.

2.1 Illustrative Example: The Fuel Level Estimation System

In this subsection, based on [8], we provide brief but essential information related
to FLES and the hazard analysis performed on it. We limit our attention to
some bits of information that we use in illustrating the generation of argument-
fragments.

FLES is based on a real estimation system used in Scania trucks with liquid
fuel. The component-based architecture of FLES is shown in Fig. 1. The Esti-
mator component estimates the volume of fuel in a vehicle’s tank based on the
sensor data obtained from the Fuel Tank and the Engine Management System
(EMS). The received sensor values go through a series of transformations and
filtering to handle any fluctuations in the sensed fuel level value. The estimated
value is converted into percentage, passed to the Presenter and presented to the
driver of the vehicle through the Fuel Gauge mounted on the dashboard. Due
to dependencies of the transformations to the physical properties of sensors and
its environment (e.g., size of the tank), these parameters are made configurable
to make Estimator usable in different variants of the system.

The hazard analysis performed on the system reveals that if the fuel level
displayed on the fuel gauge is higher than the actual fuel level in the tank
then the vehicle could run out of fuel without the driver noticing, which would
cause a sudden engine stop. If this happens while driving on e.g., a highway,
the consequences could be catastrophic. Although there are other hazards in the
system, this is the only hazard we use in illustrating our approach.

The safety analysis, as recommended by ISO 26262, starts by identifying at
least one Safety Goal (SG) for each hazard, then for every safety goal, corre-
sponding Functional Safety Requirements (FSRs) are derived and finally, Tech-
nical Safety Requirements (TSRs) are derived from the FSRs. We consider the
following SGl and derived FSR:



Fig. 1. Fuel Level Estimation System

– SG1 : FLES shall not show higher fuel level on the fuel gauge than the actual
fuel in the vehicle’s tank;

– FSR1 : Estimator shall not provide value of the estimated fuel level that
deviates more than -5% from the actual fuel-level in the tank.

Additionally, the engine status signal provided by EMS should not be older than
0.3 seconds. An older value could result in a too high deviation from the actual
fuel consumption that may cause deviation in the estimated fuel level value.

2.2 Strong and Weak Contracts

Our extension of the traditional contract-based formalism with strong and weak
contracts allows for distinguishing between properties that are context-specific
and properties that must hold for all contexts [14].

A traditional assumption/guarantee contract C = 〈A,G〉 is composed of
assumptions A and guarantees G, where a component offers the guarantees G
if its assumptions A on its environment are satisfied [6]. As an illustrative and
simplified example based on the system we presented in Section 2.1, we specify
a contract for Estimator with assumptions that if both the fuel level and fuel
rate are provided with sufficient accuracy, Estimator guarantees that the total
estimated fuel level it provides will be with certain accuracy.

Strong contracts 〈A,G〉 are composed of strong assumptions (A) and strong
guarantees (G), and weak contracts 〈B,H〉 of weak assumptions (B) and weak
guarantees (H) [15]. While strong assumptions must hold in order for a com-
ponent to be used in any context, weak assumptions and guarantees just pro-
vide additional information for particular contexts. We say that a component,
described by a set of safety contracts, is compatible with a certain context if
all of its strong assumptions are satisfied by the environment. The weak con-
tracts ensure that in all compatible contexts where the weak assumptions (B)
are satisfied, the component offers the weak guarantees (H). For example, strong
contracts could assume input type, range, or minimum amount of stack required
and guarantee similar properties. On the other hand, weak contracts assume
configurable parameters such as tank or sensor parameters in FLES and guar-
antee different behaviour of the component dependant on those parameters such
as different accuracy of the output or specific timing behaviour.

2.3 Goal Structuring Notation

In this paper, we use Goal Structuring Notation (GSN) [2] for expressing safety
case argument-fragments. GSN is a graphical argumentation notation that can



be used to specify elements of any argument. Some of the basic elements of GSN
are illustrated in Fig. 2 and their semantics is given in the following list:

– Goal : a claim or a sub-claim that should be supported by the underlying
argument. It can be broken down to several sub-goals (sub-claims).

– Strategy : describes a method used to develop a goal into additional sub-goals.
– Context : represents the domain/scope of the element it is connected to.
– Solution: describes the evidence that the connected goal has been achieved.
– Undeveloped element : states that the element to which the symbol is attached

requires further development.
– InContextOf : used to connect context with goals.
– SupportedBy : used to show relationship of inference between goals in the

argument, or to show that certain evidence is supporting a goal.
– Away goal : used to specify a module in which the goal is further developed.

For the sake of clarity it must be noted that the context element can be used
to simply enrich or clarify the statements of the elements it is connected to. Be-
sides the basic symbols, we additionally use a notational extension that supports
abstract argument patterns [2]. More specifically, to denote a variable we use the
curly brackets within statements; to denote generalised n-ary relationships be-
tween GSN elements we use the supportedBy relationship with a solid circle;
to denote a choice, either 1-of-n or m-of-n selection, we use a solid diamond,
which can be paired, using a simple connector line, with an Obligation element
represented by an octagon symbol, stating condition for the choice selection.

Fig. 2. Basic elements of the Goal Structuring Notation

3 Composable Arguments Generation

The aim of this section is twofold: (1) to explain the rationale underlying our ap-
proach to (semi)automatic generation of argument-fragments, and (2) to explain
how the generation can be performed. The latter is done by

– providing a component meta-model, developed to capture the relationships
between the safety contracts, safety requirements and evidence in an out-
of-context setting, and being sufficient to provide us with the information
required for argument-fragment generation,

– presenting a conceptual mapping of the meta-model elements to a subset of
the basic GSN elements to provide better understanding of the transition
from the meta-model to the argument-fragment,

– presenting an overview of the argument-fragment architecture, and by
– providing a set of rules for the argumentation-fragment generation.



3.1 Rationale of the approach

In our work we focus on safety-relevant components developed and prepared for
safety certification independently of the system in which they will be used. To
develop such components, the engineer must assume some safety requirements
that might be required when the component is used in a context. To prepare
components for certification, safety engineers need to capture safety-relevant
properties of the component that show how the safety requirements allocated
to the component are met. To do that, we use our notion of strong and weak
contracts.

It is worth to point out that the safety requirements and the safety con-
tracts we use are closely related, but not the same. The safety contracts con-
tain information about the actual behaviour of the component. On the other
hand, the safety requirements contain information about what a particular con-
text/system requires from the component. While the safety requirements vary
between contexts, the safety contracts should be correct regardless of the con-
text. This is important to enable reuse of out-of-context components. As an
illustration, consider FLES example requirement “Estimator shall send a valid
value in totalFuelLevel within 2 seconds from when the Electronic Control Unit
starts”. This is a requirement on Estimator in this particular context and should
not be specified within the Estimator’s safety contract in that form. In the safety
contract we should rather specify the actual time Estimator needs to send the
totalFuelLevel. This makes the contracts independent of the context in which
out-of-context component can be used, which allows us to use the knowledge
captured within the contracts for all contexts in which the contracts are sat-
isfied. The strong contracts denote properties that must be argued about in
argument-fragments for every context, while the weak contracts will be argued
about only if associated with a safety requirement within a particular context.

In order to guarantee the actual behaviour of the component, as specified in
the safety contracts, we need to provide evidence about confidence in the con-
tract. We categorise the evidence that supports the confidence in the contracts
in terms of completeness, correctness and consistency, as follows: (1) complete-
ness refers to whether contracts have captured all the needed properties of the
component and the environment, (2) correctness refers to whether the contracts
are correct with respect to associated requirements and (3) consistency refers to
whether the contracts are not contradicting each other.

When using an out-of-context component in a particular context, a set of
actual safety requirements (e.g., FSR or TSR) is allocated to the component. One
of the roles of an argument-fragment is to show that these requirements are met.
As safety contracts can be used to address different types of requirements, we are
developing our approach without focusing on a particular class of requirements.

The (semi)automatic generation of argument-fragments from the safety con-
tracts enables us to reduce the effort safety engineers need to dedicate for cre-
ating a set of argument-fragments. These fragments could be created for several
contexts in which the component could be used. By speeding up both the inte-
grator’s and the developer’s activities related to documenting a safety case, we



enable them to focus on activities related to their knowledge about the system,
by capturing this knowledge in the safety contracts.

3.2 Component meta-model

Our component meta-model in Fig. 3 is presented as an UML class diagram. This
diagram captures the relationships between the assumed requirements, safety
contracts and evidence, as described in Section 3.1. Our meta-model is based on
the SafeCer component meta-model [7], which we have adapted, focusing only
on its out-of-context part. Instead of associating argument-fragments (that may
contain information not relevant for a specific context) with a component, we
associate evidence and safety requirements directly with contracts to facilitate
generation of context-specific argument-fragments.

Fig. 3. Component and safety contract meta-model

The meta-model specifies a component that is composed of safety contracts,
evidence and the assumed safety requirements. Each assumed safety requirement
is satisfied by at least one safety contract, and each safety contract can have
supporting evidence. Additionally, we assume that there is at least one evidence
provided with the component supporting the consistency of the contracts. The
safety contract elements in the meta-model are covering both the strong and
weak safety contracts explained in Section 2.2. It should be noted that, based
on the SafeCer component meta-model, the components can be composite i.e.,
a set of interconnected subcomponents, and can represent a (sub)system.

3.3 Conceptual mapping of the component meta-model to GSN

As mentioned in Section 2.3, GSN is used for documenting safety cases by ex-
pressing arguments and supporting evidence to show that the safety claims are
satisfied. At the same time, as described in Section 3.2, our component meta-
model captures the component safety claims in the safety contracts, supported
by the associated evidence, with the goal to argue the satisfaction of the safety
requirements. The conceptual mapping between the meta-model and GSN is
depicted in Table 1.



Table 1. Conceptual mapping between the meta-model and GSN elements

The component meta-model elements GSN-elements

Properties representing guarantee(s)
Assumed safety requirement(s)

Goals

Evidence Solutions

Properties representing assumption(s) Contexts

In order to build an argument structure from the safety contracts, we need
to map the meta-model elements to the GSN elements. Our aim is to, based on
our meta-model, develop an argument-fragment that addresses the following:

1. Compatibility of a component with a context : to show satisfaction of strong
contracts of the component by the context, as described in Section 2.2. Be-
sides satisfaction, confidence in contracts needs to be addressed using asso-
ciated evidence.

2. Satisfaction of safety requirements: to show that a safety requirement is
satisfied we need to argue both, that weak contracts related to the safety
requirement are satisfied, and that the set of the related contracts is sufficient
to show that the requirement is satisfied.

3. Confidence in contracts: showing only that a contract is satisfied by a con-
text is not enough. Evidence about confidence in the contract should be
provided also. We provide evidence about confidence in contracts in terms
of completeness, correctness and consistency as described in Section 3.1.

The satisfaction of a contract, as described in Section 2.2, means that the con-
tract guarantees are offered. Consequently, properties representing the safety
contract guarantees in the meta-model as well as the assumed safety require-
ments correspond to goals in GSN. Furthermore, we use evidence from the meta-
model related to consistency, correctness and completeness as solutions within
GSN. To clarify the context of our goals, we make context statements providing
properties representing the assumptions of the safety contracts.

3.4 Overview of the architecture of the resulting argument-fragment

Given the meta-model in Section 3.2, we propose to generate the resulting
argument-fragment based on the mapping provided in Section 3.3.

In the argumentation-fragment generation we will follow a pattern that for a
component, say x, with a top-level goal, say G1, in a series of successive steps will
generate the corresponding argumentation fragment. We start by decomposing
the goal G1 into three sub-goals, as shown in Fig. 4. We first argue satisfaction
of all the strong contracts of x in the goal G2. Then, we provide evidence for
the consistency of all the contracts associated with x in the goal G4 and finally,
we argue over satisfaction of the requirements by the related contracts in the
goal G3. We now further develop the goal G3 and leave the goals G2 and G4
undeveloped, as they will be explored later.



Fig. 4. Safety requirements satisfaction goal sub-structure

We further develop the goal G3 by applying the strategy S1 to argue over
satisfaction of all safety requirement allocated to component x. For every safety
requirement k ∈ [1,K] where K is the number of allocated requirements, a goal
G3.k is created, stating satisfaction of the requirement by the related contracts.
We further break down the G3.k goal into two sub-goals: (1) G3.k.1 arguing over
satisfaction of every supporting contract of the requirement k, and (2) G3.k.2
providing associated evidence that the related safety contracts supporting the
safety requirement k are correct with respect to the requirement. We first focus
on the G3.k.1 goal, and leave the G3.k.2 goal undeveloped, as it will be explored
together with other parts of the argument referring to evidence.

When arguing over satisfaction with sufficient confidence of a set of contracts,
we use the same strategy whether we argue over all the strong contracts (G2) or
the weak contracts that support the safety requirements. To further develop the
G3.k.1 goal, we apply the strategy S2 to argue over satisfaction with sufficient
confidence over every related contract and reach the choice represented by obli-
gation O1. If a goal has been developed elsewhere to support a contract n we
create an away goal, otherwise we create a goal G3.k.1.n for every contract n ar-
guing over its satisfaction, where n ∈ [1, N ], with N being the number of related
contracts to the requirement k. In order to further clarify the goal G3.k.1.n we
provide assumed properties of the contract n as a goal context.

As shown in Fig. 5, to argue that a safety contract n is satisfied with sufficient
confidence we break down the goal G3.k.1.n into two sub-goals: (1) G3.k.1.n.1
arguing over satisfaction of every safety contract m that supports the assumed
properties of the contract n, where m ∈ [1,M ] and M is the number of contracts
supporting the contract n, and (2) G3.k.1.n.2 providing attached evidence about
the completeness of contract n. We further develop the goal G3.k.1.n.1 by ap-
plying the strategy S3 to argue over satisfaction of every supporting contract m
and create a sub-goal G5.m arguing that the corresponding assumed property



Fig. 5. Contract satisfaction with confidence goal sub-structure

of the contract n is satisfied by the supporting contract m. To develop the goal
G5.m we apply the same strategy as for the goal G3.k.1.

For developing the three arguments that present the attached evidence re-
lated to completeness, correctness and consistency, represented by the goals
G3.k.1.n.2, G3.k.2 and G4, we develop the argument inspired by the ”Speci-
fication Argument Pattern” [4]. Unlike in that work, we define the three types
of evidence differently, as described in Section 3.1. The goal G3.k.1.n.2 is de-
veloped by applying a strategy S4 to argue over every attached evidence of the
specific type. For every evidence a goal is created claiming with what level of
confidence does this goal support the completeness/consistency/correctness and
the evidence reference is provided as the solution to the goal.

3.5 Rules for generation of component argument-fragments

Given the argument structure in Section 3.4 and the component meta-model
we can define a sequence of transformation rules that facilitate (semi)automatic
generation of argument-fragments. Our goal is not only to transfer all the infor-
mation provided by the safety contracts into the argument-fragment, but also
to point out the goals that need further development and thus alert safety man-
agers. For this we use undeveloped goals within the argument-fragments. We
provide the rules similarly as in [9]. We create an argument-fragment for a com-
ponent x by using the following rules:

R1. Create the top-level goal G1: ”{x} satisfies the allocated safety require-
ments”. Develop the goal G1 further by creating three sub-goals:
(a) G2: ”Strong contracts of {x} are satisfied with sufficient confidence”.
(b) G3: ”Allocated safety requirements are met by the related weak contracts

of {x}”.
(c) G4: ”Contracts of {x} are consistent”.

R2. Further develop the goal G3 and for every allocated safety requirement k
create a goal G3.k ”Safety requirement {k} is satisfied by the related weak
contracts of {x}” and develop this goal further by creating two sub-goals:



(a) G3.k.1: ”Every contract supporting safety requirement {k} is satisfied
with sufficient confidence”.

(b) G3.k.2: ”The set of contracts is correct with respect to safety requirement
{k}”.

R3. Further develop the goal G3.k.1 by developing an argument for every safety
contract n of the component x, associated with the safety requirement k.
If the contract satisfaction module is developed elsewhere in the argument
provide an away goal, otherwise create a sub-goal G3.k.1.n ”Contract {x}{n}
is satisfied with sufficient confidence” and provide properties representing
the assumptions of the contract {n} as the goal context C3.k.1.n. Further
develop the sub-goal:

(a) G3.k.1.n.1: ”Every contract supporting assumed properties of the con-
tract {x}{n} is satisfied with sufficient confidence”. For every contract
m supporting the assumed property p of the contract n create a sub-
goal G5.m: ”Contract {y}{m} supports the assumption {p} ”, where m
is specified for a component in environment of x, say y.

(b) G3.k.1.n.2: ”Contract {x}{n} is sufficiently complete”.

R4. The goal G5.m is developed further in the same way as G3.k.1 and the goal
G2 is developed further in the same way as the goal G3.k.1.n.

R5. Goals G3.k.1.n.2, G3.k.2 and G4 are developed further in the same way for
the list of attached evidence of the corresponding type, respectively, com-
pleteness, correctness and consistency. For every evidence z from the corre-
sponding list of evidence type:

(a) Create a goal G6.z: ”{Evidence : title} supports {EvidenceType} of the
contract with {Evidence : confidence}”.

(b) Attach a solution S1.z to the goal G6.z with Evidence : id as reference.

R6. If no evidence of a particular type is provided, an undeveloped goal is used
to indicate that the goal should be further developed.

It should be noted that, based on Rule R4, we can generate argument-
fragments for a composite component by iterating through hierarchical structure.
Applying the rules to an out-of-context component will generate an incomplete
argument-fragment since not all relevant claims can be captured out-of-context.
Such claims are left undeveloped, e.g., correctness of contracts with respect to
a safety requirement. Hence further development of the argument-fragment is
required to address all the undeveloped claims.

4 Argument-fragment for FLES

In this section we provide safety contracts for the Estimator and EMS com-
ponents of FLES, as well as show the generation of an argument-fragment for
Estimator.



Table 2. Safety contracts for the Estimator component

A1: fuelLevelSensor within [0,5] AND fuelRate within [-1,3212]
G1: totalFuelLevel within [−1, 100]
EA1,G1: Sw architecture design specification, Sw architecture verification report

B1: (fuelLevelSensor within correct range AND fuelLevelSensor does not deviate more
than 10% from the actual fuel level value AND fuelLevelSensorParameter=10) OR
(fuelRate within [0,3212] AND fuelRate does not deviate more than 1% from the
actual engine consumption value AND Tank size within [230-1000])
H1: totalFuelLevel does not deviate more than -1% from the actual fuel level value
EB1,H1: Simulation of the Estimator component under assumed conditions

4.1 The safety contracts

The strong and weak contracts for Estimator addressing the requirement FSR1
of FLES are shown in Table 2. The strong contract assumes the allowed ranges
of inputs and guarantees the possible outputs of the component. The evidence
supporting the completeness of strong contract 〈A1, G1〉 includes the software
architecture design specification and the corresponding verification report.

As described in Section 2.1, the quality of the totalFuelLevel output of the
Estimator component is dependent on relevant parameters and the quality of
inputs. The weak contract 〈B1, H1〉 of Estimator guarantees that the deviation
of the totalFuelLevel from the actual fuel level is less than or equal to -1% if as-
sumptions on either fuelLevelSensor and parameters related to it, or fuelRate and
parameters related to it, are satisfied. The corresponding evidence is obtained
by simulation of Estimator under the assumed conditions, and the simulation
report is attached as evidence supporting the contract completeness.

The EMS component safety contracts related to the Estimator component
are provided in Table 3. The EMS strong contract is similar to the one for the
Estimator component, ensuring the input and output port ranges. The weak
contract 〈B2, H2〉 guarantees that the deviation of the estimated fuel consump-
tion does not exceed 0.4% of the actual fuel consumption under the assumed
engine parameters and freshness of the information obtained from the engine.
A simulation of the EMS component’s behaviour under the stated conditions is
attached as an evidence to support contract completeness.

Table 3. Safety contracts for the EMS component

A2: engineStatus within [a,b]
G2: fuelRate within [-1,3212]
EA2,G2: Sw architecture design specification, Sw architecture verification report

B2: Engine parameters=20 AND engineStatus delay under 0.3 seconds
H2: fuelRate does not deviate more than 0.4% from the actual fuel consumption
EB2,H2: Simulation of the fuel consumption estimation under assumed conditions



Fig. 6. A part of the resulting argument-fragment

4.2 The resulting argument-fragment for the Estimator component

In Fig. 6 we provide a part of the argument-fragment for FSR1 of FLES, allo-
cated to the Estimator component and associated with the Estimator contract
〈B1, H1〉 denoted as Estimator1 within the argument. By using the rules from
Section 3.5, we generate an argument-fragment from the provided safety con-
tracts to argue over satisfaction of FSR1 by showing that the requirement
is satisfied by the related Estimator1 contract. The argument for satisfac-
tion of Estimator1 contract is developed to show the associated evidence sup-
porting its completeness, and point to the away goals supporting its assumed
properties. Due to space limitations we show only an away goal supporting
Estimator1 assumed property related to the fuelRate deviation and supported
by the EMS 〈B2, H2〉 contract, denoted as EMS2 within the argument. The
generated argument-fragment contains some properties that could be captured
in an out-of-context setting and should be further developed to cover all relevant
properties not captured within the contracts.

5 Discussion

As seen in the example in Section 4 we are able to generate a partial argument-
fragment based on the component meta-model in Section 3.2. We support the
confidence in contract completeness by associating the supporting evidence with
the contracts. At the same time, by making the contracts related to the actual
behaviour of the component and not to particular safety requirements, we are
able to use the contracts to address different context-specific safety requirements.

The presented approach allows us to use the safety claims captured for an
out-of-context component to develop context-specific argument-fragments. The



resulting argument-fragment for a particular context should not include infor-
mation relevant for all contexts, but only the information relevant for the partic-
ular context. By automating the generation of argument-fragments from safety
contracts we speed up the creation of such argument-fragments for different
contexts. The argument presented in Section 4 does not present all the aspects
an argument should cover, such as failure modes or process-based arguments,
but it provides an illustration of how the contracts can be used to generate
argument-fragments. Contracts can be used to capture different safety aspects
of components, e.g., failure behaviour. The resulting argument quality depends
on the quality and variety (e.g., in terms of aspects) of the provided contracts.

The amount of work that still needs to be performed for a specific system
depends on the abstraction level at which we allocate the safety requirements
to components that have their safety contracts specified. If we connect the re-
quirements with the contracts at higher levels of abstraction, based on the com-
positional nature of our approach a more complete argument-fragment could be
generated. According to ISO 26262, SEooC cannot be an item, i.e., a system
implementing a complete functionality, but it can be a subsystem or a subcom-
ponent of an item. Hence we focused on lower level components and how to
reduce efforts needed to generate their argument-fragments.

The problem of automation and reuse of safety analyses and safety reasoning
within the safety cases is a sensitive issue, especially since safety is a system
property and needs to be reasoned about for the particular system. As men-
tioned in [13], the goal of automation is not to replace human reasoning, but to
focus it on areas where they are best used. Similarly, in this work we are not
aiming at eliminating human reasoning from the process of safety reasoning and
argumentation, but to support it by providing automation of more clerical tasks.

6 Related Work

Generating safety case arguments to increase efficiency of safety certification
has been a topic of many recent works. While some consider different notions of
assumption/guarantee contracts for that purpose [17, 10] others directly build
upon safety requirements [9, 3].

Assume/guarantee contracts are used in [17] to capture the vertical depen-
dencies between a software application and a hardware platform that enables
automatic generation of application specific arguments. The work presents a
model-based language for specifying demanded and guaranteed requirements
between the applications and platforms. The language allows for capturing re-
stricted set of properties, whereas the contract formalism we base our work on is
more expressive and offers support for easier out-of-context to in-context reuse
of components. Also, [17] does not provide means for generating arguments from
the captured contracts.

An approach where “informal” contracts are used for safety-case generation
is proposed in [10]. The approach uses Dependency-Guarantee Relationships
(DGRs) that correspond to our contracts. It derives an argument for a module



by using all the DGRs of the module to build an argument relying on dependen-
cies from other modules. In contrast to this approach, we take in consideration
different types of evidence that need to be provided with the safety contracts and
components, including compatibility of a component with a particular context.

A method for automated generation of safety case arguments based on an
automatic extraction of information from existing work-products is presented
in [3]. The generated argumentation consists of summaries of different work-
products created within a project. Similarly, a methodology for safety case as-
sembly from artefacts required to satisfy some process objectives is presented
in [9]. The work provides a set of transformation rules from captured safety
requirements to safety case arguments. While these methods are useful for gen-
erating a safety case argument from a set of safety requirements that are related
to existing work-products, they do not as we do consider reuse of out-of-context
components developed and prepared for certification.

7 Conclusion and Future Work

In this paper we have presented an approach for generating safety case argument-
fragments from safety contracts for out-of-context components developed and
prepared for safety certification independently of the system in which they will
be used. The approach allows us to speed up the creation of context-specific
argument-fragments. More specifically, we have presented an overview of the
argument-fragment architecture and provided a set of rules for generating the
argument-fragments from the safety contracts, including illustrating the applica-
tion of the rules with an example. We can conclude that safety contracts provide
a good basis for generating argument-fragments and in that way allow safety
engineers to focus more on capturing the knowledge about the system rather
than spending time on documenting a safety case.

In our future work, we plan to refine our component meta-model, e.g., to
provide support for different classes of requirements. Consequently, this refine-
ment entails co-evolution of the generation rules. We also plan to implement
the provided rules within an existing tool that supports a contract formalism,
e.g., the CHESS-toolset [1]. To show the scalability of our approach we aim at
using it for more complex case studies, e.g., for a larger number of safety re-
quirements. Further more, we plan to explore how our approach could be used
to reduce some of the common argument fallacies [11] related to the structure
of arguments. Moreover, it is worthwhile investigating usage of our approach for
safety case maintenance and change management.

Acknowledgements

Thanks to Iain Bate for useful discussions and comments. This work is supported
by the Swedish Foundation for Strategic Research (SSF) via project Synopsis
as well as EU and Vinnova via the Artemis JTI project SafeCer.



References

[1] CHESS-toolset: http://www.chess-project.org/page/download.
[2] GSN Community Standard Version 1. Technical report, Origin Consulting (York)

Limited, November 2011.
[3] E. Armengaud. Automated safety case compilation for product-based argumen-

tation. In Embedded Real Time Software and Systems (ERTS), February 2014.
[4] I. Bate and P. Conmy. Assuring Safety for Component Based Software Engineer-

ing. In 15th IEEE International Symposium on High Assurance Systems Engi-
neering (HASE), January 2014.

[5] I. Bate, H. Hansson, and S. Punnekkat. Better, faster, cheaper, and safer too -
is this really possible? In 17th IEEE Int’l Conf. on Emerging Technologies for
Factory Automation (ETFA). IEEE, September 2012.

[6] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and C. Sofro-
nis. Multiple viewpoint contract-based specification and design. In Formal Meth-
ods for Components and Objects: 6th International Symposium (FMCO), 2007.

[7] J. Carlson et al. ”Generic component meta-mode, Version 1.0” SafeCer, Deliver-
able D132, November 2013.

[8] R. Dardar. Building a Safety Case in Compliance with ISO 26262 for Fuel Level
Estimation and Display System. Master’s thesis, Mälardalen University, School
of Innovation, Design and Engineering, Väster̊as, Sweden, 2014.

[9] E. Denney and G. Pai. A lightweight methodology for safety case assembly.
In 31st International Conference on Computer Safety, Reliability and Security
(SafeComp). Springer-Verlag, September 2012.

[10] J. L. Fenn, R. D. Hawkins, P. Williams, T. P. Kelly, M. G. Banner, and Y. Oak-
shott. The who, where, how, why and when of modular and incremental certifi-
cation. In 2nd International Conference on System Safety (ICSS). IET, 2007.

[11] W. S. Greenwell, J. C. Knight, C. M. Holloway, and J. J. Pease. A taxonomy of
fallacies in system safety arguments. In 24th International System Safety Confer-
ence (ISSC), 2006.

[12] ISO 26262-10. Road vehicles — Functional safety — Part 10: Guideline on ISO
26262. International Organization for Standardization, 2011.

[13] J. Rushby. Logic and epistemology in safety cases. In 32nd International Confer-
ence on Computer Safety, Reliability, and Security (SafeComp). Springer-Verlag,
September 2013.

[14] I. Sljivo, J. Carlson, B. Gallina, and H. Hansson. Fostering Reuse within Safety-
critical Component-based Systems through Fine-grained Contracts. In Interna-
tional Workshop on Critical Software Component Reusability and Certification
across Domains (CSC), June 2013.

[15] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson. Strong and weak contract
formalism for third-party component reuse. In 3rd International Workshop on
Software Certification (WoSoCer). IEEE, November 2013.

[16] N. R. Storey. Safety Critical Computer Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1996.

[17] B. Zimmer, S. Bürklen, M. Knoop, J. Höfflinger, and M. Trapp. Vertical safety
interfaces–improving the efficiency of modular certification. In 30th International
Conference on Computer Safety, Reliability and Security (SafeComp). Springer-
Verlag, September 2011.


