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Abstract—We integrate the Response Time Analysis (RTA)
with offsets for mixed messages in Controller Area Network
(CAN), where the CAN controllers implement abortable transmit
buffers, with the MPS-CAN analyzer. Mixed messages are partly
periodic and partly sporadic. They are implemented by several
higher-level protocols for CAN that are used in the automotive
industry. MPS-CAN analyzer is a free tool that supports several
other existing RTA for periodic, sporadic and mixed messages in
CAN. We perform extensive evaluation of the newly integrated
analysis profile. Using the analyzer, we also perform a detailed
comparative evaluation of various RTA for CAN.

I. INTRODUCTION

Controller Area Network (CAN) [1] is a multi-master,
event-triggered, serial communication bus protocol supporting
bus speeds of up to 1 Mbit/s. It has been standardized as ISO
11898-1 [2]. It is a widely used protocol in the automotive
domain. There are several higher-level protocols for CAN that
are developed for various industrial applications such as CAN
Application Layer, CANopen, J1939, Hägglunds Controller
Area Network (HCAN) and MilCAN. Often, CAN finds its
applications in hard real-time systems that must ensure that
their deadlines are met. For this purpose, a priori analysis
techniques, such as schedulability analysis [3], [4], [5], have
been developed. Response-Time Analysis (RTA) [3], [4], [5],
[6] is a powerful, mature and well established schedulability
analysis technique to calculate upper bounds on response times
of tasks or messages in a real-time system or a network
respectively. Tindell et al. [7] developed RTA for CAN which
is later revised by Davis et. al [8].
A. Previous work and paper contribution

In our previous work [9] we presented first implementation
of MPS-CAN Analyzer. It is the first and only freely-available
tool that supports RTA of periodic, sporadic as well as mixed
messages in CAN1. Mixed messages are partly periodic and
partly sporadic. They are implemented by several higher-level
protocols used in the industry. In [9], we discussed the im-
plementation of basic RTA for mixed messages in CAN [11],
whereas the implementation of other analyses was an ongoing
work. Moreover, [9] did not discuss comparative evaluation of
the extended analyses for mixed messages in CAN. In [12], we
discuss the implementation of several other extensions of RTA
for periodic, sporadic and mixed messages in CAN. These
extensions support response-time calculations for messages
scheduled with or without offsets; messages having arbitrary
jitter and deadlines; CAN controllers implementing different
queueing policies, e.g., priority and FIFO; and controllers
implementing abortable or non-abortable transmit buffers.
However, the implementation in [12] does not support analysis
of mixed messages that are scheduled with offsets in the net-
work where controllers implement abortable or non-abortable
transmit buffers [13]. In this paper we implement RTA for

1A commercial tool implements basic analysis for mixed messages [10].

CAN in the system where periodic and mixed messages can be
scheduled with offsets while the CAN controllers implement
abortable or non-abortable transmit buffers. We also improve
the graphical layout of the tool to support better usability.
Furthermore, we perform extensive evaluation of newly added
analysis. We also perform a detailed comparative evaluation
of various RTA for CAN and provide recommendations.

II. MIXED TRANSMISSION PATTERNS SUPPORTED BY
HIGHER-LEVEL PROTOCOLS

There are several higher-level protocols and commercial
extensions of CAN that support mixed transmission. In this
transmission, the task that queues messages can be invoked
periodically as well as sporadically. If a message can be
queued for transmission periodically as well as sporadically,
it is said to be mixed. In other words, a mixed message is
simultaneously time- and event-triggered. We identify three
different implementations of mixed messages by higher-level
protocols for CAN used in the industry namely CANopen [14],
AUTOSAR [15] and HCAN [16]. The transmission pattern of
a mixed message in these protocols is shown in Fig. 1(a), 1(b)
and 1(c) respectively. The down-pointing arrows symbolize
queueing of messages while the upward lines (labeled with
alphabetic characters) represent arrival of events.

The CANopen protocol supports mixed transmission that
corresponds to the Asynchronous Transmission Mode coupled
with the Event Timer. A mixed message can be queued for
transmission at the arrival of an event provided the Inhibit Time
has expired. The Inhibit Time is the minimum time that must
be allowed to elapse between queueing of two consecutive
messages. A mixed message can also be queued periodically
at the expiry of the Event Timer. The Event Timer is reset
every time the message is queued. Once a mixed message
is queued, any additional queueing of it will not take place
during the Inhibit Time [14].

AUTOSAR can be viewed as a higher-level protocol if it
uses CAN for network communication. Mixed transmission
mode in AUTOSAR is widely used in practice. In AUTOSAR,
a mixed message can be queued for transmission repeatedly
with a time period. The mixed message can also be queued
at the arrival of an event provided the Minimum Delay Time
(MDT ) has expired. However, each transmission of a mixed
message, regardless of being periodic or sporadic, is limited
by the MDT . This means that both periodic and sporadic
transmissions are delayed until the MDT expires.

A mixed message in the HCAN protocol contains signals
out of which some are periodic and some are sporadic. A
mixed message is queued for transmission not only period-
ically, but also as soon as an event occurs that changes the
value of one or more event signals, provided the Minimum
Update Time (MUT ) between the queueing of two successive
sporadic instances of the mixed message has elapsed. Hence,
the transmission of a mixed message due to arrival of events
is constrained by the MUT .



In CANopen, the Event Timer is reset with every mixed
transmission. The implementation of a mixed message in
AUTOSAR is similar to CANopen to some extent. The main
difference is that the periodic transmission can be delayed
until the expiry of the MDT in AUTOSAR as indicated in
Fig. 1(b). Whereas in CANopen, the periodic transmission is
not delayed, in fact, the Event Timer is restarted with every
sporadic transmission as shown in Fig. 1(a). The MDT timer
is started with every periodic or sporadic transmission of a
mixed message. Hence, the worst-case periodicity of a mixed
message in CANopen and AUTOSAR can never be higher
than the Inhibit Timer and MDT respectively. As a result,
the mixed message can be treated as a special case of sporadic
transmission. Therefore, all existing RTA are still applicable.
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Fig. 1. Mixed transmission pattern in higher-level protocols for CAN

However, the periodic transmission is independent of the
sporadic transmission in the HCAN protocol. The periodic
timer is not reset with every sporadic transmission. A mixed
message can be queued for transmission even if the MUT
is not expired, e.g., see the transmission of instances 4 and
6 of the mixed message in Fig. 1(c). This indicates that the
periodic transmission of a mixed message cannot be interfered
by its sporadic transmission which is unlike in CANopen and
AUTOSAR. The worst-case periodicity of a mixed message is
neither bounded by the period nor by the MUT . Therefore, the
existing analyses cannot be applied in this case. To the best of
our knowledge, there is no free tool except for the MPS-CAN
analyzer that analyzes this type of mixed messages.

III. BUFFER LIMITATIONS AND QUEUEING POLICIES

The different types of queueing polices implemented by
CAN device drivers and communications stacks, internal orga-
nization, and hardware limitations in CAN controllers can have
significant impact on the timing behavior of CAN messages.
If an Electronic Control Unit (ECU) transmits more messages
compared to the number of transmit buffers, the messages may
be subjected to extra delay and jitter due to priority inversion.

A. Abortable transmit buffers
Let us consider the case in which the CAN con-

trollers support transmission abort requests, e.g., Atmel
AT89C51CC03/AT90CAN32/64 and Microchip MPC2515
[17]. In order to demonstrate an additional delay due to
priority inversion in this case, consider the example of a
message set shown in Fig. 2(a). Assume there are three nodes
CCc , CCj and CCk in the system and each node has three
transmit buffers. m1 is the highest priority message in the node
CCc as well as in the system. When m1 becomes ready for
transmission in the message queue, a lower priority message
m6 belonging to node CCk is already under transmission. m6
cannot be preempted because CAN uses fixed priority non-
preemptive scheduling. This represents the blocking delay for
m1 . At this time, all transmit buffers in CCc are occupied by
lower priority messages (say m3 , m4 and m5 ). The device
drivers signal an abort request for the lowest priority message
in the transmit buffers of CCc) that is not under transmission.
Hence, m5 is aborted and copied from the transmit buffer
to the message queue, whereas m1 is moved to the vacated

transmit buffer. The time needed to do the swapping is
identified as swapping time in Fig. 2(a). A series of events
may occur during the swapping : m6 finishes its transmission,
new arbitration round starts, message m2 belonging to node
CCj and having priority lower than m1 wins the arbitration
and starts its transmission. Thus m1 has to wait in the transmit
buffer until m2 finishes its transmission. This results in the
priority inversion for m1 and adds an extra delay to its
response time. In [18], Khan et al. pointed out that this extra
delay of the higher priority message appears as its additional
jitter to the lower priority messages, e.g., m5 in Fig. 2(a).

1) Discussion on message copy time and delay: If the
message copy time is smaller than or equal to the inter-frame
space (i.e., time to transmit 3 bits on CAN bus or 3∗τbit time),
a lower priority message in the transmit buffer (that is not
under transmission) can be swapped with a higher priority
message in the message queue before transmission of the next
frame [1]. Hence, there will be no priority inversion. This
means that the message copy time must be, at least, 4∗τbit
for the priority inversion to occur. In Legacy systems, there
may be slow controllers, i.e., the speed of the controllers can
be slower than the maximum operating speed of the CAN
bus (1 Mbit/s). Since the amount of data transmitted in a
CAN message ranges from 0 to 8 bytes, the transmission time
of a message also varies accordingly. According to [8], the
transmission time of a CAN message with standard frame
format ranges from 55∗τbit to 135∗τbit for the amount of
data contained in the message that ranges from 0 to 8 bytes
respectively. Intuitively, the message copy time of 4∗τbit can
range from 7.3% to 3% of transmission time of a message
with 0 to 8 bytes of data respectively. Due to slow controllers
in legacy systems, the message copy time can be greater than
4∗τbit, hence, higher than 7.3% of its transmission time.

Fig. 2. Demonstration of priority inversion in the case of (a) abortable
transmit buffers, (b) non-abortable transmit buffers

B. Non-abortable transmit buffers
Now we consider the case in which the CAN controllers

implement non-abortable transmit buffers, e.g., Philips 82C200
[19], [20], [7]. Consider an example of three controllers CCc ,
CCj , CCk connected to a single CAN network in Fig. 2 (b).
Let m1 , belonging to CCc , be the highest priority message
in the system. Assume that when m1 is ready to be queued,
all transmit buffers in CCc are occupied by lower priority
messages which cannot be aborted because the controllers
implement non-abortable transmit buffers. In addition, m1
can be blocked by any lower priority message because the
lower priority message already started its transmission. In this
example m1 is blocked by m5 that belongs to node CCk .
Since all transmit buffers in CCc are full, m1 has to wait in
the message queue until one of the messages in the transmit
buffers of node CCc is transmitted.

Let m4 be the highest priority message in the transmit
buffers of node CCc . m4 can be interfered by higher priority
messages (m2 and m3 ) belonging to other nodes. Hence,
it can be seen that priority inversion for m1 takes place



because m1 cannot start its transmission before m4 finishes its
transmission, while m4 has to wait until messages m2 and m3
are transmitted. This adds an additional delay to the worst-case
response time of m1 . In this example, this additional delay is
the sum of the worst-case transmission times of m2 , m3 and
m4 . This additional delay appears as additional jitter of m1
as seen by the lower priority messages.

C. Priority and FIFO queues
The most natural queuing policy suited to CAN nodes is

priority-based queuing. However, due to simplicity of FIFO
policy some CAN controllers implement FIFO queues, e.g.,
Microchip PIC32MX, Infineon XC161CS, Renesas R32C/160
and XILINX LogiCORE IP AXI Controller [17], [18]. In
case of nodes implementing priority queues, each node selects
the highest priority message from its transmit buffers while
entering into the bus arbitrations. The highest priority message
among them wins the bus arbitration. On the other hand, when
the nodes implement FIFO queues, the oldest message in the
transmit queue of each node competes for the bus. However,
the bus arbitration among these messages is done on priority
basis. Consider an example of three nodes that are connected
to a single CAN network as shown in Fig. 3. Assume that
Node A sends the messages m1 , m3 and m5 ; Node B sends
the messages m2 , m4 and m9 ; and Node C sends the messages
m6 , m7 and m8 . The priority of a message is indicated by its
subscript (smaller the subscript, the higher the priority).
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Fig. 3. Example to demonstrate different queueing policies

Let the nodes implement priority queues. In the first round,
Nodes A, B, and C pick messages m1 , m2 and m6 respec-
tively. m1 wins the arbitration because of higher priority and is
transmitted over the network as shown in Fig. 4. In the second
round, Nodes A, B, and C pick messages m3 , m2 and m6
respectively. m2 wins the arbitration and is transmitted over
the network. Similar priority-based selection and arbitration
occur during the rest of the rounds as shown in Fig. 4.Controller Area Network (CAN)
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Fig. 4. priority-based queues and CAN arbitration

Now we assume that the nodes implement FIFO queues. In
the first round, Nodes A, B, and C pick the oldest messages
m5 , m9 and m6 respectively. m5 wins the bus arbitration
due to its higher priority and is transmitted as shown in Fig.
5. In the second round, Nodes A, B, and C pick messages
m1 , m9 and m6 respectively. This time, m1 wins the bus
arbitration and is transmitted over the network. Similar FIFO
selection and priority-based arbitration occur during the rest of
the rounds as shown in Fig. 5. It can be seen that the priorities
of messages are sometimes not respected in the FIFO queue
within a node, e.g., a lower priority message m5 is transmitted

before the higher priority message m1 as shown in Fig. 5.
This results in priority inversions due to which higher priority
messages may have very large response times, e.g., different
response time of m2 in the systems with priority and FIFO
queues in Fig. 4 and Fig. 5 respectively.
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IV. RELATED WORK AND IMPLEMENTED ANALYSIS

A. Related work
In [21], Davis et al. extend the analysis of [7], [8] which

is now applicable to the CAN network where some nodes
implement priority queues and some implement FIFO queues.
The message deadlines in [21] are assumed to be smaller
than or equal to the corresponding periods. This assumption
is lifted in [22] by by supporting the analysis of messages
with arbitrary deadlines. Moreover, they extend their work to
support RTA of CAN for FIFO and work-conserving queues.
The analysis in [7], [8] assumes that the CAN controllers have
very large transmit buffers. However, most CAN controllers
have small number of transmit buffers [23], [22]. If all buffers
in the controller are occupied by lower priority messages, a
higher priority message released in the same controller may
suffer from priority inversion [7], [18], [20], [24]. The analysis
in [7], [8] has been extended in [18] and [23] to support the
analysis of network that contain abortable and non-abortable
transmit buffers in the controllers respectively. Most of the
CAN enabled ECUs support transmit abort requests [18].

All these analyses assume that the messages are queued
for transmission periodically or sporadically. Mubeen et al.
[11] extend the existing analysis [7], [8] to support mixed
messages in CAN where nodes implement priority queues.
Mubeen et al. [25] further extend their analysis to support
mixed messages in the network where some nodes implement
priority queues while others implement FIFO queues. RTA for
mixed messages in CAN [11] has been extended to support the
analysis of network that contain abortable and non-abortable
transmit buffers in the controllers in [26] and [27] respectively.
But, none of the analyses discussed above supports messages
that are scheduled with offsets i.e., using externally imposed
delays between the times when the messages can be queued. In
order to avoid deadlines violations due to high transient loads,
current automotive embedded systems are often scheduled
with offsets [28]. The worst-case response-times of lower
priority messages in CAN can be reduced if the messages are
scheduled with offsets [29], [30]. A method for the assignment
of offsets to improve the overall bandwidth utilization is pro-
posed in [30]. RTA with offsets for CAN has been developed
by several researchers [31], [32], [29], [33], [28].

None of the above analyses supports mixed messages that
are scheduled with offsets. Offset-based analysis [31] is ex-
tended in [34] to support response-time calculations for mixed
messages in CAN. However, this analysis is restricted due to
limitations regarding message jitter and deadlines. The source
of these limitations comes from the base analysis [31]. In
[35], Mubeen et al. removed these limitations and extended the
analysis for mixed messages [11] with offsets [28]. Mubeen et
al. further extend the analysis for mixed messages with offsets
in CAN supporting abortable transmit buffers [13].



B. Related tools
VNA [36] is a communication design tool that supports RTA

for CAN. It implements RTA of CAN developed by Tindell et
al. [7]. Vector [37] is a tools provider for the development
of networked electronic systems. CANalyzer [38] supports
the simulation, analysis and data logging for the systems that
use CAN. CANoe [39] is a tool for simulation of functional
and extra-functional (e.g., timing) behavior of ECU networks.
Network Designer CAN is another tool by Vector that is able
to perform timing analysis of CAN. SymTA/S [40] is a tool
for model-based timing analysis and optimization. Among
other analyses, it supports statistical, worst- and best-case
timing analyses for CAN. RTaW-Sim [41] is a tool for the
simulation and performance evaluation of the CAN network.
The Rubus-ICE is a commercial tool suite developed by
Arcticus Systems [42] in close collaboration with Mälardalen
University Sweden. Among other analyses, it supports RTA
of CAN [7], [8] and RTA of CAN for mixed messages[11],
[43]. To the best of our knowledge, there is no freely-available
tool that implements RTA of CAN for mixed messages. The
main purpose of MPS-CAN Analyzer is to support RTA of
periodic, sporadic and mixed messages in CAN. The analyses
implemented in MPS-CAN analyzer are shown in Fig. 6.

Fig. 6. Graphical representation of Response Time Analysis (RTA) and its
extensions implemented in MPS-CAN Analyzer

C. Implementation and distribution
The tool is implemented in C language. Each analysis

profile supported by the tool is implemented as a separate
C file. The Layout of the tool is shown in Fig. 7. It has a
scope for further extensions in the future. The link to the tool
can be found at https://github.com/saadmubeen/MPS-CAN.

V. EVALUATION OF VARIOUS RTA FOR CAN
A. Experimental setup

The system consists of six ECUs that are connected to the
CAN network. The speed of the network is set to 250 Kbit/s.
There are 60 messages in the system. The message set is gen-
erated from the NETCARBENCH tool [44] which is a bench-
mark used in the design of automotive embedded systems. It
should be noted that NETCARBENCH cannot generate mixed
messages. We randomly assign mixed, periodic, and sporadic
transmission types to 40%, 30%, and 30% generated messages
respectively. This means, there are 24 mixed, 18 periodic and
18 sporadic messages in the system. The messages are equally
distributed among the ECUs, i.e., each ECU sends 4 mixed,
3 periodic and 3 sporadic messages over the network. All
the attributes of these messages are tabulated in the Fig. 8.
The attributes of a message mm are identified as follows. The
priority, sender node ID, transmission type, number of data
bytes in the message, offset, jitter, period, minimum update
time and deadline are represented by Pm, CCm, ξm, sm, Om,

Jm, Tm, MUTm and Dm respectively. All timing values in
the table are expressed in milliseconds. We perform a number
of tests on the message set. The network bandwidth utilization
calculated by MPS-CAN analyzer for this message set in each
test is equal to 59.203793%.

Fig. 7. MPS-CAN Analyzer layout, inputs and outputs

Pm CCm ξm sm Om Jm Tm MUTm Dm Pm CCm ξm sm Om Jm Tm MUTm Dm Pm CCm ξm sm Om Jm Tm MUTm Dm

1 5 M 8 0 0 25 25 25 21 4 M 8 3 0 70 70 70 41 2 M 1 7 1 70 70 70
2 3 S 7 0 0 0 70 70 22 1 M 0 4 1 60 60 60 42 1 P 1 6 0 70 0 70
3 1 S 8 0 1 0 70 70 23 2 S 0 0 1 0 70 70 43 4 S 8 0 2 0 80 80
4 5 M 8 2 0 70 70 70 24 3 S 6 0 0 0 70 70 44 5 S 8 0 2 0 70 70
5 4 P 7 0 0 70 0 70 25 3 M 8 5 1 70 70 70 45 6 S 8 0 2 0 70 70
6 1 S 6 0 0 0 70 70 26 2 P 6 3 0 70 0 70 46 3 M 2 8 1 80 80 80
7 3 M 7 0 1 70 70 70 27 5 M 2 7 1 60 60 60 47 3 S 4 0 2 0 70 70
8 3 P 8 2 0 70 0 70 28 4 P 1 5 0 80 0 80 48 6 M 8 7 2 70 70 70
9 5 S 5 0 0 0 60 60 29 3 M 6 5 0 70 70 70 49 1 M 8 8 1 70 70 70
10 5 P 8 3 0 60 0 60 30 1 P 1 5 0 70 0 70 50 6 M 7 8 1 70 70 70
11 4 S 8 0 0 0 60 60 31 2 M 7 4 1 70 70 70 51 6 P 8 0 2 70 0 70
12 4 M 0 1 0 70 70 70 32 1 S 8 0 0 0 70 70 52 6 P 6 2 1 70 0 70
13 1 M 6 2 0 60 60 60 33 2 S 8 0 0 0 70 70 53 6 S 1 0 1 0 70 70
14 3 P 8 3 0 50 0 50 34 2 P 8 5 2 80 0 80 54 6 P 2 3 0 70 0 70
15 5 M 8 4 0 70 70 70 35 2 P 5 5 0 60 0 60 55 6 S 1 0 1 0 70 70
16 4 M 5 4 0 50 50 50 36 4 S 8 0 1 0 70 70 56 6 M 2 4 1 70 70 70
17 2 S 8 0 1 0 80 80 37 1 P 5 6 1 70 0 70 57 5 S 8 0 2 0 20 80
18 2 M 8 1 0 70 70 70 38 4 P 1 6 1 80 0 80 58 1 M 8 7 2 70 70 70
19 5 P 8 4 0 70 0 70 39 3 P 8 7 1 80 0 80 59 6 M 8 8 1 70 70 70
20 5 P 7 5 1 70 0 70 40 4 M 0 7 1 70 70 70 60 2 M 7 8 1 70 70 70

Fig. 8. Attributes of the message set under analysis

B. Comparison of various RTA for CAN
In this subsection, we perform five different tests as follows.
1) All ECUs implement priority queuing policy while the

number of transmit buffers are large enough to avoid
aborting transmissions. The message set is analyzed
using the RTA for mixed messages in CAN with no
buffer limitations [11].

2) All ECUs implement priority queuing policy and
abortable transmit buffers. The message set is ana-
lyzed using the RTA for mixed messages in CAN with
abortable transmit buffers [26], [13].

3) All ECUs implement priority queuing policy and non-
abortable transmit buffers. The message set is analyzed
using the RTA for mixed messages in CAN with non-
abortable transmit buffers [27].

4) All ECUs implement FIFO queues. The message set is
analyzed using the RTA for mixed messages in CAN
with FIFO queues [25].

5) Heterogeneous system: two ECUs implement priority
queuing policy and abortable transmit buffers; two ECUs
implement priority queuing policy and non-abortable
transmit buffers; and two ECUs implement FIFO queues.
The MPS-CAN analyzes each ECU differently using the
corresponding analysis profile from the above three tests.

Response times of the messages calculated in all five tests are
plotted in Fig. 9. It can be seen that the response times are
lowest (best) in the first test because we have considered ideal
conditions (no buffer limitations in the CAN controllers). The
second test results in the second best response times. However,
they are higher compared to the first test due to extra delay
from priority inversion due to transmission abort requests. The



third test results in overall third best response times (with some
exceptions). It can be seen that the extra delay due to priority
inversion in non-abortable transmit buffers is higher compared
to abortable transmit buffers. The fourth test yields the highest
response times because of high buffering time and delays
due to priority inversion in FIFO queues. Furthermore, the
response times of messages are significantly high compared to
the rest of the tests. The response times in the heterogeneous
system are higher compared to first three tests but significantly
lower than the fourth test where FIFO queues are used. From
the results, one can infer that the ECUs that implement FIFO
queues in the CAN controllers should be avoided. In order to
calculate correct (not optimistic) response times, the RTA for
CAN should correctly match the queueing policy and practical
limitations in the CAN controllers.

Fig. 9. Analysis results using various RTA for CAN

C. Effect of message copy time on schedulability
In this subsection, we compare the effect of message copy

times on their response times. We perform four tests where
all ECUs implement abortable transmit buffers. However, the
message copy times are different in these tests. In the first test,
the message copy time for each message is equal to 4∗τbit
time (see Subsection III-A1). In the rest of the tests, it is
10, 20 and 30 percent of corresponding transmission times
of messages respectively. The calculated response times of
the messages in all test are plotted in Fig. 10. The results
indicate that the increase in the response times of messages is
directly proportional to the increase in the amount of message
copy times. If the message copy time is less than the inter-
frame space (time required to transmit 3-bits of data on CAN),
the response times of messages in the system with abortable
transmit buffers becomes equals to the response times of same
messages in the system with no buffer limitations.

D. Effect of offsets on schedulability
Finally, we perform four more tests on the message set

to explore the effect of offsets on the schedulability of the
message set. In the first two tests, the message set is analyzed
using RTA for mixed messages in CAN with no buffer limita-
tions [11] and with abortable transmit buffers [26]. However
the offsets of all messages are assumed to be zero. There
is a newly added check box “Neglect offsets” in the MPS-
CAN analyzer as shown in Fig. 7 that actually neglects the

offsets when analyzing the messages. In the next two tests, the
first two tests are repeated while considering message offsets.
Also, the messages are analyzed using the newly implemented
RTA with offsets for mixed messages in CAN supporting
transmission abort requests [13]. The response times calculated
in the four tests are plotted in Fig. 11. The results indicate
that the response times can be reduced when messages are
scheduled with offsets. We observe 2.462% improvement
in the schedulability of the system when the messages are
scheduled with offsets. As discussed earlier, NETCARBENCH
cannot generate mixed messages, hence, the offsets assigned
to the mixed messages are not optimal. The schedulability can
be further improved if an optimal offset assignment algorithm
for mixed messages is used. The percentage improvement in
schedulability is calculated as follows.[( ∑
∀mm∈ℵ

[
R
{no−offset}
m −R{offset}m

Dm

])/
(sizeof(ℵ))

]
∗100

Where, mm, Rm, Dm and ℵ represent a message, response
time, deadline and the set of all messages in the system
respectively.

Fig. 10. Analysis results: effect of message copy time on schedulability

VI. CONCLUSION

We implemented a new RTA for CAN in a free tool
MPS-CAN analyzer. The implemented RTA supports periodic,
sporadic as well as mixed messages in the system where
transmission abort requests in CAN controllers all allowed.
Mixed messages are partly periodic and partly sporadic and
are implemented by several higher-level protocols for CAN
that are used in the automotive industry today. We con-
ducted a number of tests to perform detailed evaluation of all
RTA profiles available in MPS-CAN analyzer. These analyses
consider various aspects and practical limitations such as
mixed messages; messages scheduled with offsets; messages
with arbitrary jitter and deadlines; priority or FIFO queueing
policies; limitations of transmit buffers in CAN controllers
such abortable or non-abortable; and heterogeneous systems
that consist of different types of ECU’s. We can make several
recommendations based on the analyses results and their
evaluation. The ECUs that implement FIFO queues should
be avoided because of high buffering time and delays due
to priority inversion in FIFO queues. Due to lower response
times, the controllers that implement abortable transmit buffers
should be preferred over those that implement non-abortable



transmit buffers. The schedulability of the system can be
improved if messages are scheduled with offsets. We observed
2.462% improvement in schedulability in one of the tests when
the messages are scheduled with offsets. Finally, it can be
concluded that if RTA for CAN does not correctly account
for transmission patterns by higher-level protocols, queueing
policies and practical limitations in the CAN controllers, the
calculated response times of messages can be optimistic.

Fig. 11. Analysis results: effect of offsets on schedulability
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