
Component Allocation Optimization for
Heterogeneous CPU-GPU Embedded Systems

Gabriel Campeanu, Jan Carlson and Séverine Sentilles
Mälardalen Real-Time Research Center, Mälardalen University, Västerås, Sweden

Email: {gabriel.campeanu, jan.carlson, severine.sentilles}@mdh.se

Abstract—In a quest to improve system performance, em-
bedded systems are today increasingly relying on heterogeneous
platforms that combine different types of processing units such
as CPUs, GPUs and FPGAs. However, having better hardware
capability alone does not guarantee higher performance; how
functionality is allocated onto the appropriate processing units
strongly impacts the system performance as well. Yet, with
this increase in hardware complexity, finding suitable allocation
schemes is becoming a challenge as many new constraints and
requirements must now be taken into consideration. In this
paper, we present a formal model for allocation optimization
of embedded systems which contains a mix of CPU and GPU
processing nodes. The allocation takes into consideration the
software and hardware architectures, the system requirements
and criteria upon which the allocation should be optimized. In
its current version, optimized allocation schemes are generated
through an integer programming technique to balance the system
resource utilization and to optimize the system performance using
the GPU resources.

I. INTRODUCTION

The rapid advances in microprocessor technology has fa-
vored the evolution of embedded systems, from homogeneous
single core CPU systems to heterogeneous systems with mul-
tiple processors of different types (e.g., GPU, FPGA). Using
FPGA nodes or collocating multicore CPUs with GPUs onto
single nodes may increase the overall system performance by
allowing distributing functionality to nodes with appropriate
computation specializations.

While initially GPUs were used mostly for graphic-
based applications, their increased computing power made
researchers look at ways to utilize them in new contexts.
For example, in the automotive industry, several research
initiatives focus on using GPUs to implement vision systems
for vehicles [7]. Other examples of GPU-based applications
include autonomous vision-based robots [12], 3D reconstruc-
tion medical systems [20], etc. This development comes from
the considerable speed-ups that can be achieved through GPUs
compared to cases using CPUs. For example for the n-body
simulation, 200x speed-up can be realized [15]. The GPU
induced speed-up not only depends on the system hardware
but also on how the functionality accesses the resources, such
as the number of registers per thread, local, shared or global
memory. Dividing the software application and running it on
the appropriate computation node can be beneficial to improve
the performance of the system, but also a higher complexity
cost concerning the allocation process [6].

Determining which functionality should be placed on a
given computation node is an NP-hard problem known as

software deployment [5]. Unconstrained, the solution space
grows exponentially with the number of nodes and software
units. From the total solution space, only a subset are feasible
deployment schemes, i.e. solutions that satisfy both the system
requirements and the constraints in terms of hardware, func-
tional and non-functional properties. The allocation problem
becomes even harder when, instead of having only CPU-
based hardware platforms, we use complex CPU-GPU based
systems. In addition to the deployment constraints from the
CPU nodes such as RAM memory usage or computation load,
one must consider extra constraints from the GPU part, such
as number of threads, registers per thread or shared memory
usage. Distributing functionality over CPU-GPU nodes greatly
influences the outcome of the system performance, and thus
deciding the distribution of the hardware resources to the
software application should be carefully analyzed.

This paper presents a software component allocation model
for heterogeneous embedded systems composed of CPUs and
GPUs. The main contribution of the paper resides in the formal
description of the allocation model, including the software and
hardware models. The software model contains components
with platform-independent properties and the hardware model
described the physical platform intended for deployment. The
mathematical model for component allocation includes differ-
ent constraints (CPU and GPU load and memory usage, etc.)
and several optimization criteria (performance optimization,
balancing the memory usage, etc.). To get a better scalability
of the approach, the formal model only consider details of the
models that are relevant for the allocation; other factors that
may affect CPUs and GPUs performance (e.g., virtual memory,
registers per thread, usage of shared memory) are abstracted
away in the current version of work. For the evaluation part,
we use an integer programming method [14] to generate
deployment schemes. Expressing the formal allocation model
into a nonlinear integer programming problem allows for
different formal constraints to be easily integrated in the model,
to meet various application requirements.

The remainder of the paper is structured as follows:
Section II gives an overview of the approach with details
on the software, hardware and allocation models. Section III
introduces the mathematical formalization of the allocation
model. Section IV presents the translation of the mathematical
optimization model to a solver, followed by the evaluation of
the model in Section V. Section VI discusses the contributions
in relation to other research works and Section VII summarizes
the work and opens up to opportunities for future work.

Ram$ CPU$

Mem$$$$$$$$$$$$$$$$$$$$$GPU$ Ram$

CPU$

Ram$

CPU$

Bus$

H1$ H2$ H3$

B1$
Software constraints:
$$$C1$requires$10kb$memory$
…$
$

Op=miza=on$concerns:$
Bmaximize$performance$
BbalanceCPUload$
$$…$

Hardware properties:
$$$H2$Available$Ram$memory$=$20kb$
$$$…$
$

C1 ! H2 C2 ! H3 C3 ! H1 C4 ! H1

 C3 ! 30% GPU C4 ! 60% GPU

C1$

C2$
C3$ C4$

Optimized
allocation
model

Input
models

Allocation
optimization

$$$$$$$Bus$B2$

Software model Hardware model

Fig. 1: Allocation optimization overview

II. APPROACH OVERVIEW

As illustrated in Fig. 1, the approach relies on three
inputs to determine an optimized allocation scheme: a software
model, a hardware model and a set of optimization concerns.
The software model describes the system functionality as a
set of interconnected components that are characterised by
functional and extra-functional properties. The hardware model
consists of computation nodes connected through communica-
tion buses. Computation nodes and communication buses are
also annotated with functional and non-functional properties.
Only two types of computation nodes are currently supported
in the approach: simple nodes containing a memory block and
a CPU (H2 or H3 in Fig. 1), and nodes containing a GPU and
a dedicated GPU memory block in addition to the CPU and
a memory block (H1 in Fig. 1). Based on these inputs, the
approach uses a mathematical solver to compute a possible
solution.

In general, the software and hardware models that are used
to describe complex heterogeneous embedded systems provide
many details which are not important for the allocation itself.
To abstract from this initial complexity, the input models are
transformed into formal models. These models, as described
below, only capture information directly relevant for the allo-
cation and optimization process.

A. Software Model

The software model is specified as an undirected graph,
where the vertices represent the software components and
the edges represent the communication between the compo-
nents. Software components and communication are annotated
with functional and non-functional properties. An example of
software component model is presented in Fig. 2, with the
specification of the requirements for two of the components
and a communication link.

A Software Component is described by the following
properties:

• The amount of static memory usage the component
needs. The property is expressed in kilobyte (kB).

• The CPU usage describes the workload usage of a
component (e.g., information bits per clock cycle).
Using a CPU workload unit reference (e.g., 1 unit =
32 bits of information each clock cycle), the property
describes the component workload w.r.t. the CPU
reference unit.

• The amount of global GPU memory usage the compo-
nent needs. The property is expressed kilobyte (kB).

• The GPU size is defined as a sequence of alternative
levels of GPU allocation, and is expressed in number
of threads (T).

• The performance property is defined as a sequence
of values, where each value represents the component
performance for the corresponding value in the GPU
size sequence.

Using different levels of GPU computation resources (e.g.,
threads) results in different performance values (e.g., execution
time) [8]. However, the performance associated with different
levels does not necessarily grow linearly. For example, a
component with an execution time of 10 ms using 1000 threads
does not necessarily finish in 5 ms if given 2000 threads.
Various factors are included in the performance calculation
(e.g., the automatic distribution of the software application over
the GPU cores at runtime).

Mem$=$15kB
CPU$=$2$

GPU_Mem$=$$0kB
GPU$=$0T

$

Mem$=$20kB
CPU$=$0.5$

GPU_Mem$=$40kB
GPU$=$<1000,$2000>$T$

Perf$=$<0.5,$1>$
$

C1$

C2$
C3$ C4$

Bandwith$=$35bps
$

Fig. 2: Software architecture model

The Communication Link is the specification of interaction
between two components. In our software model, we abstract

the component connection information (e.g., ports, connectors
and direction) using undirected edges between components. It
is described by the bandwidth property which is the rate of data
transfer between the two connected components. The property
is expressed in bytes per second (bps).

B. Hardware Model

The heterogeneous platform is modelled as a bipartite
graph as illustrated in Fig. 3. The graph has two distinct sets
of vertices, where one set (the left hand side) represents the
computation nodes, and the other set (the right hand side)
represents the bus nodes. The edges have endpoints in different
sets, and represents which computation node is connected to
which bus node. In Fig. 3 two of the computation nodes
and one of the bus node are annotated with examples of the
properties that are used in the approach.

H1#

H3#

H2#

B2#

B1#

Bandwith#=#300#bps#
#

Available_Mem#=#70#kB#
Available_CPU#=#5#

Available_GPUMem=##0#kB#
Available_GPU#=#0#T#

#

ComputaDon#nodes# Bus#nodes#

Available_Mem#=#80#kB#
Available_CPU#=#4#

Available_GPUMem=##80#kB#
Available_GPU#=#6000#T#

Fig. 3: Hardware architecture model

A Hardware Computation Node has the following proper-
ties:

• The static memory size available. The property is
expressed in kilobytes (kB).

• The CPU capacity describes the workload of a node
(e.g., information bits processed in one clock cycle).
Using a CPU reference workload unit (e.g., 1 unit =
32 bits of information each clock cycle), the property
describes the CPU workload w.r.t. to the reference
unit.

• The global GPU memory size available. The property
is expressed in kilobytes (kB) and represents the size
of the GPU global memory.

• The GPU size. The property is expressed in number
of threads (T).

The Hardware Bus Node is the representation of the
communication channel (e.g., a CAN bus). It is described by
the bandwidth property which is the maximum rate at which
data can be transmitted between two connected nodes. The
property is expressed in bits per second (bps).

C. Optimization Concerns

Determining feasible allocation schemes requires knowl-
edge on the functional and non-functional properties of the
system, the hardware architecture and the system requirements.
However, not all feasible allocation schemes are equivalent.

Allocation being a cross-cutting concern, applying a certain
allocation scheme can positively (or negatively) influence the
non-functional properties of the system. It is thus necessary to
establish which of the feasible solutions are the most suitable,
i.e. one must decide which criteria should be optimized and
how.

The optimization process deals with the performance op-
timization (maximize the GPU distribution) and the fitness of
the hardware resource utilization (such as the utilization load
of each CPU node, the memory load or the bus communication
load). The performance optimization aims at maximizing the
performance of the allocation model based on a developer
ranking the importance of the software components. For ex-
ample, a components that needs to process huge amounts of
data may have a lower performance if it only has access to
a small part of the GPU. Conversely, it may have a higher
performance if it uses more of the GPU. The optimization
function maximizes the distribution of the GPU among com-
ponents according to their importance ranking.

There are different concerns which can be used for the
fitness of the hardware resource utilization such as “maximize
the CPU usage of a given node” or “minimize the number of
hardware nodes used in the system”. In this paper we focus
on the balancing of hardware resources as the fitness concern.

D. Allocation Scheme

The allocation scheme contains the result of the optimiza-
tion process, i.e., a feasible and optimized mapping of each
software component onto a hardware computation node that
satisfies the constraints of the system and its requirements.
In addition to the component-node mapping, the scheme
describes how the GPU workload is distributed among the
components. This work being focused on the formalization
of the optimization allocation, our current allocation model is
straightforward: software components and computation nodes
are represented by a unique name and the mapping is seen as
a placement of components onto nodes. A complete allocation
model would include, however, additional information such as
the specification of detailed memory mapping, allocation of
a component to a given processor and, if is the case, to the
associated GPU within a node.

III. ALLOCATION OPTIMIZATION MODEL

The formal model which captures the system characteristics
and constraints, and describes the definition of the allocation
optimization challenge, is defined as follows:

A. Input

1) A set C of n software components, and seven functions
link : W → R, where W contains unordered pairs from
C, memR : C → R, cpuR : C → R, memgpuR : C → R,
gpuR : C → NN and perf : C → NR, perfImp : C → R,
where:

link(ci, cj) =


0, when ci = cj
0, when ci not connected to cj
bitrate between ci and cj , when

ci 6= cj are connected
memR(c) = memory required by c
cpuR(c) = CPU workload required by c
memgpuR(c) = GPU memory required by c

gpuR(c) = a sequence 〈k1, . . . , ki〉 of
alternative GPU levels

perf(c) = a sequence 〈p1, . . . , pi〉 of
performance values, where px ∈ [0, 1]
for 1 ≤ x ≤ i

perfImp(c) = the importance of component c, where
perfImp(c) ∈ [0, 1]

2) A set H of k hardware computation nodes, a set B of m
bus nodes, five functions memA : H → R, cpuA : H →
R, memgpuA : H → R, gpuA : H → R, brtA : B → R,
and a relation node link ⊆ H ×B, where:

memA(h) = available memory on node h

cpuA(h) = available CPU capacity on node h

memgpuA(h) = available GPU memory on node h

gpuA(h) = available GPU size on node h

brtA(b) = available bitrate on bus b

node link(h, b) = the connection between the node h
and bus b

3) The weight factors of the fitness function:
wmem , wcpu , wbitrate , wperf ∈ [0, 1]. These are described
in more details in Section III-C.

B. Constraints

Given this input, the goal of the allocation optimization
is to find the functions alloc : C → H (i.e., mapping
the components to nodes) and gpualloc : C → N (i.e.,
distributing the GPU resources among components), such that
the following constraints are satisfied:

1) The summed required memory of components placed
on the same node should not exceed the available node
memory.

∀h ∈ H (memAll(h) ≤ memA(h)) ,where
memAll(h) =

∑
c∈{c|c∈C∧alloc(c)=h} memR(c)

2) The summed required CPU of components placed on the
same node should not exceed the available node CPU.

∀h ∈ H (cpuAll(h) ≤ cpuA(h)) ,where
cpuAll(h) =

∑
c∈{c|c∈C∧alloc(c)=h} cpuR(c)

3) The summed required GPU memory of components al-
located to the same GPU unit should not exceed the
available memory.

∀h ∈ H (gmem(h) ≤ memgpuA(h)) ,where
gmem(h) =

∑
c∈{c|c∈C∧alloc(c)=h∧gpualloc(c)>0} memgpuR(c)

4) The GPU size allocated to a component should be one of
the alternatives for that component .

∀c ∈ C (gpualloc(c) ∈ gpuR(c))

5) The sum of the required GPU size of components placed
on the same node should not exceed the available GPU
size of that node.

∀h ∈ H (gpuAll(h) ≤ gpuA(h)) ,where
gpuAll(h) =

∑
c∈{c|c∈C∧alloc(c)=h} gpualloc(c)

6) The sum of the required bitrate of components which are
placed on different nodes but connected to the same bus
node, should not exceed the available bus node bitrate.

∀b ∈ B (busAll(b) ≤ brtA(b)) , where
busAll(b) =

∑
{ci,cj}∈cnct(b) link(ci, cj) for

cnct(b) = {{ci, cj}|ci, cj ∈ C ∧ node link(alloc(ci), b)∧
node link(alloc(cj), b) ∧ alloc(ci) 6= alloc(cj)}

C. Optimization functions

Our optimization process considers four aspects: memory
balancing, CPU balancing, bitrate balancing and GPU perfor-
mance. Each aspect is represented by a fitness function and a
weight factor defined by the developer.

fitness(alloc, gpualloc) = wmem ∗ Fmem(alloc)+
wcpu ∗ Fcpu(alloc) + wbus ∗ Fbus(alloc)+
wperf ∗ Fperf (gpualloc)

wmem + wcpu + wbus + wperf = 1

The weight factors describe which concern has a higher
importance for the application or is used to exclude one or
several functions from the optimization process. For example,
if we want to optimize the GPU performance and balance
the CPU load of the system, we set wmem and wbitrate to 0,
and define the rest of the weights values according to their
importance.

In the following description, we consider the case for
balancing the hardware resources (memory, CPU and com-
munication) and maximize the GPU distribution.

1) CPU balancing

The CPU fitness function balances the workload of the
entire hardware system as follows. First, the CPU usage
of each node is derived using formula (1), by dividing the
sum of all components CPU load placed on the same node
with the node available workload. Then, using formula
(2), we compute the system CPU workload. To balance
the CPU load for a single node, we calculate the absolute
value of the difference between the average system usage
and the node usage. Applying the same principle to a
system with k nodes, the balanced CPU workload is given
by formula (3).

useCpu(h) =
cpuAll(h)
cpuA(h)

(1)

useCpu =

∑k
h=1 useCpu(h)

k
(2)

Fcpu(alloc) = 1−
∑k

h=1

∣∣useCpu− useCpu(h)
∣∣

k
(3)

2) Memory balancing

The memory fitness function balances the memory usage
of the system, in the same manner as for the CPU system
workload. First, we calculate the memory usage of each
node, using the formula (4). The system memory average
usage is obtained by formula (5). The final memory
balancing function is described in formula (6).

useMem(h) =
memAll(h)
memA(h)

(4)

useMem =

∑k
h=1 useMem(h)

k
(5)

Fmem(alloc) = 1−
∑k

h=1

∣∣useMem− useMem(h)
∣∣

k
(6)

3) Communication balancing

To balance the communication of a system, we start by
computing the communication usage of each bus node,
using formula (7). The system average of the communi-
cation usage is obtained by formula (8). Formula (9) is
balancing the system communication usage.

useBus(b) =
bussAll(b)

brtA(b)
(7)

useBus =
∑m

b=1 useBus(b)
m

(8)

Fbus(alloc) = 1−
∑m

b=1

∣∣useBus− useBus(b)
∣∣

m
(9)

4) Performance optimization

The performance optimization function distributes the
GPU workload to components in such a way that a
component with a higher importance will access more
computation resources than a component with a lower
importance. The importance weights, previously specified
by the developer in the input section, are defined only for
components which require GPU. Through the importance
weights, the developer classifies the component access to
GPU by their relevance. By maximizing the performance
function described in formula (10), higher importance
components are given more access to the GPU.

Fperf(gpualloc) =

∑
c∈C perfImp(c) ∗ pj

n
(10)

where perf (c) = 〈p1, . . . , pi〉 and
gpualloc(c) is the jth element in gpuR(c)

IV. TRANSLATION TO SOLVER

To compute solutions for our optimization model, we intro-
duce SCIP [1] which is a mixed-integer programming (MIP)
solver and a framework for constraint integer programming.
Our optimization model can be seen as a mixed-integer nonlin-
ear programming model, where we can minimize or maximize
several functions (e.g., CPU load on a node, system memory
usage) subject to a finite number of constraints of integer
variables. Translating the model into a solver is done using
a standard format called MPS (Mathematical Programming
System), when almost all available MPS solvers can interpret
today. ZIMPL [9], used as an intermediary language, mitigates
the conversion of the model to an MPS format.

In the input part of the ZMPL mode, the hardware and
software models are constructed, their components and nodes
initialized, and the communication links, performances and
importance weights defined. Two boolean array variables are
defined to hold the result of the allocation, one for mapping
the components to host and the other for the GPU distribution
over the components, as follows.

var allocate[CH] boolean;
var distribute[CT] boolean;

The allocate array contains boolean variables of all possible
mapping combinations between components and hosts (using
a Cartesian product set CH of components and hosts). The
distribute array is constructed similar. It contains boolean
variables of all possible combinations between components
and alternatives GPU levels (using a Cartesian product set
CT of components and their alternative GPU levels). In the
end, the two arrays will describe the solution by displaying
values of 1 for the feasible component-node and component-
GPU alternative level mapping solutions.

The constraints translation follows the mathematical model
we defined in Section III. For example, the following instruc-
tion presents the ZIMPL constraint over the sum of component
memory usage.

forall < h > in H do
(sum < c > in C : mem comp[c] * allocate[c,h]) <=

mem node[h];

For each node h, we condition the sum of components memory
usage mem comp[c] placed on the same node (enforced by
the boolean value allocate[c, h]) to be less or equal to the
available node memory mem node[h]. All other constraints
(CPU workload, bandwidth, etc) are translated in a similar
form.

In the last part of the model, we translate the fitness
function where we balance the resource usage and optimize
the GPU distribution. The following instruction describes a
small part of the fitness function translation, representing the
GPU distribution to components based on their importance.

Fperf = sum < c, t > in CT:
importance[c] ∗ perf [c, t] ∗ distribute[c, t];

Once the ZIMPL translation is finished, the solver receives
it as an input, and computes the allocate and distribute arrays.

V. EVALUATION

The evaluation consists of two parts. The first part illus-
trates the applicability of the approach on a concrete example
of an academic embedded system, and the second the scala-
bility of the approach using different optimization criteria.

A. Application to an autonomous underwater robot

To examine the practical usage of our optimization model,
we use an underwater robot with stereo vision as an example
of a complex heterogeneous CPU-GPU embedded system.
The robot is developed at Mälardalen University, Sweden, as
demonstrator for the RALF3 research project [2]. The purpose
of the robot is, based on the vision system, to autonomously
operate under water in searching and tracking various objects.
The hardware and software models described below are based
on the original hardware and software models of the robots.
They have, however, been adjusted to allow evaluating the
work presented in this paper.

The robot’s hardware platform is composed of three boards
connected by a CAN bus. In addition, the robot also contains
various sensors and actuators, such as cameras, pressure and
ultrasonic sensors and motors. Fig. 4a presents the correspond-
ing hardware model, in which H3 is a simple CPU computation
node, H1 and H2 are two identical complex computation nodes
(i.e. CPU-GPU nodes). The model elements have been annoted
with corresponding extra-functional properties.

The functionality of the robot is originally modelled as
a composition of software components connected through
interfaces. For the purpose of the work, this original model has
been flatten down and transformed to the formal representation
presented in Section II.A. The result of this transformation
is depicted in Fig. 4b. In this model, the Decision Center is
the main component: it gets and sets the configuration data
(e.g., the color calibration parameters, the water pressure), and
decide the execution order of the different missions according
to the data captured by the sensors. The Align component
is responsible for aligning the robot with a given object, an
underwater path for example. Based on the results of the
analysis of the images performed by the Vision Manager
component, the Align component must first calculate the
parameters to move the robot in the correct direction and then
effectively move the robot by calling the Movement Navigation
component which provides the movement commands for the
robot (e.g., move left, move right, etc). As shown in the extra-
functional property annotations, the Align component does not
require any massive parallel GPU computation but has a high
CPU workload and memory usage. On the other hand, the
Object Detector component, controlled by the Vision Manager
component, requires high GPU computation resources for
processing the camera images. Three GPU alternative levels
and their corresponding performances are also provided for
the Object Detector.

In addition to the model constraints (see Section III-B),
several component mapping restrictions must be introduced.
From the hardware model, only the CPU-GPU boards are
connected to a vision camera. This implies that the software
component that controls a vision camera can only be placed
on a board containing the corresponding camera. Similarly, a
peripheral component that implements the controls for a given

sensor (resp. actuator) should be placed on a board that has the
device. In other words, Peripherical1 which controls the IMU
should be placed on node H1 and the Movement Navigation
in charge of the motors should be allocated to H3.

In the following example, we use only the optimization
performance concern that is the distribution of GPU among
the vision components. There are four components which
require GPU: Vision Manager, Object Detector, Front Filter
and Bottom Filter. Being the component which manages the
vision process, Vision Manager receives the highest impor-
tance, followed by the Object Detector importance.

TABLE I: Optimized allocation scheme

Component Node GPU
Align H3

Bottom Camera H2

Bottom Filter H2 3000 T
Data Recorder H3

Decision Center H3

Front Camera H1

Front Filter H1 2000 T
Interaction Center H3

Movement Navigation H3

Object Detector H1 4000 T
Peripheral1 H1

Peripheral2 H2

Peripheral3 H3

Vision Manager H2 2000 T

Table I presents the solution found by the solver. The
Object Detector component, having a higher importance than
the Front Filter component, will receive the maximum level
of its GPU request. On the other complex node H2, the
Vision Manager component, having a high importance, re-
ceives the maximum GPU level request while the Bottom
Filter component, having the rest of the GPU resources at its
disposal, receives the highest level of its GPU request. For
this simple example consisting of 14 software components
and three hardware nodes, the solution was found in few
milliseconds. The platform on which the solver was executed
is an Optiplex 780 desktop with an Intel Core 2 Duo processor
and 2 GB of memory.

TABLE II: Optimization time

Components (GPU comp) Time (seconds)
Fbalance 30 (10) 1.23

35 (12) 1.50
40 (14) 2.65
45 (16) 12.03

Fperf 30 (10) 55
35 (12) 171
40 (14) 484
45 (16) 12046

B. Scalability

A set of experiments were conducted in order to evaluate
the growth of the optimization time. We implemented a gener-
ator for random software and hardware input models (i.e., sets
of components and nodes with their properties) of different
sizes. Using the generator, sets of four cases are computed.
The cases have from 30 to 45 software components, a random
number of connections, and the same hardware model: 7
nodes from which 3 are complex, and 1 bus node. Table II

RAM$ CPU$

$$$$$$$$$$$$$$$$$$GPU$

RAMCPU

Bus$

Motors$ Ultrasonic$
sensor$

Bo5om$
Camera$

Front$
Camera$

IMU$
sensor$

Pressure$
sensor$

RAM$ CPU$

Available_Mem$=$10MB
Available_CPU$=$3$

Available_GPUMem=$$90MB
Available_GPU$=$6000$T$$

$

Mem$ $$$$$$$$$$$$$$$$$$GPUMem

Available_Mem$=$50kB
Available_CPU$=$1$

Available_GPUMem=$$0kB
Available_GPU$=$0T

$

Bandwith$=$1Mbps
$

Kill$
Switch$

H1$ H2$

H3$

(a) Hardware model

Decision(
Center(

Vision(
Manager(

Object(
Detector(

Front(
Camera(

Bo6om(
Camera(

Movement(
Naviga9on(

Align(Data(
Recorder(

Interac9on(
Center(

Peripheral1(

Mem(=(100(kB(
CPU(=(3(

GPU_Mem(=(0(kB(
GPU(=(0(T(

(

Mem(=(1(MB(
CPU(=(1(

GPU_Mem(=(5(MB(
GPU(=(<1000,(3000,((4000>(T(

Perf(=(<1,(2,(3>(
(

Bandwith(=(300k(bps(
(

Front(
Filter(

Bo6om(
Filter(Peripheral2(Peripheral3(

(b) Simplified software model

Fig. 4: Underwater robot demonstrator

presents the solver optimization time using our generated sets
while running two different optimization concerns. The first
optimization concern Fbalance balances the hardware resources
(criterion 1, 2 and 3 from Section III-C), while the second
Fperf computes schemes based on the GPU optimization per-
formance criterion. For each case, an average of 10 simulations
is computed. Executing on the same hardware platform used in
the previous validation example, the solver is sufficiently fast
in computing solutions for systems with up to 40 software
components. There is a large change in solving time while
jumping to systems with 45 components.

VI. RELATED WORK

A large body-of-knowledge exists on software optimiza-
tion, with works such as [4] and [3] which contribute to
summarize it. Yet, only few works consider other computation
units than CPUs and even fewer, heterogeneous computation
nodes that use combination of CPUs and GPUs.

Several works present task assignment onto CPU-based
computing systems. Among them, in [13], the authors present
a deployment optimization method for automotive industry.
The allocation strategy is intended only for vehicle hardware
platforms composed of ECUs with different memory capacity
and processing power. The software is allocated onto the
hardware platform considering the data transmission reliability
and communication overhead attributes. This work focuses
only on automotive computation ECU nodes, considering
properties specific to this domain (i.e., ECU capacity, speed,
failure rate or data transmission reliability). Ucar et al. propose
a method [17] for task allocation onto processors with different
powers, in order to minimize the system utilization. In [11],
the authors introduce a task allocation model for distributed
systems, with the goal of balancing the utilization of each pro-
cessor. The authors of [18] generate, using a solver, optimized
assignments of tasks to CPU cores taking in consideration
the local memory constraints and criticality constraints of

tasks. This work focuses on safety-critical aspects and multi-
core CPU system allocation. Although we are abstracting the
software application as a component-based model, our fitness
function uses similar principles as presented in the previous
papers for minimizing the system utilization. In [19], the
authors design and evaluate load-sharing policies for CPU and
memory in heterogeneous distributed systems. The interesting
part for us is how they formalize the CPU/memory weights
for heterogeneity. We are using a similar formalization but we
extended our work to cover also the communication property.

A similar optimization problem is addressed by Svogor et
al. by using a genetic algorithm based method [16]. This work
discusses a possible approach to compute allocation schemes
for hardware platforms with CPUs, GPUs and FPGAs nodes.

An analysis on the execution time of massively parallel
GPU programs is presented by Hong et al. [8]. The authors
explain how, among others factors, a system can have a
better execution time by using a high number of threads
(grouped in warps). The component performance from our
optimization model is constructed using the same principle,
being proportional with the number of threads used by the
component.

The AQOSA toolkit [10] describes an automated opti-
mization process which, based on some initial input software
architectures, generates alternative architecture models. In the
optimization process, various metrics are considered such as
processor utilization, data flow latency, etc. These models
are analyzed and evaluated, helping the software architects
in reducing the work for modeling. Although the AQOSA
tool is addressing the optimization problem, it uses a different
approach (MDE) than ours for improving different quality
attributes of the system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented our initial work to optimize
allocation of software applications onto CPU-GPU embedded

hardware architectures. The work has been focused on iden-
tifying key allocation parameters and specifying a suitable
mathematical model to the allocation problem. Relying on the
software and hardware properties, several fitness functions for
balancing the resources and a criterion to maximize the distri-
bution of the GPU resources, a solver searches for optimized
allocation schemes.

To evaluate the practical usage of the optimization model
on a real example, an underwater robot is used as a demonstra-
tor. The allocation scheme computed by the solver, presents the
component-node mapping and the distribution of GPU compu-
tation. Also, as part of the evaluation, a set of experiments were
conducted to present the solver running time while comput-
ing allocation schemes. Solutions for medium-size problems
(about 45 software components and 7 computation hosts) were
calculated in approximate 3.5 hours on standard hardware. The
exponential increasing of time relative to the expansion of the
problem complexity represents the limitation of using a solver
in finding feasible allocation schemes.

Being in its inception phase, the approach needs to be
further developed. We first intent to alleviate some of the
assumptions and constraints we set for the work in adding
new types of computation nodes (e.g. FPGA), introducing
new optimization criteria (scenario-based optimization) and
supporting additional non-functional properties (e.g. dynamic
memory usage, throughput and response time). Also, enabling
deployment within a node would bring more flexibility to
our model in allowing, for example, a component to use
more CPU usage to compensate the lack of GPU. Covering a
more detailed GPU characteristics (e.g., local registers, shared
memory) in a future optimization model will result in a more
precise allocation scheme. As part of a future evaluation target,
various experiments will cover solver running time on different
combinations of fitness function concepts (e.g., balancing CPU
load while optimizing GPU performance distribution). We also
envisage to integrate the approach with some well-known
modelling languages such as MARTE to provide a more
complete model-driven engineering (MDE) approach which
will ease the workload of software architects.

ACKNOWLEDGMENT

Our research is supported by the RALF3 project
(http://www.mrtc.mdh.se/projects/ralf3/) through Swedish
Foundation for Strategic Research (SSF).

REFERENCES

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, TU Berlin,
Germany, 2007.

[2] C. Ahlberg, L. Asplund, G. Campeanu, F. Ciccozzi, F. Ekstrand,
M. Ekström, J. Feljan, A. Gustavsson, S. Sentilles, I. Svogor, and
E. Segerblad. The black pearl: An autonomous underwater vehicle.
Technical report, Mälardalen University, June 2013. Published as part
of the AUVSI Foundation and ONR’s 16th International RoboSub
Competition, San Diego, CA.

[3] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya.
Software architecture optimization methods: A systematic literature
review. IEEE Transactions on Software Engineering, 39(5):658–683,
2013.

[4] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-
based performance prediction in software development: A survey. IEEE
Transactions on Software Engineering, 30(5):295–310, 2004.

[5] S. K. Baruah. Task partitioning upon heterogeneous multiprocessor
platforms. In Real-Time and Embedded Technology and Applications
Symposium, 2004. Proceedings. RTAS 2004. 10th IEEE, pages 536–543,
2004.

[6] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach. Accelerating
compute-intensive applications with gpus and fpgas. In 2008 IEEE
Symposium on Application Specific Processors (SASP). IEEE, 2008.

[7] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf. Survey of
pedestrian detection for advanced driver assistance systems. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 32(7):1239–
1258, 2010.

[8] S. Hong and H. Kim. An analytical model for a gpu architecture
with memory-level and thread-level parallelism awareness. SIGARCH
Comput. Archit. News, 37(3):152–163, June 2009.

[9] T. Koch. Rapid Mathematical Programming. PhD thesis, Technische
Universität Berlin, 2004.

[10] R. Li, R. Etemaadi, M. T. M. Emmerich, and M. R. V. Chaudron.
An evolutionary multiobjective optimization approach to component-
based software architecture design. In IEEE Congress on Evolutionary
Computation, pages 432–439. IEEE, 2011.

[11] P.-Y. R. Ma, E. Lee, and M. Tsuchiya. A task allocation model
for distributed computing systems. IEEE Transactions on Computers,
31(1):41–47, 1982.

[12] P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and
T. Kanade. Gpu-accelerated real-time 3d tracking for humanoid lo-
comotion and stair climbing. In Intelligent Robots and Systems, 2007.
IROS 2007. IEEE/RSJ International Conference on, pages 463–469.
IEEE, 2007.

[13] I. Moser and S. Mostaghim. The automotive deployment problem:
A practical application for constrained multiobjective evolutionary
optimisation. In IEEE Congress on Evolutionary Computation, pages
1–8. IEEE, 2010.

[14] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial
optimization, volume 18. Wiley New York, 1988.

[15] H. Nguyen. Gpu Gems 3. Addison-Wesley Professional, first edition,
2007.

[16] I. Svogor, I. Crnkovic, and N. Vrkic. Multi-criteria software com-
ponent allocation on a heterogeneous platform. In In: Proc. of 35th
International Conference on Information Technology Interfaces. IEEE
Computer Society Press, 2013.

[17] B. Ucar, C. Aykanat, K. Kaya, and M. Ikinci. Task assignment
in heterogeneous computing systems. J. Parallel Distrib. Comput.,
66(1):32–46, Jan. 2006.

[18] S. Voss and B. Schtz. Deployment and scheduling synthesis for mixed-
critical shared-memory applications. In J. W. Rozenblit, editor, ECBS,
pages 100–109. IEEE, 2013.

[19] L. Xiao, X. Zhang, and Y. Qu. Effective load sharing on heterogeneous
networks of workstations. In In: Proc. of International Symposium on
Parallel and Distributed Processing, pages 431–438. IEEE Computer
Society Press, 2000.

[20] F. Xu and K. Mueller. Real-time 3d computed tomographic recon-
struction using commodity graphics hardware. Physics in medicine and

biology, 52(12):3405, 2007.

