
Response Time Analysis with Offsets for Mixed Messages
in CAN Supporting Transmission Abort Requests

Saad Mubeen∗†, Jukka Mäki-Turja∗† and Mikael Sjödin∗
∗Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Västerås, Sweden

†Arcticus Systems AB, Järfälla, Sweden
{saad.mubeen, jukka.maki-turja, mikael.sjodin}@mdh.se

Abstract—The existing worst-case response-time analysis for
Controller Area Network (CAN) does not support mixed mes-
sages that are scheduled with offsets in the systems where the
CAN controllers implement abortable transmit buffers. Mixed
messages are partly periodic and partly sporadic. These messages
are implemented by several higher-level protocols based on CAN
that are used in the automotive industry. Moreover, most of
the CAN controllers implement abortable transmit buffers. We
extend the existing analysis with offsets for mixed messages
in CAN. The extended analysis is applicable to any higher-
level protocol for CAN that uses periodic, sporadic, and mixed
transmission of messages where periodic and mixed messages
can be scheduled with offsets in the systems that implement
abortable transmit buffers in the CAN controllers. The extended
analysis also supports gateway nodes in CAN by considering
arbitrary jitter and deadlines for the messages. We also perform
comparative evaluation of the existing and extended analyses.

I. INTRODUCTION

Controller Area Network (CAN) [1] is a widely used real-
time network protocol in the automotive domain. According
to an estimate by CAN in Automation [2], more than two
billion CAN enable controllers have been sold mostly in
the automotive domain. In 2003, CAN was standardized as
ISO 11898-1 [3]. It is a multi-master, event-triggered, serial
communication bus protocol supporting bus speeds of up to
1 Mbit/s. There are several higher-level protocols for CAN
that are developed for many industrial applications such as
CAN Application Layer (CAL), CANopen, J1939, Hägglunds
Controller Area Network (HCAN), CAN for Military Land
Systems domain (MilCAN). Often, CAN is employed in
predictable and safety-critical systems. The providers of these
systems are required to ensure that the systems meet their
deadlines. For this purpose, several a priori timing analysis
techniques including Response-Time Analysis (RTA) [4], [5],
[6] have been developed by the research community. RTA is
a powerful and well established method to calculate upper
bounds on the response times of tasks or messages in a real-
time system or a network respectively.

A. Motivation and related work

Tindell et al. [7] developed RTA for CAN with priority
queues. It has been implemented in the analysis tools that are
used in the automotive industry, e.g., VNA [8]. Davis et al. [9]
refuted, revisited and revised the seminal analysis of [7]. The
revised analysis is implemented in the existing industrial tool

suite Rubus-ICE1 [10]. However, these analyses do not support
the network where CAN controllers2 implement abortable
transmit buffers, e.g., Atmel AT89C51CC03/AT90CAN32/64
and Microchip MPC2515 [11]. In order to correctly calculate
the response times of CAN messages, these type of practical
limitations in the CAN controllers should be considered in
RTA [12], [13]. Khan et al. [14] extended the revised seminal
analysis for the network where nodes implement abortable
transmit buffers. In [15], [16], [11], the previous RTA [7], [9]
is extended to support CAN network where nodes implement
priority, FIFO and work-conserving queues. But, none of the
analysis discussed above supports messages that are scheduled
with offsets, i.e., using externally imposed delays between the
times when the messages can be queued. The worst-case RTA
for CAN messages with offsets has been developed in several
works [17], [18], [19], [20], [21].

All of the above analyses assume that messages are queued
for transmission periodically or sporadically. They do not
support mixed messages in CAN which are partly periodic and
partly sporadic. Mixed messages are implemented by several
higher-level protocols based on CAN that are used in the
automotive industry. Mubeen et al. [22] extended the existing
analysis to support mixed messages in CAN where nodes
implement priority queues. Mubeen et al. [23] further extended
their analysis to support mixed messages in CAN with FIFO
queues. In [24], Mubeen et al. presented work in progress
for the extension of RTA for mixed messages in CAN with
abortable transmit buffers. In [25], we extended the existing
analysis for CAN [18] to support mixed messages that are
scheduled with offsets. However, this analysis is restricted due
to limitations regarding message jitter and deadlines. In [26],
we removed these limitations and extended the analysis for
mixed messages [22] by building it upon the analysis for CAN
messages with offsets [21]. In this paper, we extend our work-
in-progress paper [24] to support RTA with offsets for mixed
messages in CAN where the CAN controllers implement
abortable transmit buffers. Fig. 1 depicts the relation between
the existing and extended analyses.

B. Previous work and paper contribution

We extend worst-case response-time analysis of CAN to
support the analysis of mixed messages that are scheduled

1http://www.arcticus-systems.com.
2For convenience, we overload the terms node and CAN controller.



with offsets in the system where CAN controllers implement
abortable transmit buffers. The existing analysis for mixed
messages with offsets [25], [26] does not support transmission
abort requests in the CAN controllers. The extended analysis
is build upon our previous work (work-in-progress paper) [24].
Since the release jitter can be higher than message period, e.g.,
in gateway nodes, the extended analysis assumes arbitrary jitter
and deadline. This means each one of them can be lower, equal
or higher than the transmission period of the message. The
extended analysis is applicable to any higher-level protocol
for CAN that uses periodic, sporadic and mixed transmission
of messages; whereas the periodic and mixed message can
be scheduled with offsets. We also show the applicability of
the extended analysis by implementing it in a free tool MPS-
CAN Analyzer [27] and performing comparative evaluation
with respect to the existing analyses that is missing in [26].

Fig. 1. Relation between the existing and extended Response Time Analyses

II. MIXED MESSAGES IMPLEMENTED BY THE
HIGHER-LEVEL PROTOCOLS

In this section, we discuss and compare the implementation
of mixed messages by several higher-level protocols for CAN
that are used in the automotive industry. Traditionally, it is
assumed that the tasks queueing CAN messages are invoked
either periodically or sporadically. If a message is periodically
queued for transmission, we use the term “Period” to refer
to its periodicity. A sporadic message is queued for trans-
mission as soon as an event occurs that changes the value
of one or more signals contained in the message provided
the Minimum Update Time (MUT ) between the queueing
of two successive sporadic messages has elapsed. However,
there are some higher-level protocols for CAN used in the
industry that support queueing of messages periodically as
well as sporadically. These messages are said to be mixed, i.e.,
a mixed message is simultaneously time- and event-triggered.

A. Method 1: Implementation in the CANopen protocol

The CANopen protocol [28] supports mixed transmission
that corresponds to the Asynchronous Transmission Mode

coupled with the Event Timer. A mixed message can be
queued for transmission at the arrival of an event provided the
Inhibit Time has expired. The Inhibit Time is the minimum
time that must be allowed to elapse between the queueing
of two consecutive messages. A mixed message can also be
queued periodically when the Event Timer expires. The Event
Timer is reset every time the message is queued. Once a
mixed message is queued, any additional queueing of this
message will not take place during the Inhibit Time [28].
The transmission pattern of a mixed message in CANopen is
illustrated in Fig. 2(a). The down-pointing arrows symbolize
the queueing of messages while the upward lines (labeled with
alphabetic characters) represent arrival of the events. Message
1 is queued as soon as the event A arrives. Both the Event
Timer and Inhibit Time are reset. As soon as the Event Timer
expires, message 2 is queued due to periodicity and both
the Event Timer and Inhibit Time are reset again. When the
event B arrives, message 3 is immediately queued because the
Inhibit Time has already expired. Note that the Event Timer is
also reset at the same time when message 3 is queued as shown
in Fig. 2(a). Message 4 is queued because of the expiry of the
Event Timer. There exists a dependency relationship between
the Inhibit Time and the Event Timer, i.e., the Event Timer is
reset with every sporadic transmission.

B. Method 2: Implementation in AUTOSAR

AUTOSAR [29] can be viewed as a higher-level protocol if
it uses CAN for network communication. Mixed transmission
mode in AUTOSAR is widely used in practice. In AUTOSAR,
a mixed message can be queued for transmission repeatedly
with a period equal to the mixed transmission mode time
period. The mixed message can also be queued at the arrival of
an event provided the Minimum Delay Time (MDT ) has been
expired. However, each transmission of the mixed message, re-
gardless of being periodic or sporadic, is limited by the MDT .
This means that both periodic and sporadic transmissions are
delayed until the MDT expires. The transmission pattern of
a mixed message implemented by AUTOSAR is illustrated in
Fig. 2(b). Message 1 is queued (the MDT is started) because
of partly periodic nature of the mixed message. When the
event A arrives, message 2 is queued immediately because the
MDT has already expired. The next periodic transmission is
scheduled 2 time units after the transmission of message 2.
However, the next two periodic transmissions corresponding
to messages 3 and 4 are delayed, as shown in Fig. 2(b),
because the MDT is not expired. The periodic transmissions
corresponding to messages 5 and 6 occur at the scheduled
times because the MDT is already expired in both cases.

C. Method 3: Implementation in the HCAN protocol

A mixed message in HCAN protocol [30] contains signals
out of which some are periodic and some are sporadic. A
mixed message is queued for transmission not only periodi-
cally but also as soon as an event occurs that changes the value
of one or more event signals, provided the MUT between the
queueing of two successive sporadic instances of the mixed



Implementation in CANopen

Event 
Arrival

Message 
Queued for 

Transmission

Periodic Transmission is independent of 
Sporadic Transmission

A B C D

1 2 5 63 4

Delayed Periodic Transmissions

A

1 2 5 63 4

Event Timer is 
reset

1 3 4

B

2

A

(a) Mixed message in CANopen (b) Mixed message in AUTOSAR (c) Mixed message in HCAN

Fig. 2. Mixed transmission pattern in higher-level protocols for CAN

message has elapsed. Hence, the transmission of the mixed
message due to arrival of events is constrained by the MUT .
The transmission pattern of the mixed message is illustrated
in Fig. 2(c). Message 1 is queued because of periodicity. As
soon as event A arrives, message 2 is queued. When event
B arrives it is not queued immediately because the MUT is
not expired yet. As soon as the MUT expires, message 3 is
queued. Message 3 contains the signal changes that correspond
to event B. Similarly, a message is not immediately queued
when the event C arrives because the MUT is not expired.
Message 4 is queued because of the periodicity. Although,
the MUT was not expired, the event signal corresponding
to event C was packed in message 4 and queued as part of
the periodic message. Hence, there is no need to queue an
additional sporadic message when the MUT expires. This
indicates that the periodic transmission of the mixed message
cannot be interfered by its sporadic transmission (a unique
property of the HCAN protocol). When the event D arrives, a
sporadic instance of the mixed message is immediately queued
as message 5 because the MUT has already expired. Message
6 is queued due to periodicity.

D. Discussion

In the first method, the Event Timer is reset every time the
mixed message is queued for transmission. The implemen-
tation of mixed message in method 2 is similar to method
1 to some extent. The main difference is that in method 2,
the periodic transmission can be delayed until the expiry of
the MDT . Whereas in method 1, the periodic transmission
is not delayed, in fact, the Event Timer is restarted with
every sporadic transmission. The MDT timer is started with
every periodic or sporadic transmission of the mixed message.
Hence, the worst-case periodicity of the mixed message in
methods 1 and 2 can never be higher than the Inhibit Timer
and MDT respectively. This means that the models of mixed
messages in the first and second implementation methods
reduce to the classical sporadic model. Therefore, the existing
analyses for CAN messages with offsets [18], [19], [17], [20],
[21], [14] can be used for analyzing mixed messages in the
first and second implementation methods.

However, periodic transmission is independent of the spo-
radic transmission in the third method because the periodic
timer is not reset with every sporadic transmission. The
message can be queued for transmission even if the MUT
is not expired. Hence, the worst-case periodicity is neither

bounded by period nor by the MUT . Therefore, the analyses
in [18], [19], [17], [20], [21], [14] cannot be used for analyzing
the mixed messages in the third implementation method.

III. EFFECT OF ABORTABLE TRANSMIT BUFFERS ON RTA

When there are fewer number of transmit buffers in a
CAN controller compared to the number of messages sent
by the ECU, the messages may be subjected to extra de-
lay and jitter due to priority inversion. Most of the CAN
controllers support transmission abort requests, e.g., Atmel
AT89C51CC03/AT90CAN32/64 and Microchip MPC2515
[11], [14]. If a CAN controller supports transmission abort
requests (and implements at least 3 transmit buffers) then the
lowest priority message in the transmit buffer that is not under
transmission is swapped with the higher priority message from
the message queue. During the swapping process, a lower pri-
ority message from the transmit buffer in any other controller
may win the bus arbitration and start its transmission. This
causes priority inversion for the higher priority message. As
a result, it contributes an extra delay to the response time of
the higher priority message. The copying delay and the extra
blocking delay should be taken into account while calculating
the response time of the higher priority message; otherwise,
the calculated response times can be optimistic.

A. Additional delay and jitter due to priority inversion

In order to demonstrate the additional delay due to priority
inversion when CAN controllers implement abortable transmit
buffers, consider an example in Fig. 3. Assume there are three
nodes CCc , CCj and CCk in the system and each node has
three transmit buffers. m1 is the highest priority message in
CCc as well as in the system. When m1 becomes ready for
transmission in the message queue of CCc , a lower priority
message m6 belonging to CCk is already under transmission.
m6 cannot be preempted because CAN uses fixed priority non-
preemptive scheduling. This represents the blocking delay for
m1 . At this point in time, all transmit buffers in CCc are
occupied by the lower priority messages (say m3 , m4 and
m5 ). The device drivers signal an abort request for the lowest
priority message in Kc (transmit buffers in CCc) that is not
under transmission.

Hence, m5 is aborted and copied from the transmit buffer
to the message queue, whereas m1 is moved to the vacated
transmit buffer. The time required to do this swapping is iden-
tified as swapping time in Fig. 3. During the swapping time,



a series of events may occur: m6 finishes its transmission,
new arbitration round starts, another message m2 belonging
to node CCj and having priority lower than m1 wins the
arbitration and starts its transmission. Thus m1 has to wait
in the transmit buffer until m2 finishes its transmission. This
results in the priority inversion for m1 and adds an extra delay
to its response time. In [14], Khan et al. pointed out the extra
delay of the higher priority message appears as additional jitter
to the lower priority messages, e.g., m5 in Fig. 3.

Response time of m1

5 10 150

m5

Pr
io

rit
y

m4

m3

m2

m1

Time

CCc

CCc

CCj

CCj

CCk

Message 
queued

5 10 150

m6

Pr
io

rit
y

Time

CCk

Message 
queued

Response time of m1

5 10 150

m5

Pr
io

rit
y

m2

Time

CCj

CCk

Message 
queued

m1 CCc

CTk

Response time of m1

m1 CCc

m5 CCc

m2 CCj

Swapping time

20 25

5 10 150

m6

Pr
io

rit
y

Time

CCk

Message 
queued

Response time of m1

m1 CCc

m5 CCc

m2 CCj

Swapping
time

20 25

Fig. 3. Priority inversion in the case of abortable transmit buffers

B. Discussion on message copy time and delay

If the message copy time is smaller than or equal to the
inter-frame space (i.e., time to transmit 3 bits on CAN bus or
3∗τbit time), a lower priority message in the transmit buffer
(that is not under transmission) can be swapped with a higher
priority message in the message queue before transmission of
the next frame [1]. Hence, there will be no priority inversion.
This means that the message copy time must be, at least, 4∗τbit
for the priority inversion to occur. In legacy systems, there
may be slow controllers, i.e., the speed of the controllers can
be slower than the maximum operating speed of the CAN
bus (1 Mbit/s). Since the amount of data transmitted in a
CAN message ranges from 0 to 8 bytes, the transmission time
of a message also varies accordingly. According to [9], the
transmission time of a CAN message with standard frame
format ranges from 55∗τbit to 135∗τbit for the amount of
data contained in the message that ranges from 0 to 8 bytes
respectively. Intuitively, the message copy time of 4∗τbit can
range from 7.3% to 3% of transmission time of a message
with 0 to 8 bytes of data respectively. Due to slow controllers
in legacy systems, the message copy time can be greater than
4∗τbit, hence, higher than 7.3% of its transmission time.

C. Messages safe from priority inversion

It should be noted that not all messages in a node suffer
from priority inversion [14]. Assume that not more than one
instance of each message can occupy the transmit buffers. The
number of lowest priority messages equal to the number of
transmit buffers in a node will be safe from priority inversion.
Whereas the rest of the messages in the same node may suffer
from priority inversion. E.g., let there be 4 transmit buffers in
a node that sends six messages m1 , m2 , m3 , m4 , m5 and
m6 . m1 has the highest priority while m6 has the lowest
priority. Assume m4 arrives in the message queue when 3
out of 4 transmit buffers are occupied by the three lowest

priority messages m6 , m5 and m4 . The fourth transmit buffer
can either be empty or occupied by one of the higher priority
messages m1 or m2 . If the fourth transmit buffer is empty then
m4 is immediately copied to it. On the other hand, m4 has to
wait in the message queue because at least one transmit buffer
contains a higher priority message. In both cases there is no
need to abort transmission. This implies that m6 , m5 , m4 and
m3 will be safe from priority inversion, whereas m1 and m2

may face it. However, this condition of priority inversion may
be invalid if we assume that multiple instances of a message
can occupy transmit buffers at the same time. In that case, the
calculations for the worst-case scenario when messages are
free from priority inversion can be adapted from [31].

IV. SYSTEM MODEL

The system consists of a number of CAN controllers,
denoted by CC1 ,CC2 , ...CCn , that are connected to a single
CAN network. The nodes implement priority queues which
means that the highest priority message in a node enters into
the bus arbitration. We assume that each CAN controller has
a finite number of transmit buffers (however, not less than
three). Let the transmit buffers in a CAN controller CCc be
represented by Kc . The number of transmit buffers in CCc

can be found using the function Sizeof (Kc).
Each CAN message mm has a unique identifier and a

priority denoted by IDm and Pm respectively. We assume,
the priorities are assigned to messages and not to the transmit
buffers. The priority of a message is assumed to be equal
to its ID. The priority of mm is considered higher than
the priority of another message mn if Pm < Pn. Let the
sets hp(mm), lp(mm), and hep(mm) contain the messages
with priorities higher, lower, and equal and higher than mm

respectively. No doubt, priorities of CAN messages are unique,
the set hep(mm) is used in the case of mixed messages.
The FRAME TYPE attribute specifies whether a frame is
a standard or an extended CAN frame. The standard CAN
frame uses an 11-bit identifier whereas the extended CAN
frame uses a 29-bit identifier. We define a function ξm that
denotes transmission type of a message. ξm specifies whether
mm is periodic (P ), sporadic (S) or mixed (M ). Formally, the
domain of ξm can be defined as follows.

ξm ∈ [P, S, M ]

The transmission time of mm is denoted by Cm . Each
message can carry a data payload denoted by sm that ranges
from 0 to 8 bytes. In the case of periodic transmission, mm

has a period which is denoted by Tm . Whereas in the case of
sporadic transmission, mm has the MUTm (Minimum Update
Time) that refers to the minimum time that should elapse
between the transmission of any two sporadic messages. The
queueing jitter of mm is denoted by Jm which is inherited
from the task that queues it. We assume that Jm can be smaller,
equal or greater than Tm or MUTm . Bm denotes the blocking
time of mm which refers to the largest amount of time mm

can be blocked by any lower priority message.



We duplicate a message when its transmission type is mixed.
Each mixed message mm is duplicated; which means it is
treated as two separate messages, i.e., one periodic and the
other sporadic. These duplicates share all attributes except for
Tm and MUTm . The periodic copy inherits Tm ; whereas, the
sporadic copy inherits the MUTm . The worst-case response
time of mm is denoted by Rm . It is defined as the longest
time between the queueing of mm in the sending node and
its delivery to the destination buffer in the destination node.
mm is considered schedulable if its Rm is less than or equal
to its deadline Dm . The system is considered schedulable if
all messages are schedulable. We consider arbitrary deadlines
which means they can be greater than the periods or MUT s of
corresponding messages. We assume that the CAN controllers
are capable of buffering more than one instance of a message.
All instances of a message are considered to be transmitted in
the same order in which they are queued (we assume FIFO
policy among the instances of the same message).

Let the offset of mm be denoted by Om. We assume that
the offset of a message is always smaller than its period. The
first arrival time of mm is equal to its offset; whereas, the
subsequent arrivals occur periodically with respect to the first.
The smallest offset in a node is assumed to be equal to zero.
It is important to note that each node has its own local time
and there is no global synchronization among the nodes. We
assume that the offset relations exist only among periodic
messages and periodic copies of mixed messages within a
node. Hence, there are no offset relations:(1) among sporadic
messages, (2) between a periodic message and a sporadic
message, (3) between a periodic copy of a mixed message
and a sporadic message, (4) between duplicates of a mixed
message, (5) between any two messages from different nodes.

All periodic messages and periodic copies of mixed mes-
sages in a node are collected together in a single transaction
denoted by Γi. Each transaction belongs to Γ which is the set
of all transactions in the system. This transactional model is
adapted from [32]. It should be noted that the offset relations
exist only within a transaction, and there are no offset relations
among any two transactions. Within context of a transaction,
we denote a message mj belonging to transaction Γi by mj

i .
The period of Γi is denoted by TΓi

and is defined as the
Least Common Multiple (LCM) of the periods of all messages
belonging to Γi. Each sporadic message or sporadic copy of
a mixed message is modeled as a separate transaction.

Consider a simple example shown in Fig. 4. A node trans-
mits two messages: a mixed message m1 with high priority
and a periodic message m2 with low priority. Transaction Γ1

contains both m2 and periodic copy of m1 . The period of Γ1

denoted by TΓi is the LCM of T1 and T2 . Transaction Γ2

consists of only sporadic copy of m1 .

V. EXTENDED WORST-CASE RESPONSE-TIME ANALYSIS

Let the message under analysis be denoted by mm and
it belongs to node CCi . Since mm may or may not suffer
from priority inversion, we consider two different cases for
calculating its response time by adapting the analysis in [14].

However, in each case, mm is analyzed differently based on its
transmission type. Intuitively, in each case, we consider three
different sub-cases namely periodic, sporadic and mixed. Let
us first discuss few terms that are used in the analysis.
Maximum Busy Period. In order to calculate the worst-
case response time of mm , the maximum busy period [7],
[9] for priority level-m should be known first. It is the longest
contiguous interval of time during which mm is unable to
complete its transmission due to two reasons. First, the bus
is occupied by the higher priority messages. Second, a lower
priority message already started its transmission when mm is
queued for transmission. The maximum busy period starts at
the so-called critical instant.
Critical Instant. We redefine the critical instant for priority
level-m busy period as the instant when (1) mm or any other
higher priority message belonging to the same node as that of
mm is queued for transmission after experiencing maximum
jitter while its subsequent instances are queued after the
shortest possible interval of time; (2) at least one message with
priority higher than mm is queued for transmission from every
node after experiencing maximum jitter while its subsequent
instances are queued after the shortest possible interval of
time; (3) all sporadic messages and sporadic copies of mixed
messages belonging to the set hp(mm) from every node are si-
multaneously queued for transmission at the respective nodes;
and (4) a lower priority message just started its transmission
when mm is queued. The critical instant for priority level-2
busy period is identified at tc in Fig. 3. According to condition
(3), the arrival of Γ2 should coincide with the critical instant.

Critical Instant (tc)

m2

3210 5 104 9876
t

1911 12 13 14 15 16 17 18

m2 m2 m2

20

m2 m2

1

3210 5 104 9876
t

1911 12 13 14 15 16 17 18

m1 m1 m1

20

m2 m2 m2 m2 m2
P m1

P m1
P

T2

T 1 1

1( 1

2( 1

2 m1

3210 5 104 9876
t

1911 12 13 14 15 16 17 18

m1

20

m1
S m1

S

m1 S

3210 5 104 9876
t

1911 12 13 14 15 16 17 18

P SP P

20

m1
P m1

P m1
Pm1

S m1
S

MUT1

T1

O2

O1

Sporadic copy of 
mixed message m1

Periodic copy of 
mixed message m1

Message release

Transaction release

Transmission time

Fig. 4. Example of the transactional model

Worst-Case Candidates. The main issue regarding condition
(2) is to determine which message in the set hp(mm) is the
candidate to start the critical instant, i.e., contributing to the
worst-case response-time of mm . The solution is that any
message in the set hp(mm) can be the worst-case candidate.
Therefore, each message has to be tested in the busy period as
the potential worst-case candidate. The response time of mm

should be calculated from every worst-case candidate and the
maximum among all should be considered as the worst-case
response time of mm . In this work, we present RTA with



respect to any worst-case candidate.
Calculations for the additional jitter. These calculations are
adapted from the analysis in [14]. Let Ki denote the transmit
buffer queue in CCi . Let CTm denotes the maximum between
the time required to copy mm from the message queue to
the transmit buffer and from transmit buffer to the message
queue. As noted in [14], these two times are very similar to
each other. Let the additional jitter of mm as seen by the
lower priority messages due to priority inversion be denoted by
AJm . Where AJ stands for “Additional Jitter”. The maximum
jitter of mm denoted by Ĵm is the summation of its original
jitter Jm and the additional jitter due to priority inversion.
Mathematically, the additional jitter of mm that is seen by
lower priority messages is calculated as follows.

Ĵm = Jm +AJm (1)

The additional jitter for mm depends upon three elements:
(1) the largest copy time of a message in the set of lower
priority messages that belong to the same node CCi ; (2)
the largest value among the worst-case transmission times
of all those messages whose priorities are lower than the
priority of mm but higher than the highest priority message
in Ki ; and (3) since the original blocking time Bm for mm is
separately considered as part of the queueing delay, it should
be subtracted from the additional delay.

Therefore, AJm is calculated as follows:

AJm = max(0, max
∀ml∈CCi∧ml∈lep(mm)

(CTl)

+ max
Pm<Pl≤PhKi

(Cl)−Bm) (2)

where mhKi
is the highest priority message in Ki .

Calculations for the blocking delay. When mm is subjected
to priority inversion, it experiences an extra amount of block-
ing in addition to the original blocking delay Bm . Let the total
blocking delay for mm due to priority inversion be denoted by
B̂m . It is equal to the sum of the original blocking delay and
the largest copy time of a message in the set of lower priority
messages that belong to the same node CCi .

B̂m = max
∀mj∈lep(mm)

{Cj}+ max
∀ml∈CCi∧ml∈lep(mm)

(CTl) (3)

Since we consider arbitrary deadlines, mm can also be
blocked from its own previous instance due to push-through
blocking [9]. That is the reason why (3) includes the function
lep(mm) instead of lp(mm).

A. Case 1: When message under analysis is subjected to
priority inversion

1) Case 1(a): When mm is a periodic message: Let mm

belongs to transaction Γi. The worst-case response time of
mm is equal to the maximum value among the response times
of all of its instances. We calculate the response times of all
instances of mm within priority level-m busy period. Let qm
denote the instances of mm . Let qLm and qHm denote lowest-
and highest-numbered instances respectively. The worst-case

response time of mm is given by:

Rm = max{Rm(qm)}, ∀ qLm ≤ qm ≤ qHm (4)

It should be noted that qm is equal to 1 if the message
instance is queued for transmission between the critical instant
and Tm . Further, qm is equal to 2 if the message instance is
queued for transmission between Tm and 2.Tm . Similarly, qm
is equal to 0 if the message instance is queued for transmission
between the critical instant and −Tm . Since the jitter of a
message can be greater than its transmission period, it is
possible that the previous instances of the message may also
be delayed due to jitter and enter in the maximum busy period.
The calculations for the response time of instance qm are
adapted from [26], [21]. However, these calculations should
consider three more elements: (1) copying delay CTm for
every instance of mm in the priority level-m busy period;
(2) additional jitter experienced by mm due to higher priority
messages; and (3) additional blocking delay as shown in (3).

Rm(qm) = STm+Cm+CTm−(ϕm(φi)+(qm−1).Tm) (5)

φi in (5) denotes the time interval between latest arrival of Γi
(prior to the critical instant) and the critical instant. Consider
the example message set in Fig. 3. φi is equal to 1 time
unit and is identified as φ1 on the third time line from the
top. ϕm(φi) in (5) represents the length of the time interval
between the critical instant and first release of mm that occurs
at or after the critical instant. Consider again the example
message set in Fig. 3. ϕm(φi) for messages mP

1 and m2 are
identified by ϕ1(φ1) and ϕ2(φ1) respectively. The calculations
for ϕm(φi) are adapted from [32] as follows.

ϕm(φi) = (Tm − (φi −Om) mod Tm) mod Tm (6)

STm in (5) denotes the Start Time (ST) when the priority
level-m busy period ends and mm(qm) can start its transmis-
sion. Basically, it sums up the interferences due to higher
priority messages, previous instances of the same message
and the blocking factor. It can be calculated by solving the
following equation.

STn+1
m = B̂m + (qm − qLm).Cm + (qm − qLm).CTm +∑

∀Γk∈Γ

Wm(Γk, φk, ST
n
m) (7)

Where the terms (qm−qLm).Cm and (qm−qLm).CTm represent
the effect of interference and copy times of previous instances
of mm that are queued ahead of the instance under analysis.
(7) is an iterative equation. It is solved iteratively until two
consecutive solutions become equal. The starting value for
STnm in (7) can be selected equal to B̂m + (qm − qLm).Cm
+ (qm − qLm).CTm. In (7), Wm represents the amount of
interference due to the messages in the set hp(mm) that
are queued for transmission since the beginning of the busy
period. It is important to mention that a message cannot be
interfered by higher priority messages during its transmission
because CAN uses fixed-priority non-preemptive scheduling.
Whenever we use the term interference, it refers to the amount



of time mm has to wait in the send queue because the higher
priority messages win the arbitration, i.e., the right to transmit
before mm . Wm can be calculated as follows.

Wm(Γk, φk, ST
n
m) =

∑
∀mj∈hpk(mm)

Υj
k(STnm).Cj (8)

Where hpk(mm) represents the set of all those messages that
belong to Γk and have priority higher than mm . Υj

k(STnm)
in (8) is calculated differently based on the transmission type
ξj of the higher priority message mj . The calculations for
Υj
k(STnm) are adapted from [21] and [22] as follows.

Υj
k(STnm) =



⌊
Ĵj +ϕj(φk)

Tj

⌋
+

⌊
STn

m−ϕj(φk)
Tj

⌋
+ 1, if ξj =P⌊

STn
m+Ĵj

MUTj

⌋
+ 1, if ξj =S⌊

Ĵj +ϕj(φk)

Tj

⌋
+

⌊
STn

m−ϕj(φk)
Tj

⌋
+ 1

+

⌊
STn

m+Ĵj
MUTj

⌋
+ 1, if ξj =M

(9)
Where, ϕj(φk) is calculated by replacing the indices m and

i with j and k in (6) respectively.
⌊

Ĵj +ϕj(φk)

Tj

⌋
represents the

maximum number of instances of the higher priority periodic
message or periodic copy of mixed message mj that may

accumulate at the critical instant. Whereas
⌊
STn

m−ϕj(φk)
Tj

⌋
+1

represents the maximum number of instances of mj that are
queued for transmission in the interval that starts with the
critical instance and ends at Υn

m. It should be noted that
we use Ĵj that includes the additional jitter from a higher
priority message. There are no offset relations of mm with
any sporadic message. Moreover, all sporadic messages are
assumed to be queued for transmission at the critical instant.⌊
STn

m+Ĵj
MUTj

⌋
+ 1 represent the maximum number of instances

of higher priority sporadic message or sporadic copy of mixed
message mj that are queued for transmission in the interval
that starts with the critical instance and ends at Υn

m. This also
includes the number of instances of mj that may accumulate
at the critical instant due to jitter. It is evident from (9) that
interference from both periodic and sporadic copies of every
higher priority mixed message is taken into account. The
lowest- and highest-numbered instances of mm denoted by
qLm and qHm are calculated as follows.

qLm = −
⌊
Jm + ϕm(φi)

Tm

⌋
+ 1 (10)

qHm =

⌈
Lm − ϕm(φi)

Tm

⌉
(11)

Where Lm represents the length of priority level-m busy
period. We adapt the calculations for Lm from the existing
analysis [26], [21] by including the additional jitter from

higher priority messages and additional blocking delay.

Ln+1
m =

[⌊
Jm + ϕm(φi)

Tm

⌋
+

⌈
Lnm − ϕm(φi)

Tm

⌉]
.Cm +

B̂m +
∑

∀Γk∈Γ,mj∈hpk(mm)

Mj
k(Lnm).Cj (12)

Mj
k(Lnm) =



⌊
Ĵj +ϕj(φk)

Tj

⌋
+

⌈
Ln

m−ϕj(φk)
Tj

⌉
, if ξj =P⌊

Ln
m+Ĵj

MUTj

⌋
+ 1, if ξj =S⌊

Ĵj +ϕj(φk)

Tj

⌋
+

⌈
Ln

m−ϕj(φk)
Tj

⌉
+

⌊
Ln

m+Ĵj
MUTj

⌋
+ 1, if ξj =M

(13)

2) Case 1(b): When mm is a sporadic message: Let mm

belongs to the transaction of its own denoted by Γi. The worst-
case response time of mm can be calculated similar to the
periodic case with one exception. That is, sporadic message
does not hold any offset relations with any other message in
the system. Moreover, all sporadic messages including mm are
assumed to be queued for transmission at the critical instant.
Intuitively, φi will be equal to MUTm , i.e., the latest arrival of
mm prior to critical instant will be MUTm time units before
the critical instant. Let us use Om equal to zero, and MUTm

in place of both Tm and φi in (6).

ϕm(φi) = 0 (14)

In this case, (4), (7), (28), (8), (9) and (13) hold intact.
However, we need to replace the new value of ϕm(φi) from
(14) in the calculations for (5), (10), (11) and (12) as follows.
Moreover, we need to consider the effect of message copy
time in its response time.

Rm(qm) = STm + Cm + CTm − (qm − 1).MUTm (15)

qLm = −
⌊

Jm
MUTm

⌋
+ 1 (16)

qHm =

⌈
Lm

MUTm

⌉
(17)

Ln+1
m =

[⌊
Jm

MUTm

⌋
+

⌈
Lnm

MUTm

⌉]
.Cm + B̂m +∑

∀Γk∈Γ,mj∈hpk(mm)

Mj
k(Lnm).Cj (18)

3) Case 1(c): When mm is a mixed message: Since a mixed
message is duplicated as two separate messages, the extended
analysis treats them separately. Let the periodic and sporadic
copies of mm be denoted by mmP

and mmS
respectively. We

denote the worst-case response times of mmP
and mmS

by
RmP

and RmS
respectively. The worst-case response time of

mm is the maximum between RmP and RmS as follows.

Rm = max{RmP
, RmS

} (19)



Where RmP
and RmS

are equal to the maximum value among
the response times of their respective instances. Let qmP

be
the index variable to denote the instances of mmP . Let qLmP

and qHmP
denote the lowest- and highest-numbered instances

of mmP
respectively. Let qmS

, qLmS
and qHmS

denote the
index variable for instances, and lowest- and highest-numbered
instances of mmS

respectively. The calculations for RmP

and RmS are adapted from the periodic and sporadic cases
respectively as follows.

RmP
= max{RmP

(qmP
)},∀ qLmP

≤ qmP
≤ qHmP

(20)

RmS
= max{RmS

(qmS
)},∀ qLmS

≤ qmS
≤ qHmS

(21)

The calculations for worst-case response time of each in-
stance of mmP

and mmS
are adapted from (5) and (15) as

follows.

RmP
(qmP

) = STmP
+ Cm + CTm − (ϕmP

(φi)

+(qmP
− 1).Tm) (22)

RmS
(qmS

) = STmS
+Cm+CTm− (qmS

−1).MUTm (23)

Where ϕmP
(φi) is calculated using (6). The calculations for

STmP
and STmS

are adapted from (7) after some augmen-
tation and adaptation of message copy times and additional
jitter.

STn+1
mP

= B̂m + (qmP
− qLmP

).Cm + (qmP
− qLmP

).CTm

+QPmS
.Cm +

∑
∀Γk∈Γ

WmP
(Γk, φk, ST

n
mP

) (24)

STn+1
mS

= B̂m + (qmS
− qLmS

).Cm + (qmS
− qLmS

).CTm

+QSmP
.Cm +

∑
∀Γk∈Γ

WmS
(Γk, φk, ST

n
mS

) (25)

Where QP
mS
.Cm and QS

mP
.Cm in the above equations repre-

sent the effect of self interference in a mixed message. By
self interference we mean that the periodic copy of a mixed
message can be interfered by the sporadic copy and vice versa.
Since, both mmP and mmS have equal priorities, any instance
of mmS queued ahead of mmP will contribute an extra delay to
the worst-case queueing delay experienced by mmP

. A similar
argument holds in the case of mmS

. We adapt the calculations
for the effect of self interference in a mixed message that
we derived in [26]. It should be noted that the calculations
for self interference differs from [26] in a way that we also
consider a special case when both jitter and offset of a mixed
message are zero. In this case, the previous calculations [26]
result in zero self interference for the zeroth instances of mmP

and mmS
. However, in reality, even if Jm and Om are zero,

the zeroth instance of mmP can be interfered by one instance
of mmS and vice versa. For example, consider mm to be the
highest priority message. Let mmS

(0 ) is queued just after the
queueing of mmP

(0 ). The instance mmP
(0 ) can be blocked

by any lower priority message. However, mmS
(0 ) cannot start

its transmission unless mmP
(0 ) is transmitted. Therefore, we

have to consider this specific case for the calculation of self
interference as given below.

QPmS
=


⌈
qmP

.Tm+Jm+Om+τbit
MUTm

⌉
, if all {qmP ,Jm,Om}= 0⌈

qmP
.Tm+Jm+Om

MUTm

⌉
, otherwise

(26)

QSmP
=


⌈
qmS

.MUTm+Jm+Om+τbit
Tm

⌉
, if all {qmS ,Jm,Om}= 0⌈

qmS
.MUTm+Jm+Om

Tm

⌉
, otherwise

(27)

The calculations for WmP
, qLmP

, qHmP
and LmP

are done
using (8), (10), (11) and (12) by replacing the index m with
mP

respectively. Similarly, WmS
, qLmS

, qHmS
and LmS

are
calculated using (8), (16), (17) and (18) by replacing the index
m with mS respectively. Further, the calculations in (3), (9) and
(13) hold intact with proper replacement of the index variable
for both mmP

and mmS
.

B. Case 2: When message under analysis is free from priority
inversion

In this case, we consider that mm is free from priority
inversion because it belongs to the set of messages that
contains the number of lowest priority messages equal to the
number of transmit buffers in the node CCi . In all three
sub-cases corresponding to the periodic, sporadic and mixed
message under analysis, most of the equations to calculate
response time of mm from Subsections V-A1, V-A2 and V-A3
are applicable respectively. However, the only exception lies
in the calculations for start time and length of priority level-m
busy period in all three sub-cases. Since, the message under
analysis is free from priority inversion, it will not experience
additional blocking delay as shown in (3). On the other hand,
the message under analysis does experience the additional
jitter from higher priority messages. Moreover, copying delay
for every instance of mm in the priority level-m busy period
should also be considered. For this purpose, we replace the
additional blocking delay B̂m by the original blocking delay
Bm in (7), (12), (18), (24) and (25). Bm is defined as the
amount of time equal to the largest transmission time in the
set of lower priority messages and is calculated as follows.

Bm = max
∀mj∈lp(mm)

{Cj} (28)

VI. COMPARATIVE EVALUATION

In this section we compare and evaluate the extended and
existing analyses. The extended analysis is implemented in the
MPS-CAN Analyzer. We generate a set of 50 messages using
the NETCARBENCH tool [33] which is a benchmark used
in the design of automotive embedded systems. Each message
has a unique priority; the highest priority is 1, whereas the
lowest priority is 50. There are 5 ECUs that are connected
to a single CAN network. The speed of the network is set to



250 Kbit/s. It should be pointed out that NETCARBENCH
cannot generate mixed messages. We randomly assign mixed,
periodic, and sporadic transmission types to 40%, 30%, and
30% generated messages respectively. This means, there are
20 mixed, 15 periodic and 15 sporadic messages in the system.
The messages are equally distributed among the ECUs, i.e.,
each ECU sends 4 mixed, 3 periodic and 3 sporadic messages
over the network. The message set is shown in Fig. 5. All
timing values in the table are expressed in milliseconds. If an
ECU implements abortable transmit buffers, we assume the
copy times for messages are equal to 4∗τbit time.

We perform four different sets of experiments on the gener-
ated message set. In the first, all the ECUs implement abortable
transmit buffers in the CAN controllers. We analyze the mes-
sage set using the extended analysis. The calculated response
times are depicted in the table in Fig. 5. By comparing the
response times with corresponding deadlines, it can be seen
that the message set is schedulable. The network utilization
for this message set calculated by the analysis is 50.460953%.
The response times are also shown in the bar graph in Fig.
6 identified as R{abort,offsets}. In the second experiment, the
ECUs are assumed to implement very large (but finite) number
of transmit buffers in the CAN controllers such that there
is no need to abort transmissions. In this case the same
message set is analyzed using the existing offset-based analysis
for CAN that does not take into account abortable transmit
buffers [26]. The calculated response times are identified as
R{noabort,offsets} in Fig. 6. The response times of all messages
are smaller in this case compared to the first experiment. This
shows that if practical limitations in the CAN controllers such
as abortable transmit buffers are not considered in RTA, the
calculated response times can be optimistic.

In the remaining two experiments, the first two experiments
are repeated on the same message set with an exception that
offsets of all messages are assumed to be zero. The purpose
is to show the benefit of scheduling messages with offsets. By
comparing the first and third bar or second and fourth bar in
each set of four bars in Fig. 6, we see that the response times
of messages (especially lower priority) can be significantly
reduced if messages are scheduled with offsets. It is interesting
to note in all four experiments that the response time of
message with priority 45 is significantly higher compared to
the rest of the messages in the system. This is because the
jitter of this message is higher than its minimum update time.
Jitter of messages are often very high in gateway nodes [21].
The analysis results indicate that the the extended analysis also
supports gateway nodes in CAN.

VII. CONCLUSION

The existing response-time analysis for CAN has limitations
such that it does not support mixed messages that are sched-
uled with offsets in the systems where the CAN controllers
implement abortable transmit buffers. Mixed messages are
partly periodic and partly sporadic; and are implemented by
several higher-level protocols for CAN that are used in the
automotive industry today. We extended the existing analysis

which is now applicable to any higher-level protocol for
CAN that uses periodic, sporadic, and mixed transmission
of messages that (only periodic and mixed messages) may
be scheduled with offsets in the systems where the CAN
controllers implement abortable transmit buffers. The extended
analysis is also applicable to gateway nodes where jitter and
deadlines of messages can be higher than their periods. We
implemented the extended analysis in a free tool. Using the
tool, we performed comparative evaluation of the analysis with
the existing analyses. The results indicate that if practical
limitations such as mixed messages and abortable transmit
buffers in the CAN controllers are not considered in the
analysis then the calculated response times can be optimistic.
In the future, we plan to introduce the extended analysis for
the industrial use by implementing it in an existing industrial
tool suite Rubus-ICE. We also plan to develop an optimized
offset assignment method for the systems that contain periodic
as well as mixed messages.

Pm CCm ξm sm Om Jm Tm MUTm Dm Rm Pm CCm ξm sm Om Jm Tm MUTm Dm Rm

1 5 M 8 0 0 25 25 25 1.836 26 2 P 6 3 0 70 0 70 15.16
2 3 S 7 0 0 0 70 70 2.328 27 5 M 2 7 1 60 60 60 18.92
3 1 S 8 0 1 0 70 70 2.876 28 4 P 1 5 0 80 0 80 13.98
4 5 M 8 2 0 70 70 70 3.956 29 3 M 6 5 0 70 70 70 19.94
5 4 P 7 0 0 70 0 70 4.448 30 1 P 1 5 0 70 0 70 15.16
6 1 S 6 0 0 0 70 70 4.9 31 2 M 7 4 1 70 70 70 21.708
7 3 M 7 0 1 70 70 70 6.408 32 1 S 8 0 0 0 70 70 21.756
8 3 P 8 2 0 70 0 70 4.456 33 2 S 8 0 0 0 70 70 22.296
9 5 S 5 0 0 0 60 60 6.852 34 2 P 8 5 2 80 0 80 17.836
10 5 P 8 3 0 60 0 60 4.416 35 2 P 5 5 0 60 0 60 18.124
11 4 S 8 0 0 0 60 60 7.956 36 4 S 8 0 1 0 70 70 23.796
12 4 M 0 1 0 70 70 70 8.332 37 1 P 5 6 1 70 0 70 18.192
13 1 M 6 2 0 60 60 60 9.3 38 4 P 1 6 1 80 0 80 18.312
14 3 P 8 3 0 50 0 50 6.856 39 3 P 8 7 1 80 0 80 17.908
15 5 M 8 4 0 70 70 70 10.936 40 4 M 0 7 1 70 70 70 26.584
16 4 M 5 4 0 50 50 50 11.752 41 2 M 1 7 1 70 70 70 27.152
17 2 S 8 0 1 0 80 80 12.316 42 1 P 1 6 0 70 0 70 21.152
18 2 M 8 1 0 70 70 70 13.396 43 4 S 8 0 2 0 80 80 27.748
19 5 P 8 4 0 70 0 70 9.936 44 5 S 8 0 2 0 70 70 28.288
20 5 P 7 5 1 70 0 70 9.428 45 5 S 8 0 22 0 20 80 48.828
21 4 M 8 3 0 70 70 70 15.516 46 3 M 2 8 1 80 80 80 30.76
22 1 M 0 4 1 60 60 60 16.112 47 3 S 4 0 2 0 70 70 30.856
23 2 S 0 0 1 0 70 70 16.112 48 1 M 8 7 2 70 70 70 32.508
24 3 S 6 0 0 0 70 70 16.62 49 1 M 8 8 1 70 70 70 33.588
25 3 M 8 5 1 70 70 70 18.256 50 2 M 7 8 1 70 70 70 34.5

Fig. 5. Attributes and calculated response times of the messages

ACKNOWLEDGEMENT
This work is supported by the Swedish Research Council

(VR) within the project SynthSoft. The authors thank the
industrial partners Arcticus Systems, BAE Systems Hägglunds
and Volvo CE, Sweden.

REFERENCES

[1] Robert Bosch GmbH, “CAN Specification Version 2.0,” postfach 30 02
40, D-70442 Stuttgart, 1991.

[2] “Automotive networks. CAN in Automation (CiA),” http://www.can-
cia.org/index.php?id=416.

[3] ISO 11898-1, “Road Vehicles interchange of digital information
controller area network (CAN) for high-speed communication, ISO
Standard-11898, Nov. 1993.”

[4] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
“Applying new scheduling theory to static priority pre-emptive schedul-
ing,” Software Engineering Journal, vol. 8, no. 5, pp. 284–292, 1993.

[5] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Fixed
priority pre-emptive scheduling: an historic perspective,” Real-Time
Systems, vol. 8, no. 2/3, pp. 173–198, 1995.



Fig. 6. Comparison of message response times calculated form the extended and existing analyses

[6] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[7] K. Tindell, H. Hansson, and A. Wellings, “Analysing real-time com-
munications: controller area network (CAN),” in Real-Time Systems
Symposium (RTSS) 1994, pp. 259 –263.

[8] “Volcano Network Architect (VNA). Mentor Graphics,” http://www.
mentor.com/products/vnd/communication-management/vna.

[9] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised,” Real-
Time Systems, vol. 35, pp. 239–272, 2007.

[10] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” Computer Science and Information
Systems, ISSN: 1361-1384, vol. 10, no. 1, 2013.

[11] R. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Schedulability
analysis for controller area network (can) with fifo queues priority
queues and gateways,” Real-Time Systems, vol. 49, no. 1, 2013.

[12] O. Pfeiffer, A. Ayre, and C. Keydel, Embedded Networking with CAN
and CANopen. Annabooks, 2003.

[13] Marco Di Natale and Haibo Zeng, “Practical issues with the timing
analysis of the Controller Area Network,” in 18th IEEE Conference on
Emerging Technologies and Factory Automation (ETFA), Sep. 2013.

[14] D. Khan, R. Bril, and N. Navet, “Integrating hardware limitations in can
schedulability analysis,” in 8th IEEE International Workshop on Factory
Communication Systems (WFCS), may 2010, pp. 207 –210.

[15] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Controller Area
Network (CAN) Schedulability Analysis with FIFO queues,” in 23rd
Euromicro Conference on Real-Time Systems, July 2011.

[16] R. Davis and N. Navet, “Controller Area Network (CAN) Schedulability
Analysis for Messages with Arbitrary Deadlines in FIFO and Work-
Conserving Queues,” in 9th IEEE International Workshop on Factory
Communication Systems (WFCS), may 2012, pp. 33 –42.

[17] A. Szakaly, “Response Time Analysis with Offsets for CAN,” Master’s
thesis, Department of Computer Engineering, Chalmers University of
Technology, Nov. 2003.

[18] Y. Chen, R. Kurachi, H. Takada, and G. Zeng, “Schedulability com-
parison for can message with offset: Priority queue versus fifo queue,”
in 19th International Conference on Real-Time and Network Systems
(RTNS), Sep. 2011, pp. 181–192.

[19] L. Du and G. Xu, “Worst case response time analysis for can messages
with offsets,” in IEEE International Conference on Vehicular Electronics
and Safety (ICVES), nov. 2009, pp. 41 –45.

[20] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,

“System level performance analysis - the symta/s approach,” Computers
and Digital Techniques, vol. 152, no. 2, pp. 148–166, March 2005.

[21] P. Yomsi, D. Bertrand, N. Navet, and R. Davis, “Controller Area
Network (CAN): Response Time Analysis with Offsets,” in 9th IEEE
International Workshop on Factory Communication Systems, May 2012.

[22] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extending schedulability
analysis of controller area network (CAN) for mixed (periodic/sporadic)
messages,” in 16th IEEE Conference on Emerging Technologies and
Factory Automation (ETFA), sept. 2011.

[23] S. Mubeen, J. Mäki-Turja and M. Sjödin, “Response-Time Analysis
of Mixed Messages in Controller Area Network with Priority- and
FIFO-Queued Nodes,” in 9th IEEE International Workshop on Factory
Communication Systems (WFCS), May 2012.

[24] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Response Time Analysis for
Mixed Messages in CAN Supporting Transmission Abort Requests,”
in 7th IEEE International Symposium on Industrial Embedded Systems
(SIES), June 2012.

[25] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Worst-case response-time
analysis for mixed messages with offsets in controller area network,” in
17th IEEE Conference on Emerging Technologies and Factory Automa-
tion (ETFA), sept. 2012.

[26] S. Mubeen, J. Mäki-Turja and M. Sjödin, “Extending Offset-Based
Response-Time Analysis for Mixed Messages in Controller Area Net-
work,” in 18th IEEE Conference on Emerging Technologies and Factory
Automation, sept. 2013.

[27] S. Mubeen, J. Mäki-Turja and M. Sjödin. Many-in-one Response-Time
Analyzer for Controller Area Network. In WATERS workshop, 2013.

[28] CANopen Application Layer and Communication Profile. CiA Draft
Standard 301. Ver.4.02. Feb., 2002.

[29] “AUTOSAR Techincal Overview, Release 4.1, Rev. 2, Ver. 1.1.0., The
AUTOSAR Consortium, Oct., 2013,” http://autosar.org.

[30] “Hägglunds Controller Area Network (HCAN), Network Implementa-
tion Specification,” BAE Systems Hägglunds, Sweden (internal docu-
ment), April 2009.

[31] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Integrating mixed transmis-
sion and practical limitations with the worst-case response-time analysis
for Controller Area Network,” Journal of Systems and Software, 2014.

[32] J. Palencia and M. G. Harbour, “Schedulability Analysis for Tasks with
Static and Dynamic Offsets,” Real-Time Systems Symposium, 1998.

[33] C. Braun, L. Havet, and N. Navet, “Netcarbench: A benchmark for
techniques and tools used in the design of automotive communication
systems,” in 7th IFAC International Conference on Fieldbuses & Net-
works in Industrial & Embedded Systems, Nov. 2007.


