
Reassessing the Pattern-Based Approach for
Formalizing Requirements in

the Automotive Domain
Predrag Filipovikj

Mälardalen University
Västerås, Sweden

predrag.filipovikj@mdh.se

Mattias Nyberg
Scania

Södertälje, Sweden
mattias.nyberg@scania.com

Guillermo Rodriguez-Navas
Mälardalen University

Västerås, Sweden
guillermo.rodriguez-navas@mdh.se

Abstract—The importance of using formal methods and tech-
niques for verification of requirements in the automotive industry
has been greatly emphasized with the introduction of the new
ISO26262 standard for road vehicles functional safety. The lack
of support for formal modeling of requirements still represents an
obstacle for the adoption of the formal methods in industry. This
paper presents a case study that has been conducted in order to
evaluate the difficulties inherent to the process of transforming
the system requirements from their traditional written form
into semi-formal notation. The case study focuses on a set of
non-structured functional requirements for the Electrical and
Electronic (E/E) systems inside heavy road vehicles, written in
natural language, and reassesses the applicability of the extended
Specification Pattern System (SPS) represented in a restricted En-
glish grammar. Correlating this experience with former studies,
we observe that, as previously claimed, the concept of patterns
is likely to be generally applicable for the automotive domain.
Additionally, we have identified some potential difficulties in the
transformation process, which were not reported by the previous
studies and will be used as a basis for further research.

I. INTRODUCTION

New and emerging technologies are being incorporated
into vehicles, leading to a significant increase of the number
and complexity of the implemented functions. Currently, in
industrial settings, manual inspection (peer review) is the most
widespread technique for checking the correctness of the sys-
tems’ specification [13]. Performing these reviews manually
is becoming more difficult as the complexity of the specifica-
tions increase. Additionally, the fact that the reviewing peers
may be different stakeholders, with different backgrounds and
interests, and even working at different companies makes it
more difficult to guarantee that the specification was properly
understood and validated [6].

In these conditions, it is clear that having tool support
for computer-assisted verification of the specifications would
speed up the process and be beneficial. The new ISO26262
standard for functional safety of the road vehicles acknowl-
edges this, by advocating the application of formal verification
techniques at each level of system abstraction [8].

One of the main problems in order to introduce formal
verification techniques in industry is the lack of formal
specifications of the systems. The common practice in the

automotive industry nowadays is to specify system require-
ments in natural language, typically using a general purpose
text editor. Requirements written like this are ambiguous,
cannot be easily processed by computers and provide limited
traceability; they are also most likely to be incomplete and/or
inconsistent. The most desirable situation would be to have
requirements expressed in some kind of logics, for instance
with temporal logics such as LTL [5], CTL [5] or TCTL [1].
Requirements expressed as such can be subject to different
forms of automated analysis, like consistency checks and
others.

It is not realistic to believe that automotive engineers will
be able to easily express system requirements using formal
notations. First of all, automotive engineers are in general very
knowledgeable about disciplines like mechanics, hydraulics,
electronics, mechatronics, etc., but they are not so skilled in
computer science and discrete mathematics. Teaching every
engineer how to specify properties with temporal logics would
require a great amount of time, and would be too costly to
be feasible. Furthermore, it is not only the engineers who
need to understand the requirements. Other stakeholders at
different levels of the organization, e.g. customer service
or maintenance service, must process the requirements and
validate them according to their specific needs [4].

Several researchers believe that this gap can be filled with
the help of software tools that will assist the engineers in
the process of automated transformation of requirements from
natural language into temporal logics [2] [9] [11]. This process
is often called formalization of requirements. There exist some
interesting tools on the market providing this functionality [7],
but they are not widely accepted. More research is still
needed for understanding how the automated formalization
of requirements will fit into the development process of an
organization.

This paper presents a preliminary study that has been con-
ducted in order to gain further understanding of the benefits,
limitations and challenges encountered when formalizing re-
quirements in a realistic setup. This study has been performed
in collaboration with Scania, one of the leading Swedish
truck manufacturers. The goal of the case study is to take a

978-1-4799-3033-3/14 c© 2014 IEEE RE 2014, Karlskrona, Sweden

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

444

small subset of non-structured functional requirements from
the E/E systems written in natural language and formalize
them using the approach known as Real Time Specification
Patterns, developed by Konrad and Cheng [10]. These patterns
are based on the set of Specification Pattern System (SPS),
initially defined by Dwyer et al. [3], but are enriched with
patterns that can capture the timing aspect in the requirements.
The work by Konrad and Cheng also proposed a system of
restricted English grammar, through which the requirements
can be expressed in specification patterns more naturally from
a linguistic point of view. These patterns have been applied
at least in one case study in the automotive domain [12].
A significant advantage of this approach is that each pattern
maps into temporal logics, which makes the transition from the
restricted English into formal notation automated. This paper
summarizes the knowledge gained from this case study, with
special emphasis on the challenges faced during the process,
and reports future directions for research.

II. DESCRIPTION AND SETUP OF THE CASE STUDY

As already indicated, Post et al. successfully applied Real
Time Specification Patterns in a case study within the automo-
tive domain [12]. Our case study is inspired by that experience
but also presents some differences. It is similar in the sense
that a set of industrial non-structured requirements will be
taken and converted into patterns; we will call this process
patterning of the requirements. But it differs in the way the
requirements are gathered and filtered before the patterning
happens.

A. Real Time Specification Patterns

In our case study we use the Real Time Specification Pattern
System (RTSP) as defined by Konrad and Cheng [10]. This set
of patterns has been chosen because it provides a quantitative
notion of time, which is needed for formalization of the real-
time requirements. Table I shows these patterns together with
their representation in restricted English grammar; the list
contains 17 specification patterns. All these patterns share
the characteristics of being non-recursive and prone to an
automated transformation into temporal logics such as LTL,
CTL and TCTL. One should notice that there is no direct
mapping of each pattern from the RTSP into every temporal
logics, as there can be patterns with semantics that cannot
be expressed in some of the previously mentioned formal
notations.

Each pattern is constituted by literal and non-literal termi-
nals. The non-literal terminals can be either boolean expres-
sions describing system properties, or integer values capturing
timing aspects. The remaining parts of the pattern are the
literal terminals, which cannot be changed. For example in
the Precedence pattern given as: “it is always the case that if
P holds, then S previously held”, P and S represent non-literal
terminals and the remaining of the pattern are literal terminals.
For each pattern an extent of program execution for which the
requirement holds must be defined. As defined by Dwyer et al.
[3], there are five scopes of program execution: Globally (the

Globally

Before Q

After Q

Between Q and R

Q RQ QR

After Q until R

State sequence

Fig. 1: Pattern scopes [12].

entire program execution), Before Q (until the first occurrence
of the state/event Q), After Q (after the occurrence of the
state/event Q), Between Q and R (any part of the program
execution between the two states/events Q and R) and After
Q until R (similar behavior as Between scope except that
the execution continues even if the second state/event never
occurs). The graphical representation of the scopes is given in
Figure 1.

B. Requirements Gathering

In order to collect the requirements for the study, some
engineers from Scania were contacted and asked to send
requirements documents exemplifying their usual work. In
response, we received four documents with a number of non-
structured functional requirements written in natural language.
Three of the documents were written as MS Word documents,
and the other one was written in DOORS. In total, one hundred
requirements were gathered. Although this number is small
compared to the total number of requirements of a system, the
gathered data was representative enough for the first evaluation
of the patterning process.

Regarding the contents, one of the documents included
requirements relative to user functions, or UFR in Scania
terminology, whereas the other three contained requirements
describing the behavior at the sub-system level, known as Al-
location Element Requirements (AER) in Scania terminology.

After this gathering, the chosen requirements were extracted
from the documents and stored in a data sheet, disposing any
other information. This guarantees that only the statements
marked as requirements are assessed, and not context informa-
tion or other meta-data related to them. This gives an indirect
measure of the quality of the requirement with respect to
automated transformation: if a requirement cannot be patterned
without knowing other information appearing in the document,
it will most likely not be prone to an automated formalization.

A difference with respect to the previous case study is
that the requirements were extracted from the documents by
the researchers (not by the engineers) as they were provided,

445

TABLE I: Restricted English grammar patterns [10].

Start property scope , specification .

Scope scope Globally | Before R | After Q | Between Q and R | After Q until R

General specification qualitativeType | realtimeType

Qualitative

qualitativeType occurrenceCategory | orderCategory
occurrenceCategory absencePattern | universalityPattern | existencePattern | boundedExistencePattern
absencePattern it is never the case that P holds
universalityPattern it is always the case that P holds
existencePattern P eventually holds
boundedExistencePattern transitions to states in which P holds occur at most twice
orderCategory it is always the case that if P holds (precedencePattern | precedenceChainPattern1-

2 | precedenceChainPattern2-1 | responsePattern | responseChainPattern1-2 | responseChainPattern2-
1 | constrainedChainPattern1-2)

precedencePattern , then S previously held
precedenceChainPattern1-2 and is succeeded by S , then T previously held
precedenceChainPattern2-1 , then S previously held and was preceded by T
responsePattern , then S eventually holds
responseChainPattern1-2 , then S eventually holds and is succeeded by T
responseChainPattern2-1 and is succeeded by S , then T eventually holds after S
constrainedChainPattern1-2 , then S eventually holds and is succeeded by T , where Z does not hold between S and T

Real-time

realtimeType it is always the case that (durationCategory | periodicCategory | realtimeOrderCategory)
durationCategory once P becomes satisfied, it holds for (minDurationPattern | maxDurationPattern)
minDurationPattern at least c time unit(s)
maxDurationPattern less than c time unit(s)
periodicCategory P holds boundedRecurrencePattern
boundedRecurrencePattern at least every c time unit(s)
realtimeOrderCategory if P holds, then S holds (boundedResponsePattern | boundedInvariancePattern)
boundedResponsePattern after at most c time unit(s)
boundedInvariancePattern for at least c time unit(s)

specifically without any filtering or preprocessing. In contrast,
Post et al. [12] only considered behavioral requirements,
and were preprocessed before the formalization. We proceed
differently, because our goal is to investigate to what extent
the considered specification patterns can help the verification
effort. Since engineers have to verify all kinds of requirements,
behavioral and non behavioral, and their starting point is
typically the existing documentation, we preferred to stay as
close as possible to those conditions.

C. Requirements Patterning

The patterning of the requirements was performed sequen-
tially, one by one, by accessing only the information available
in the data sheet. It was preceded by a phase in which the
researchers studied the specification patterns and prepared a
list containing all the patterns described in [12], which would
be consulted during the process. None of the researchers
involved in the process had previous experience with the
specification patterns.

The patterning process consisted in the following tasks: i)
identifying which pattern should be applied to the requirement
and after that, ii) writing the requirement in restricted English
grammar according to the chosen pattern. Since the goal of
the exercise was to assess the expressiveness and adequacy of
the patterns, there was no need to proceed further and obtain

the expressions in temporal logics. For the purpose of our
research, we claim that a requirement is formalizable if there
is a pattern that captures its semantics.

In some occasions, the level of ambiguity of a requirement
would make it difficult to discriminate between possibly
applicable patterns. In such cases, we contacted the respon-
sible engineer and discussed the meaning of that particular
requirement. This was needed for instance for determining the
scope of validity of a requirement or for understanding the
exact order of events. These requirements are still considered
formalizable.

Some requirements could not be expressed through patterns
for the reasons that will be described in Section III. Such
requirements are said to be non-formalizable.

III. ANALYSIS OF THE RESULTS

In this section we present details about the results achieved
after the patterning process.

A. Pattern Expressiveness

The results from the formalization process are presented in
Figure 2. Around 70% of the requirements could be formalized
with patterns; among the remaining 30% of requirements non-
formalizable with patterns, there is an important group, called
phenomenon requirements, which can still be formalized by

446

other means, as it will be described later on in this section.
Therefore, the proportion of non-formalizable patterns is 6%.

Phenomenon Requirements: The term phenomenon re-
quirement was coined by Post et al. to refer to a requirement
that does not express system behavior, but gives information
about data or the system configuration. These requirements
cannot be mapped into a pattern, but can be expressed by
means of non-literal terminals [12]. An example of Scania
phenomenon requirement is:

“The signal totalFuelLevel shall receive its value from
externalTotalFuelLevelIn.”

Some of the difficulties encountered in the patterning pro-
cess of the phenomenon requirements is that often the scope
of execution is not clearly defined. Another issue with these
requirements is that sometimes they do not explicitly include
sufficient data to be patterned. Let us take, for example, the
requirement below, which appeared in one of the requirement
documents. Note that this requirement is in fact composed by
three requirements of different type, which can be extracted
and considered as separate entities.

“Signal lowFuelLevelWarning shall be set to Active when
input totalFuelLevel is below a predefined level. This level
shall be 10% for tank size equal to or below 900 liters
and 7% for tank sizes larger than 900 liters. The tank
size is determined by the parameters fuelTankSizeLeft and
fuelTankSizeRight.”

The statement above decomposes in the following require-
ments:

1) “Signal lowFuelLevelWarning shall be set to Active
when input totalFuelLevel is below a predefined level.”

2) “This level shall be 10% for tank size equal to or below
900 liters and 7% for tank sizes larger than 900 liters.”

3) “The tank size is determined by the parameters
fuelTankSizeLeft and fuelTankSizeRight.”

Only the first statement is a behavioral requirement, since
it captures the behavior of the system after the lowFuelLevel-
Warning signal reaches some threshold (indicated as the
predefined level). The second requirement is a phenomenon
requirement used in addition to the previous requirement in
order to accurately define what predefined level means. There
is no pattern to represent this requirement, but it can be
formalized using non-literal statements.

The third requirement is also a phenomenon requirement,
but it cannot be formalized. It simply indicates that there
is a relationship between the tank size and the parameters
fuelTankSizeLeft and fuelTankSizeRight, but the exact rela-
tionship is not given. It is not possible to formalize such
requirement, unless the missing relationship is defined with
assistance from the engineers. Interestingly, when asked about
the missing information in the requirement, the engineer
answered that this information was omitted because it was
considered trivial. It is well known that the existence of this
“domain knowledge” introduces ambiguity and represents a

Formalized	
70%	

Non	 Formalized	
6%	

Phenomenon	
24%	

Fig. 2: Formalization results.

challenge for the specification of requirements in general. For
the case of formalization of requirements, there is a need to
convert this domain knowledge into formal expressions, which
is also challenging.

Formalized Requirements: The second group of require-
ments includes the requirements that were successfully ex-
pressed with patterns. These requirements can be further
divided into two big categories:

1) Requirements formalized without help of the engineers.
2) Requirements formalized with the help of the engineers.
The requirements falling into the first category typically

looked like the following:
1) “If lowFuelLevelWarningParam = 0, output lowFu-

elLevelWarning shall be set to Take No Action.”
2) “When DTC sensorShortToGround or sensorShortTo-

Battery is set, the status of input signal fuelLevelSensor
shall be set to Error”

3) “The CMS shall send a valid value in totalFuelLevel
within 2 seconds from when the ECU starts.”

In these examples, the behavior is clearly stated and the
scope of the program execution can be identified, so the
corresponding pattern can be found without requiring further
assistance. We expressed the first two requirements with a
Response pattern, and the third one with a Bounded Response
pattern:

1) “Globally, it is always the case that if (lowFuelLevel-
WarningParam = 0) holds, then (lowFuelLevelWarning
= ’Take No Action’) eventually holds.”

2) “Globally, it is always the case that if (DTC sensor-
ShortToGround or sensor ShortToBattery is set) holds,
then (fuelLevelSensor = Error) eventually holds.”

3) “Globally, it is always the case that if (ECU was started)
holds, then (CMS sent valid signal to totalFuelLevel)
holds after at most 2 seconds.”

However, some of the requirements that could be formalized
without engineers’ assistance raised an interesting concern.
It may happen that different patterns express semantics that
are not easily distinguishable by a non-expert. This, com-
bined with the inherent ambiguity of the natural language in

447

which the requirements are written, may result in a wrong
selection of a pattern; where wrong means “not conveying the
intention of the person writing the requirement”. Such cases
of incorrect disambiguation of requirements are particularly
interesting because they may yield the results of the associated
verification activities useless. As part of a larger process, the
pattern selection should be validated by other means. However,
analyzing the problem of validating the correctness of the
pattern selection is out of the scope of this paper, and should be
addressed only in a larger empirical case study with engineers
taking part in the patterning process actively. In this work, a
requirement is considered formalizable if there is at least one
pattern that expresses the meaning of the requirement correctly
as perceived by the researchers. For instance, let us consider
the following requirement:

“When parkingBrakeApplied has status ’Error’ or ’Not
Available’ the replacement value ’Not Set’ shall be used”

To the best of our knowledge, the semantics of the above
requirement can be expressed with either Response pattern
with Global scope or with an Universality pattern with
restricted scope After Q. For clarification, we present the
requirement expressed through both patterns, followed by their
corresponding TCTL representation:

• “Globally, it is always the case that if (parkingBrakeAp-
plied = ’Error’ or parkingBrakeApplied = ’Not Avail-
able’) holds, then (parkingBrakeApplied = ’Not Set’)
eventually holds.”
AG[((parkingBrakeApplied = ’Error’) OR
(parkingBrakeApplied = ’Not Available’)) →
AF(parkingBrakeApplied = ’Not Set’)]

• “After ((parkingBrakeApplied = ’Error’) or (parking-
BrakeApplied = ’Not Available’)), it is always the case
that (parkingBrakeApplied = ’Not Set’) holds.”
AG[((parkingBrakeApplied = ’Error’)
OR (parkingBrakeApplied = ’Not Available’))
→ AG(parkingBrakeApplied = ’Not Set’)]

With the information given in the requirement alone, it
is difficult to determine which of the patterns expresses the
correct behavior to the full extend. The problem is that both
patterns capture behaviors that are similar, but not equivalent,
for instance because they are within different scopes. Potential
causes of these problems are: the ambiguity of the requirement
and the apparent overlapping between different patterns. The
implications of choosing one pattern over the other are only
evident in the following stages of the verification process,
which are not considered in this case study.

Regarding the requirements for which assistance from the
engineers was required, the most common difficulties were
determining the scope of execution and understanding the un-
derlying meaning. According to the Dwyer et al. [3], there are
five possible execution contexts for the patterns. Interestingly,
none of them captures the moment of entering a particular state

or executing a specific event. For example, let us consider the
following requirement:

“Output signal lowFuelLevelWarning shall have the initial
value ’Not Active’ at start-up.”

This requirement imposes that the lowFuelLevelWarning sig-
nal shall receive some value when the system is “in” some
specific state (start-up). None of the scopes captures the
moment when the system is in a particular state but only Before
and After, so we had to consult with the engineer in order to
reformulate the requirement and expressed it with one of the
defined scopes. For this particular requirement the After Q
scope was applied.

Another problem identified was that sometimes concepts
from different level of abstractions were used, without spec-
ifying the meaning of the high level concepts. This problem
may be related to the absence of phenomenon requirements
that complement the semantics of the requirement, but it needs
further investigation. For example, the following requirement
is apparently well specified, but contains ambiguity:

“At the shut down, the last value of the totalFuelLevel shall
be stored until next start-up.”

In this requirement, concepts from different levels of ab-
straction are present: the shut-down and start-up states/events
belong to a higher abstraction level and are not properly
specified, so their meaning is ambiguous. More importantly,
it is not clear what “the last value” in this context is, and
how and where it should be stored. For such requirements
patterning is impossible unless an engineer disambiguate them.

Non Formalized Requirements: The third type of require-
ments are the non formalized requirements. According to our
experience, high complexity, high level of ambiguity and lack
of information are the main reasons impeding the patterning
of such requirements. We present one representative from this
group:

“Signal totalFuelLevel shall be output of a filter that includes
information from both FLS vol and fuelRate to achieve a

stable signal. The filter shall be implemented with a Kalman
algorithm given by equations (2-4) with a feedback gain K.”

In this requirement, the relationship between the input and
the output parameters has been defined with an analytical
expression that is not present in the text. There is no approach
that deals with transformation of analytical expressions into
logic, so that the relationship between the input and the output
parameters in this requirement cannot be formalized. For this
reason, the requirement was classified as not formalizable.

B. Pattern Frequency

The distribution of the patterns used for formalizing the
requirements in this case study is given in Figure 3. Note that
the distribution includes only the requirements formalized with
patterns, and not the phenomenon requirements. From a total
of seventeen patterns presented by Konrad and Cheng [10],
seven were used in this case study. The distribution of the

448

25	

16	

11	
8	 7	

2	 1	
0	

5	

10	

15	

20	

25	

30	

Pre
ce
de
nc
e	

Un
ive
rsa
lity
	

Re
sp
on
se	

Pre
ce
de
nc
e	 c
ha
in	
2-‐1
	

Bo
un
de
d	 i
nv
ari
an
ce
	

Ex
ist
en
ce
	

Bo
un
de
d	 r
esp
on
se	

Fig. 3: Pattern frequency.

patterns is coherent with Post et al. [12] case study; this is
an indication that a small number of patterns are enough to
express the majority of the requirements in the automotive
domain. The pattern most frequently used is Precedence fol-
lowed by Universality. It is interesting is that the Precedence
chain 2-1 pattern was used in our case study, but not in Post
et al’s.

Another interesting difference between our results and the
ones presented in the previous case study is the ratio between
the Precedence and the Response patterns. In our case, most of
the properties are expressed by using the Precedence pattern,
whereas Post et al’s case study uses Response pattern more
often. These two patterns are very similar but not equivalent.
This is due to the fact that the Response allows effects to
occur without causes, while the Precedence allows causes to
occur without effect. A number of factors can influence the
application of both types of patterns, and we believe that the
ambiguity of the requirements as well as the understanding
of the underlying industrial systems are the most common
ones. Our hypothesis is that within the verification phase, it
will be possible to understand which one conveys better the
requirement as originally intended by the engineer.

IV. REFLECTION ON THE EXPERIENCE

According to our observations and expectations, the pat-
terning process resulted into a number of benefits. One is
an apparent reduction of ambiguity, due to the fact that the
patterns tend to capture the “domain knowledge” information,
which is usually omitted in the requirements expressed in
natural language. Additionally, in our conversations with the
engineers, the patterns provided a useful support for discussing
about the meaning of certain requirements. This is expected to
impact positively on the communication between stakeholders,
and also to improve testability of requirements.

The case study was completely focused on testing the
expressiveness of the specification patterns on a functional re-
quirements from the electrical and electronic systems installed
in trucks. Driven by this specific goal, we did not take any
precise measures about the effectiveness of the approach repre-
sented as patterning time per requirement. However, according
to our observations, the patterning process was conducted in a

reasonable time frame, thus making it applicable in industrial
settings.

The case study also revealed certain limitations of the
approach. Using patterns based on restricted English gram-
mar eliminates the need to use mathematical expressions for
formalizing the requirements, but the process still requires a
significant effort. We observed that as the patterning process
advanced, the researchers involved in the experiment became
more proficient in using the patterns and also on the under-
standing of the requirements, which resulted in reducing the
patterning time per requirement. But finding ways of softening
this learning curve is desirable.

The main challenge of the patterning process is understand-
ing the meaning of the patterns and the scopes of execution
over which the patterns hold. Post et al. [12] reported similar
problems with respect to choosing the scope. Their experiment
showed that the engineers favor the Global scope because
of its simplicity. According to them, this happens because
the Global scope captures the entire program execution, and
thus it is easier to grasp. Our case study, however, showed
the opposite tendency. The researchers tend to understand the
patterns better and have an inclination to use as much of
the defined patterns and scopes as possible. Therefore, even
though the extensive use of the Global scope of execution
can be accepted in most of the cases, finding more precise
definition of the scope became a priority.

Although we believe that using restricted scopes is desir-
able, the implications of the effect from this decision is only
visible in the next phases of the verification process. It remains
as an open problem that will need further investigation.

V. CONCLUSION

This paper has discussed a case study intended to assess
the suitability of using the specification patterns [10] for
formalizing E/E requirements in the automotive domain. The
goal was to evaluate whether such patterns provide enough
expressiveness and are, at the same time, easy to apply.
Even though the case study was only a preliminary study of
the problem, with some inherent limitations in size, a few
interesting conclusions have been drawn.

The results of applying specification patterns to our set of
requirements can be considered satisfactory. Among the total
set of requirements collected initially, 70% were formalized
with patterns. Considering only the behavioral requirements,
92% of them were formalized. According to our observa-
tions, the patterning process reduced the ambiguity of the
requirements and showed promising potential as a support to
communication.

Our experience indicates that the patterns in their current
form (a theoretical framework) are difficult to introduce in
the industrial process. The patterns must be accompanied
with support material, such as graphical representations and
examples, which will make them more comprehensible for the
engineers. Specifically, both the identification of patterns and
the selection of scope of execution can be difficult sometimes,
and may lead to wrong patterning; some extra information

449

is needed to avoid this problem. In addition, providing user-
friendly tool support will certainly favor industrial acceptance
of the methodology and is most desired.

As a conclusion, the preliminary results showed that there
is a strong need for conducting a more extensive case study
including more engineers from different departments and more
Scania E/E systems. To further increase the relevance of
the results, we are also working towards including other
companies from the automotive domain into the case study. In
the new setup we expect to gain deeper understanding about
the patterning process of the requirements, with a particular
emphasis on identifying the engineers’ needs. This data will
be used for providing a tool to adequately support the process
with a high level of correctness. However, even with an ap-
propriate tool support, wrong interpretations may still happen
in this initial phase, and the causes should be identified and
investigated. When possible, these cases should be correlated
to the engineers’ background. The future case study will focus
on accurately measuring the time required for patterning the
requirements, in order to be able to draw statistical data such
as formalization time per requirement. Additional effort is also
needed for identifying the right metrics to study the quality
of the requirements achieved through formalization as well as
measuring (qualitatively) the engineers’ perception about the
benefits achieved through such formalization.

ACKNOWLEDGMENT

This work was funded by the Swedish Governmental
Agency for Innovation Systems (VINNOVA) under project
2013-01299.

REFERENCES

[1] R. Alur. Techniques for automatic verification of real-time systems. PhD
thesis, Stanford University, Stanford. 1992.

[2] R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke. User guidance for
creating precise and accessible property specifications. In Proc. of ACM
SIGSOFT Found. on Soft. Eng. (FSE). 2006. pp. 208-218.

[3] M. B. Dwyer, G. S. Avrunin, J. C. Corbett. Patterns in property specifica-
tions for finite-state verification. In Proceedings of the 21st international
conference on Software engineering (ICSE ’99). ACM, New York, NY,
USA. 1999. pp.411–420.

[4] M. Elizabeth, C. Hull, K. Jackson, J. Dick. Requirements Engineering,
Third Edition. Springer. 2011.

[5] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science. Amsterdam, Netherlands: Elsevier, 1995. pp. 995–
1072.

[6] N. Heumesser, F. Houdek. Experiences in managing an automotive
requirements engineering process. In: RE, IEEE Computer Society. 2004.
pp. 322–327.

[7] H. J. Holberg, U. Brockmeyer. ISO 26262 compliant verification of
functional requirements in the model-based software development process.
White paper. Embedded World Exhibition and Conference. 2011.

[8] International Organization for Standardization. ISO/DIS 26262-1 - Road
vehicles Functional safety. International Organization for Standardization
/ Technical Committee 22 (ISO/TC 22). Geneva, Switzerland. 2009.

[9] S. Konrad and B. H. Cheng. Facilitating the construction of specification
pattern-based properties. In Proc. of the IEEE Int. Req. Eng. Conf. (RE).
2005. pp. 329-338.

[10] S. Konrad, B. Cheng. Real-time specification patterns. In Proceedings
of 27th International Conference on Software Engineering. 15–21 May
2005. pp. 372–381.

[11] S. P. Overmyer, B. Lavoie, and O. Rambow. Conceptual modeling
through linguistic analysis using LIDA. In Proc. of the IEEE Int. Conf.
on Soft. Eng. (ICSE). 2001. pp. 401-410.

[12] A. Post, I. Menzel, J. Hoenicke, A. Podelski. Automotive behavioral
requirements expressed in a specification pattern system: a case study
at BOSCH. In: Requirements Engineering Journal 17. March 2012. pp.
19–33.

[13] GS. Walia, J.C. Carver. A systematic literature review to identify and
classify software requirement errors. Inf. Softw. Technol. 2009. pp.
51(7):1087-1109.

450

