
Near-Optimal Padding for Removing Conflict
Misses

Xavier Vera1, Josep Llosa2, and Antonio González2

1 Institutionen för Datateknik, Mälardalens Högskola
P.O. BOX 883, Väster̊as, 721 23, Sweden

xavier.vera@mdh.se
2 Computer Architecture Department, Universitat Politècnica de

Catalunya-Barcelona
Jordi Girona 1-3, Barcelona, 08034, Spain

{josepll,antonio}@ac.upc.es

Abstract. The effectiveness of the memory hierarchy is critical for the
performance of current processors. The performance of the memory hi-
erarchy can be improved by means of program transformations such
as padding, which is a code transformation targeted to reduce conflict
misses. This paper presents a novel approach to perform near-optimal
padding for multi-level caches. It analyzes programs, detecting conflict
misses by means of the Cache Miss Equations. A genetic algorithm is
used to compute the parameter values that enhance the program. Our
results show that it can remove practically all conflicts among variables
in the SPECfp95, targeting all the different cache levels simultaneously.

1 Introduction

Memory performance is critical for the performance of current computers. Mem-
ory is organized hierarchically in such a way that the upper levels are smaller and
faster. The uppermost level typically has a very short latency (e.g. 1-2 cycles)
but the latency of the lower levels may be a few orders of magnitude longer (e.g.
main memory latency may be around 100 cycles). Thus, techniques to keep as
much data as possible in the uppermost levels are key to performance.

In addition to the hardware organization, it is well known that the perfor-
mance of the memory hierarchy is very sensitive to the particular memory ref-
erence patterns of each program. The reference patterns of a given program can
be changed by means of transformations that do not alter the semantics of the
program. These program transformations can modify the order in which some
computations are performed or can simply change the data layout. Padding is
an example of the latter family of techniques. Padding is based on adding some
dummy elements between variables (inter-variable padding) or between elements
of the same variable (intra-variable padding).

Padding has a significant potential to remove cache misses. In fact, it can
remove most conflict misses by changing the addresses of conflicting data, and
some compulsory misses by aligning data with cache lines. However, finding the

Var0 Var1 Var2(a)

Var0 Var1 Var2(b)

P_Base0 P_Base1 P_Base2

Var0 Var1 Row0(c) Var1 Row1 Var1 Row2

Var0 Var1 Row0(d) Var1 Row1 Var1 Row2

P_Base1 P_Dim10 P_Dim10

Var1 Row
0

Var1 Row
1

Var1 Row
2

P_Dim10

Var1 Row
n

Dim11

Dim
10

Var1 Row
0

Var1 Row
1

Var1 Row
2

Var1 Row
n

Dim11

Dim
10

P_Dim
10

(f)(e)

Fig. 1. Data layout: (a) before inter-variable padding, (b) after inter-variable padding
(c) before padding, (d) after padding, (e) 2-D array, (f) 2-D array after intra-variable
padding

optimal padding for a given program is a very complex task, since the options
are almost unlimited and exploring all of them is infeasible. For very simple
programs, the programmer intuition may help but in general, a systematic ap-
proach that can be integrated into a compiler and can deal with any type of
program and cache architecture is desirable. This systematic approach requires
the support of a locality analysis method in order to assess the performance of
different alternatives.

In this paper, we propose an automatic approach to perform both inter- and
intra-variable padding in numeric codes, targeting any kind of multi-level caches.
It is based on a very accurate technique to analyze the locality of a program that
is known as Cache Miss Equations (CMEs) [6] and a genetic algorithm in order to
search the solution space. Earlier, we have proposed techniques to estimate the
locality of a possible solution in a very few seconds [2, 21], in spite of the fact that
a direct solution to the CMEs is an NP problem. The proposed genetic algorithm
converges very fast and although it does not guarantee that the optimal solution
is found, we show that after padding, the conflict miss ratio of the evaluated
benchmarks is almost negligible. Besides, comparing our method with previous
frameworks that address padding [17, 19], it turns out that in 91% of the cases
our approach yields better results.

The rest of this paper is organized as follows. Section 2 presents the padding
technique and its performance is evaluated in Section 3. Section 4 outlines some
related work and compares our method with previous approaches. Finally, Sec-
tion 5 summarizes the main conclusions of this work.

2 Padding

This section presents our method for guiding both inter- and intra-variable
padding. In this paper we refer to the cache size of L1 (primary) cache as Cs.
memi is the original base address of variable number i (V ari) and P Basei

stands for the inter-variable padding between V ari and V ari−1. dimij stands
for the size of the dimension j of V ari (Di is the number of dimensions) and Si

is its size. P Dimij is the intra-variable padding applied to dimij , and P Si is
the size of V ari after padding (see Figure 1). We define ∆i as P Si − Si.

2.1 Inter-variable padding

When inter-variable padding is applied only the base addresses of the variables
are changed. Thus, padding is performed in a simple way. Memory variable base
addresses are initially defined using the values given by the compiler. Then, we
define for each memory variable V ari, a variable P Basei, i = 0 . . . k:

0 ≤ P Basei ≤ Cs − 1

Note that padding a variable is equivalent to modifying the initial addresses
of the other variables (see Figure 1). Thus, after padding, the memory variable
base addresses are computed as follows:

BaseAddr(V ari) = memi +
k≤i∑

k=0

P Basek

2.2 Adding intra-variable padding

The result of applying both inter- and intra-variable padding is that all base ad-
dresses and sizes of every dimension of each memory variable may change. They
are initially set according to the values given by the compiler. For each mem-
ory variable V ari, i = 0 . . . k we define a set of variables {P Basei, P Dimij},
j = 0 . . . Di

0 ≤ P Basei, P Dimij ≤ Cs − 1

After padding, memory variable base addresses are computed in the following
way (see Figure 1):

BaseAddr(V ari) = memi+
+

∑k<i
k=0(P Basek + ∆k) + P Basei

and the size of the dimensions are:

Dimi(V arj) = dimji + P Dimji

2.3 Model

For the sake of uniformity in the analysis presented here, we assume that both
inter- and intra-variable padding are applied3. In presence of a multi-level cache,
the cost function to minimize is the miss penalty, which can be estimated as
follows:

miss penalty =
∑

l

µl ∗ number missesl

where µl is the latency of the cache level l. Our work focuses in obtaining the
values of the variables

{P Basei, P Dimij}
that minimizes the miss penalty. When having only a single level cache, mini-
mizing the miss penalty is the same as minimizing the number of misses.

Let f be the function that represents the miss penalty for each possible value
of the padding variables:

f 7−→ miss penalty (1)

f([0, Cs − 1]| {z }
P Base0

× [0, Cs − 1]D0| {z }
P Dim0j

× . . . × [0, Cs − 1]| {z }
P Basek

× [0, Cs − 1]Dk| {z }
P Dimkj

) =

= f(P Base0, P Dim0j| {z }
D0

, . . . , P Basek, P Dimkj| {z }
Dk

)

Note that [0, Cs − 1]Di represents the domain of the different P Dimij of
the variable V ari. There is no need to consider larger domains: if two references
do not conflict on a cache of size S, they will not conflict on a cache of size nS
(larger by a factor of n). Therefore, we use the cache size of the smallest cache
in the hierarchy (which in practice is L1).

Our problem can be expressed as follows:

MIN f(P Base0, P Dim0j︸ ︷︷ ︸
D0

. . . , P Basek, P Dimkj︸ ︷︷ ︸
Dk

)

0 ≤ P Basei, P Dimij ≤ Cs − 1

i = 0 . . . k

where f is called the objective function.
Since f is a pseudo-polynomial function [4], the relationship between padding

and the number of misses is nonlinear. P Basei and P Dimij can take only
integer values, thus, our problem can be seen as a nonlinear integer optimization
(NLP) one.

One of the challenges in NLP is that some problems exhibit local minima.
Algorithms that propose to overcome this problem are named Global Optimiza-
tion. Real functions have been studied deeply [20, 12, 7]. Unfortunately, integer
functions are hard to optimize. There are some studies based on {0,1} valued

3 To apply only inter-variable padding, set all P Dimij to 0

ALGORITHM:

Supply a population P0

i=1
while (not finish)

Pi=Selection(Pi−1)
Pi=Reproduce(Pi)
i=i+1

end

Fig. 2. Simple Genetic Algorithm

integer functions [10], but in general, this is a hard and time-consuming prob-
lem. Hence, the use of heuristics is necessary. Tabu search [8] obtains promising
theoretical results, but only partial implementations have been reported so far.
On the other hand, simulated annealing [13] and genetic algorithms [9, 11] have
been used for years with very good results.

Our proposal is based on the use of a genetic algorithm to optimize function
f . We implemented a direct-search that makes the same number of evaluations
as our approach for the sake of comparison. In none of the cases did it yield
better results than the genetic algorithm and the miss penalty was 26.9% larger
on average.

2.4 Genetic Algorithm

Algorithms for function optimization are generally limited to convex regular
functions. However, there are lots of functions that are not continuous, non
differentiable or multi-modal. It is common to solve this problem by means of
stochastic sampling.

Genetic Algorithms (GAs) [9] are a particular type of stochastic methods,
that simulate the evolution of a population. Figure 2 shows the simplest GA.
It starts from a random generated population, and it makes the population
evolve by means of basic genetic operators (selection, mutation and crossover) [9]
applied to individuals of the current population, to produce an improved next
generation. The probabilities for crossover and mutation, as well as the size of
the initial population, are set experimentally.

Genetic Algorithm Parameters The use of GAs requires the determination
of the following issues: chromosome representation, selection function, genetic
operators and the termination criteria.

Each individual is made up of a set of chromosomes, which represents the
variables. In our work, each individual is one configuration of padding (identi-
fied by all the inter- and intra-variable padding factors), and the chromosomes
represent one single padding factor. The fitness of those individuals is computed
using the objective function (eq. 1). The fittest individual is the one that has a
set of padding factors that results in a smallest miss penalty.

Genetic algorithms require the natural parameter set of the optimization
problem to be coded as a finite-length string over some finite alphabet such as
alphabet {0,1}. Therefore, each chromosome is made up of a sequence of genes
from a certain alphabet.

It has been shown that using large alphabets gives better results [15]. Thus,
we have used the alphabet {0, . . . , 2k − 1}, where k is the greatest divisor of the
log2Cs that is lower than log2Cs. This is the largest value of k that guarantees
that a single padding factor consists of at least two genes for every cache size.
This is not a restriction because the compilers know the cache size. Thus, this
computation can be done automatically.

Example. Let us assume a cache of 32KB. Thus, log2(32×210) = 15. The set
of divisors is divisors = {1, 3, 5, 15}. Hence, the greatest divisor less than 15 is 5,
and we will use the alphabet {0, . . . , 31}, representing each single padding with
3 genes. For instance, a padding factor of 10017 is represented by the following
three genes:

01001︸ ︷︷ ︸
gene0=9

11001︸ ︷︷ ︸
gene1=25

00001︸ ︷︷ ︸
gene2=1︸ ︷︷ ︸

chromosome

Genetic operators provide the basic search mechanism of the GAs, creating
new solutions based on the solutions that exist. The selection of individuals
to produce successive generations plays an extremely important role. We have
adopted one of the selection schemes that gives better results, which is known
as remainder stochastic selection without replacement [9].

2.5 Implementation of Padding

Given a loop nest, our objective function (f in eq. 1) consists of the CMEs
generated in a parameterized way, weighted with the latencies of each cache
level. We generate a set of parameterized equations for each cache level, where
the parameters are the padding factors. We have developed some techniques
that exploit the special characteristics of the CMEs [2] in order to speed-up the
process of counting solutions in them. To further reduce the computation cost,
we propose to study a subset of the iteration space instead of the whole iteration
space [21]. This subset is used to study the L1 cache, and the resulting misses
are passed to the following cache levels.

Our experiments have shown that an initial population of size equal to 30 is
enough to achieve a good solution. We find that if we set crossover probability
to 0.9 and we choose a mutation probability of 0.001, the genetic algorithm gives
near-optimal results after 15 generations.

(b)(a)

32KB Cache

0,0

5,0

10,0

15,0

20,0

25,0

Tomcatv
Swim

Su2cor
Hydro

Mgrid
Applu

Benchmarks

M
is

s
Ra

tio

NO Padding

Inter-Padding

16KB Cache

0,0
5,0

10,0
15,0
20,0
25,0
30,0
35,0

Tomcatv
Swim

Su2cor
Hydro

Mgrid
Applu

Benchmarks

M
is

s
Ra

tio

NO Padding

Inter-Padding

(c) (d)

8KB Cache

0,0
10,0

20,0
30,0
40,0
50,0

60,0
70,0

Tomcatv
Swim

Su2cor
Hydro

Mgrid
Applu

Benchmarks

M
is

s
ra

tio NO Padding

Inter-Padding

4KB Cache

0,0
10,0
20,0
30,0
40,0
50,0
60,0
70,0
80,0
90,0

Tomcatv
Swim

Su2cor
Hydro

Mgrid
Applu

Benchmarks

M
is

s
Ra

tio

NO Padding

Inter-Padding

Fig. 3. Miss ratio before and after inter-variable padding for different cache sizes.

3 Performance Evaluation

3.1 Experimental Framework

We have implemented our padding technique for Fortran codes through the
Polaris Compiler [16] and the Ictineo library [1].

We evaluate the CMEs using our own polyhedra representation [2]. The size
of the sample is set according to a confidence interval of width 0.05 and a 95%
confidence [21]. We use the central point of this interval as an estimation of the
actual miss ratio.

We have optimized several applications taken from the SPECfp95 that give
an insight into how our tool can remove conflict misses. For each application, we
have chosen the most time-consuming loop nests that in total represent between
the 60-70% of the whole execution time, using the reference input data. Results
for different cache architectures, including multi-level caches, are reported. A
fully-associative cache has been evaluated as a reference point to estimate the
amount of conflict misses that are not removed by the padding technique.

3.2 Experimental Evaluation

Figure 3 shows, for the 6 SPECfp95 programs analyzed, the miss ratio of a direct-
mapped cache before and after applying inter-variable padding. Note that the
figures for the different cache sizes (32KB, 16KB, 8KB, and 4KB) have different
scales. Note also that the SPECfp95 applications have a relatively small working
set with respect to current applications. Thus, the results for the smaller cache

(a)

(d)

(b)

(c)

32KB Cache

0

5

10

15

20

25

M
is

s
Ra

tio NO Padding

Inter- Padding

Fully-Assoc.

Tomcatv Swim

21 43 21 4365 7 65 7

16KB Cache

0
5

10
15
20
25

30
35
40

45
50

M
is

s
Ra

tio NO Padding

Inter-Padding

Fully-Assoc

Tomcatv Swim

21 43 65 7 21 43 65 7

8KB Cache

0
10

20
30

40
50
60

70
80

90
100

M
is

s
Ra

tio NO Padding

Inter-Padding

Fully-Assoc

Tomcatv Swim

21 43 65 7 21 43 65 7

4KB Cache

0
10

20
30
40
50

60
70
80

90
100

M
is

s
Ra

tio NO Padding

Inter-Padding

Fully-Assoc

Tomcatv Swim

21 43 65 7 21 43 65 7

Fig. 4. Miss ratio for the Tomcatv and Swim loop nests before and after inter-variable
padding for different cache sizes.

sizes may be more representative of what we can expect today for larger caches
and bigger applications. Two sets of programs can be distinguished:

– Set1 is composed of programs Tomcatv and Swim. The miss ratio of this set
of programs is highly affected by cache size. In addition many of the misses
are due to conflicts [5].

– Set2 is composed of programs Su2cor, Hydro, Mgrid, and Applu. The miss
ratio of this set of programs is quite insensitive to the cache size. In addition
all the programs of this set have practically no conflict misses [5].

Inter-Variable Padding Since the objective of padding is to eliminate conflict
misses, for Set2 we obtain a small improvement when applying inter-variable
padding due to the low number of conflicts. Su2cor, which is the program with
the highest conflict miss ratio in this set, experiences the highest improvement
(e.g 27% miss rate reduction for a 16KB cache). In addition, another source of
improvement is that the proposed inter-variable padding technique also aligns
the data structures with cache lines, which reduces compulsory misses.

On the other hand, inter-variable padding provides a huge improvement in
miss ratio for Set1. Note that for both programs, a small improvement is ob-
tained for a 32KB cache (Figure 3.a). This is caused by the fact that almost no
conflicts arise for 32KB caches or bigger for these programs due to the relatively
small working set of the SPECfp95 applications. However, the smaller the cache

Tomcatv

0

10

20

30

40

50

60

70

80

90

100

M
is

s
R

at
io

NO Padding

Inter-Padding

Intra-Padding

Fully-Assoc

 1 32 4 5 6 7 1 32 4 5 6 7

Cache 8KB Cache 4KB

(b) (a)

Pentium4Cache

0

10

20

30

40

50

60

70

80

90

M
is

s
R

at
io

NO Padding

Intra-Padding

Fully-As s oc

Sw imTomcatv

Fig. 5. (a) Miss ratio for different Tomcatv loop nests before and after inter- and intra-
variable padding (b) Miss ratio for the Tomcatv and Swim loop nests for the Pentium
4 L1 cache

the bigger the miss ratio and the bigger the improvement that inter-variable
padding obtains.

For the Swim program, the miss ratio grows from 8.1% to 24.8%, 62.9%,
and 77.9% when the cache is reduced from 32KB to 16KB (Figure 3.b), 8KB
(Figure 3.c), and 4KB (Figure 3.d) respectively. However, when we apply inter-
variable padding, the miss ratio is kept almost constant (7.1%, 7.2%, 7.8% and
8.2% respectively). This is because most of the misses of this program are caused
by conflicts between different data structures (inter-variable conflict misses) and
the algorithm practically obtains the optimal padding among them.

For the Tomcatv program, the miss ratio also grows significantly when the
cache size is reduced (9.5%, 14.8%, 46.0%, and 72.1% respectively for the dif-
ferent cache sizes). In this program, we also obtain a considerable improvement
when applying inter-variable padding for caches smaller than 32KB. However,
the miss ratio after inter-variable padding varies significantly with the cache size
(8.8%, 11.8%, 21.6%, and 52%). This variation is caused by capacity misses that
grow when the cache is reduced, and by intra-variable conflict misses (e.g. con-
flicts among distinct rows and columns of the same array) whose frequency also
grows when the cache is reduced. Inter-variable padding does not remove the
latter type of conflicts, which are the target of intra-variable padding.

Figure 4 details the miss ratio for the main loop nests of the programs in Set1
(note again the different scales for the different cache sizes). The figure shows the
miss ratio for each loop before and after applying inter-variable padding. It also
shows the miss ratio for a fully-associative cache after inter-variable padding.

For the Swim program loop nests 1 and 2 have practically no improvement
due to inter-variable padding (excepting a slight improvement due to alignment)
because they have no conflict misses. Note also that these two loop nests have
almost the same miss rate regardless of the cache size. On the other hand, loop
nests 3 to 7 have an extremely large miss ratio. As an extreme case, loop nest
3 has a miss ratio close to 100% for a 4KB cache, which after inter-variable
padding is reduced to 11.8%. Note that inter-variable padding removes all the

conflict misses for all Swim loops since the miss rate after inter-variable padding
and the fully-associative miss rate are practically identical.

The Tomcatv program has several loop nests that deserve special comments.
For the 32KB and 16KB, the proposed inter-variable padding technique prac-
tically removes all conflict misses. For the 8KB cache, inter-variable padding
removes all conflict misses from all loop nests except for loop 1. In this case,
inter-variable padding reduces the miss ratio from 53.6% to 29.2% but not all
conflict misses are removed since the fully-associative miss ratio is 11.4%. An
analysis of this loop shows that there are also intra-conflict misses.

In the case of a 4KB cache, inter-variable padding achieves about the same
miss rate as a fully-associative cache for loop nests 2, 3, 5, and 7. As a noticeable
case, the miss ratio of loop 7 has been reduced from 42.3% to 15.8%. For the
other loop nests there is a significant improvement but the miss ratio is still far
from that of the fully-associative cache. An analysis of these three loop nests
revealed that most of the remaining misses are intra-variable conflict misses.

Intra-Variable Padding Inter-variable padding cannot remove intra-variable
conflict misses. The objective of intra-variable padding is to eliminate them.

We have shown in the previous section that Tomcatv is the only program
of our benchmarks that has a significant intra-variable conflict miss ratio, in
particular for caches of 4KB and 8KB. Figure 5.a shows the miss ratio for the
different loop nests of the Tomcatv program. The figure shows the miss ratio
for each loop after applying inter- and intra-variable padding. It also shows the
miss ratio before padding and that of a fully-associative. As we observed before,
inter-variable padding does not remove all conflict misses because there are intra-
conflict misses. Intra-variable padding achieves about the same miss rate as
the fully-associative cache, which means that the proposed padding algorithm
removes practically all conflict misses.

Figure 5.b details the miss ratio for the main loop nests of the programs in
Set1 for a 8KB 4-way set associative cache with 64B lines, which is the L1 cache
architecture of the new Pentium 4 processor [3]. Intra-variable padding achieves
about the same miss ratio as the fully associative cache, reducing the average
miss ratio from 62.5% to 4.18% for the Swim program, and from 23.6% to 4.6%
for the Tomcatv.

3.3 Multi-level Caches

We experimentally evaluated multi-level padding for uniprocessors. Cache anal-
yses were made for two different configurations:

– UltraSparc I:
• 16KB, 32B line direct-mapped L1 cache
• 512KB, 64B line direct-mapped L2 cache

– Pentium 4
• 8KB, 64B line 4-way set-associative L1 cache
• 256KB, 128B line 8-way set-associative L2 cache

(a) (b)

UltraSparc I

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

M
is

s
Pe

na
lty

NO Padding

Intra-Padding

Tomcatv Swim

Pentium 4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

M
is

s
Pe

na
lty

NO Padding

Intra-Padding

Tomcatv Swim

Fig. 6. Miss penalty before and after intra-padding for (a) UltraSparc I (b) Pentium
4 cache architectures.

For both processors, the L2 latency is approximately 3 times the latency of
L1, so for computing the cost function, we define the miss penalty in multiples
of L1 latency (e.g. a hit has no penalty, a L1 miss adds a penalty of 1, and
a L2 miss adds a penalty of 3). We analyzed the most significant loop nests
from Tomcatv and Swim, applying intra-variable padding. Figure 6.a shows the
miss penalty for the different loop nests assuming a cache architecture such as
UltraSparc I. Intra-variable padding reduces 21.7% the average miss penalty for
the Tomcatv program, and it reduces the average miss penalty by 50.7% for
the Swim program. Figure 6.b details the same information for the Pentium 4
architecture. Again, intra-padding reduces drastically the miss penalty for both
programs. In the case of Tomcatv, average miss penalty is reduced by 57.2%,
whereas it drops 86.6% in the case of Swim.

Optimization Time Finally, padding has to be performed in a reasonable
amount of time in order to be included as an optimization step of a compiler.
In our case, it took about 3 minutes to optimize each program4. This amount of
time can be significantly reduced if the technique is guided by a locality analysis
in order to apply padding only to those loop nests that can benefit from it. The
locality analysis developed in this work could easily be extended to provide such
information.

4 Related work

Caches improve the speed of programs by reducing the number of accesses to
the slow upper levels of the memory hierarchy. Conflict misses may represent
the majority of intra-nest misses and about half of all cache misses for typical
programs and cache architectures [14].

Some padding techniques have been previously proposed by other authors.
Rivera and Tseng [17, 18] propose several simple heuristics that are addressed

to eliminate conflicts in some particular cases. They mainly focus on conflicts
4 In a Pentium III at 600 MHZ

 (a) (b)

(c) (d)

32KB Cache (
�

=29.1%)

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

M
is

s
R

at
io

PAD&PADLITE

GA

GA+seed

Tomcatv Swim

16K B Cache (� =13.6%)

0,0

5,0

10,0

15,0

20,0

25,0

M
is

s
R

at
io

PAD&PADLITE

GA

GA+seed

Tomcatv Swim

8KB Cache (� =9.0%)

0,0

5,0

10,0

15,0

20,0

25,0

M
is

s
R

at
io

PAD&PADLITE

GA

GA+seed

Tomcatv Swim

4K B Cache (� =15.6%)

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

M
is

s
R

at
io

PAD&PADLITE

GA

GA+seed

Tomcatv Swim

Fig. 7. Comparison with Rivera et al’s method for direct-mapped caches. ∆ stands for
the relative decrease in miss ratios our method achieves compared to theirs.

that occur on every loop iteration, addressing only inter-padding for uniformly
generated references (so they can not remove conflict misses for references such
as B(i,j) and C(k,j)). On the other hand, they do not use intra-padding to remove
cross-interferences. In the case they can not remove all the conflicts, no changes
are done to the data layout. Besides, they use the padding algorithm devised to
avoid conflict misses for direct-mapped caches to remove conflict misses for set-
associative caches, without taking in account that interferences arise in different
situations for different cache architectures. A set contention in a set-associative
cache does not mean there is an interference. They presented an extension of
this work targeting multi-level caches [19].

Figure 7 and Figure 8 compare their method with ours. We have studied all
the main loop nests of the programs in Set1 (see Section 3.2), which are the
ones that suffer heavily from conflict misses.

Figure 7 compares both methods for 32KB, 16KB, 8KB and 4KB direct-
mapped caches. Notice different scales for each chart. First column presents
the miss ratios obtained running Rivera et al’s method. We use the best result
yielded by their two approaches PAD and PADLITE. The second column shows
the miss ratios obtained by our approach. GA performs better in all the cases
for 32KB and 16KB caches. However, we observe that in some cases Rivera et
al’s heuristics obtain better results when studying 8KB and 4KB caches.

In order to improve the population in successive iterations, the presence
of good individuals in the first population may help. Thereby, we include in
the initial solution two individuals (seeds) that represent the original solution

(a) (b)

UltraSpar c I (
�

=8.1%)

0

1000

2000

3000

4000

5000

6000

M
is

s
P

en
a

lty

PAD(MULT)

GA

GA+seed

Tomcatv Swim

Pentium 4 (� =8.9%)

0

500

1000

1500

2000

2500

3000

M
is

s
P

en
al

ty

PAD(MULT)

GA

GA+seed

Tomcatv Swim

Fig. 8. Comparison with Rivera et al’s method for multi-level caches. ∆ stands for the
relative decrease in miss penalty our method achieves compared to theirs.

provided by the compiler and the one obtained by running PADLITE [17]. The
third column presents the results for this variant (called GA+seed). It gives
better results for all cache configurations, yielding 29.1%, 13.6%, 9% and 15.6%
smaller miss ratios for the 32KB, 16KB, 8KB and 4KB caches respectively.

Finally, we compare the different padding techniques for multi-level caches.
Figure 8 shows the miss penalty for UltraSparc I and Pentium 4 cache architec-
tures. Our method improves the miss penalty, compared to Rivera et al’s method,
by 8.1% and 8.9% for UltraSparc I and Pentium 4 architectures respectively.

Ghosh, Martonosi and Malik [6] propose a padding technique for direct-
mapped caches based on using the CMEs for conflicting arrays that have the
same column size. Their technique finds the optimal padding if there is a padding
such that the total number of replacement misses after padding is zero. However,
if such a padding does not exist, their technique does not provide any solution.
Note that replacement misses include both conflict and capacity misses and one
may expect the case where replacement misses cannot be decreased up to zero
to be common. In their experiments, this only happens for one out of the seven
loops examined but most of their benchmarks are small kernels.

Our technique differs and improves these two previous approaches in the fact
that it is a technique to search the solution space for the optimal padding, for
any type of reference pattern that corresponds to affine references. It always
produces a padding scheme that reduces conflict misses and usually is very close
to the optimal. It is not targeted to avoid conflicts in some particular cases but
it considers any type of conflicts, using both inter- and intra-padding to remove
self- and cross-conflicts. Besides, our algorithm works fine for both direct-mapped
and set-associative caches, generating the best padding scheme for each kind of
architecture.

Recently, Vera and Xue [22] have presented a method that extends the CMEs
to further analyze whole programs. We believe that our padding approach can be
easily adapted to this new analysis technique. In that way, the padding factors

could be optimized at a global program level considering the interactions of the
different loop nests.

5 Conclusions

Cache memory performance is critical for the efficient execution of numerical
applications. Padding is a program transformation that reduces conflict misses.
In this work, we have proposed the use of genetic algorithms in order to perform
near-optimal padding.

The evaluations show that, for the programs that have conflict misses, we
achieve a significant improvement. For instance, for a 8KB 4-way associative
cache, which is the L1 cache of the new Pentium 4 processor [3], we can reduce
the miss ratio of the Swim program from 62.5% to 4.18% and the miss ratio
of the Tomcatv program from 23.6% to 4.6%. Furthermore, the miss penalty
for Pentium 4 is reduced by 79.27%. Besides, for the programs without conflict
misses padding slightly reduces the compulsory misses due to a better alignment
of arrays with cache lines.

Finally, an exhaustive evaluation of the programs with a high number of
conflict misses reveals that the proposed technique practically removes all the
conflict misses for all the loops analyzed, both inter- and intra-variable conflicts.

6 Acknowledgments

This work has been supported by the ESPRIT project MHAOTEU (EP 24942)
and the CICYT project 511/98. We would like to thank the anonymous referees
for providing helpful comments in earlier drafts of this paper.

References

1. E. Ayguadé et al. A uniform internal representation for high-level and instruction-
level transformations. UPC, 1995.

2. N. Bermudo, X. Vera, A. González, and J. Llosa. An efficient solver for cache miss
equations. In IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS’00), 2000.

3. D. Carmean. Inside the Pentium 4 Processor Micro-Architecture
(www.intel.com/pentium4), 2000.

4. P. Clauss. Counting solutions to linear and non-linear constraints through Ehrhart
polynomials. In ACM International Conference on Supercomputing (ICS’96), pages
278–285, Philadelphia, 1996.

5. A. Fernández. A quantitative analysis of the SPECfp95. Technical Report UPC-
DAC-1999-12, Universitat Politècnica de Catalunya, March 1999.

6. S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a compiler framework
for analyzing and tuning memory behavior. ACM Transactions on Programming
Languages and Systems, 21(4):703–746, 1999.

7. Gill, Murray, and Wright. Practical optimization. Academic Press, 1981.
8. Glover and Laguna. Tabu search. Kluwer, 1997.

9. D. Goldberg. Genetic algorithms in search, optimizations and machine learning.
Addison-Wesley, 1989.

10. Hansen, Jaumard, and Mathon. Constrained nonlinear 0-1 programming. ORSA
Journal on Computing, 1995.

11. J. Holland. Adaptation in natural and artificial systems. The University of Michi-
gan Press, Ann Arbor, 1975.

12. Host, Pardalos, and Thoai. Introduction to global optimization. Kluwer, 1995.
13. Kirkpatrick, Gelatt, and Vecchi. Optimization by simulated annealing. Science

220, 1983.
14. K. S. McKinley and O. Temam. A quantitative analysis of loop nest locality. In

Proc. of VII Int. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’96), 1996.

15. Z. Michalewicz. Genetic algorithms+Data structures=Evolution Programs.
Springer-Verlag, 1994.

16. D. Padua et al. Polaris developer’s document, 1994.
17. G. Rivera and C.-W. Tseng. Data transformations for eliminating conflict misses.

In ACM SIGPLAN ’98 Conference on Programming Language Design and Imple-
mentation (PLDI’98), pages 38–49, 1998.

18. G. Rivera and C.-W. Tseng. Eliminating conflict misses for high performance
architectures. In ACM Internacional Conference on Supercomputing (ICS’98),
1998.

19. G. Rivera and C.-W. Tseng. Locality optimizations for multi-level caches. In
Supercomputing (SC’99), 1999.

20. Torn and Zilinskas. Global optimization. Springer-Verlag, 1989.
21. X. Vera, J. Llosa, A. González, and C. Ciuraneta. A fast implementation of cache

miss equations. In 8th International Workshop on Compilers for Parallel Comput-
ers (CPC’00), 2000.

22. X. Vera and J. Xue. Let’s study whole program cache behaviour analytically. In
International Symposium on High-Performance Computer Architecture (HPCA 8),
Cambridge, Feb. 2002.

