
THRUST: A METHOD FOR SPEEDING UP THE CREATION OF PROCESS-
RELATED DELIVERABLES 

Barbara Gallina, Kristina Lundqvist, Mälardalen University, Västerås, Sweden 
Kristina Forsberg, Saab AB, Jönköping, Sweden  

 
Abstract 

Certification of safety-critical avionics systems 
is an expensive and time-consuming activity due to 
the necessity of providing numerous deliverables. 
Some of these deliverables are process-related. To 
reduce time and cost related to the provision of 
process-related deliverables, in this paper, we 
propose to combine three approaches: the safety-
oriented process line engineering approach, the 
process-based argumentation line approach, and the 
model driven certification-oriented approach. More 
specifically, we focus on safety-related processes for 
the development of avionics systems and we define 
how these three approaches are combined and which 
techniques, tools and guidelines should be used to 
implement the resulting approach, called THRUST.  
Advantages and disadvantages of possible existing 
techniques and tools are discussed and proposals as 
well as conceptual solutions for new techniques are 
sketched. Based on the sketched conceptual 
solutions, we then apply THRUST to speed up the 
creation of process-related deliverables in compliance 
with DO-178B/C. 

Introduction 
Certification of safety-critical avionics systems 

is an expensive and time-consuming activity due to 
the necessity of providing numerous deliverables. 
Some of these deliverables are process-related and 
they are aimed at either planning the activities to be 
carried out to meet the objectives or showing 
compliance with the guidelines and/or recommended 
practices. To develop the software for avionics 
systems, for instance, based on DO-178B/C, a 
generic process might be sketched. A company might 
provide its interpretation of the de-facto standard and 
create a process model under the assumption that 
“one size fits all”. Experience, however, teaches that 
a generic process is not meaningful enough and that 
processes tend to vary due to several factors (e.g. 
version of the standard, business area, development 
stage, software level, project-specific requirements, 

geographical location, etc.). As a consequence of 
these variable factors, some parts of the process-
related deliverables (e.g. plans for stating the 
intentions and arguments for showing compliance) 
have to vary consistently. Since, due to these variable 
factors, one size does not fit all (i.e. various processes 
and corresponding plans and compliance-related 
assurance cases have to be provided), the focus 
moves from single processes and related information 
to sets of processes that may exhibit reusable 
similarities and differences. Currently, no satisfying 
method exists to exploit similarities and thus enable 
reuse of process-related information. Another 
relevant consideration is that process-related 
deliverables exhibit a rather standardized structure 
and include information that could easily be semi-
automatically generated from process models. 
Currently, however, no support exists to perform this. 

To reduce time and cost and at the same time to 
increase quality related to the provision of process-
related deliverables, the adoption of the safety-
oriented process line approach [1, 2] permits process 
engineers to identify, based on their experience, 
common and variable certifiable process elements to 
be selected and composed to achieve flexible 
processes. A process activity for instance can either 
reflect the best interpretation of the facto standard or 
represent a valuable and equivalent alternative 
according to the standard tailoring rules. By 
identifying and modelling such process information, 
systematic reuse is enabled and thus time and cost 
can be reduced significantly. Similarly, the adoption 
of the “process-based argumentation line” [3, 4] 
permits safety managers to identify, based on their 
experience, common and variable process-based 
arguments to be selected and composed to achieve 
flexible arguments for process compliance. To 
achieve the same objectives (time and cost reduction 
& quality increase), the adoption of the model driven 
engineering (MDE)-oriented approach is also 
effective. The effectiveness is motivated by the fact 
that an MDE-oriented approach permits process 
engineers to avoid wasting time while providing 



process-related information. Adequate tool-supported 
model transformations enable the (semi) automatic 
generation of such information. Process engineers 
and safety managers still play a crucial role but their 
time can be dedicated to the manual production of 
portions of deliverables that strictly require human 
intervention.  In [5] as contribution to [6], a method 
called MDSafeCer is proposed and pioneers the 
adoption of MDE for certification purposes. This 
method, however, does not consider sets 
(families/”lines”). 

Thus, to reduce time and cost related to the 
provision of process-related deliverables, in this 
paper, we propose to combine the safety-oriented 
process line engineering approach, the process-based 
argumentation line, and the model driven 
certification-oriented approach. More specifically, we 
focus on (lines of) safety-related processes for the 
development of avionics systems and we define how 
these three approaches are combined and which 
techniques, tools and guidelines should be used to 
implement the resulting approach, called THRUST.  
Advantages and disadvantage of possible existing 
techniques and tools are discussed and proposals as 
well as conceptual solutions for new techniques are 
sketched. Based on the sketched conceptual 
solutions, we apply THRUST to speed up the 
creation of DO-178B/C-compliant process-related 
deliverables. Based on the results obtained by 
applying THRUST, we provide our lessons learned.  

The rest of the paper is organized as follows. In 
the background section, we provide some 
fundamental information onto which the presented 
work is based. The core section presents THRUST; 
followed by a section aimed at showing the usage and 
potential effectiveness of THRUST. This is done by 
applying THRUST for the creation of a portion of 
DO-178B/C-compliant deliverables. Based on the 
application of THRUST, we derive our lessons 
learned. Finally, some concluding remarks and 
suggestions for future work are presented. 

Background 
This section recalls the essential background on 

which the presented work is based: DO-178B/C, 
safety-oriented process lines engineering, process 
modeling, safety-oriented process line modeling, 
process compliance, process compliance 

documentation, model-driven engineering/ 
certification. 

DO-178B/C 
DO-178C [7] has been replacing its predecessor 

(DO-178B [8]), which has represented the de facto 
standard in the avionics domain for a couple of 
decades. DO-178C addresses the inconsistencies of 
the previous document but preserves its basic and 
valuable principles. DO-178C, as its predecessor, 
provides guidance for the development of software 
for airborne systems and equipment. Its purpose is to 
guarantee a level of confidence in the correct 
functioning of the software developed in compliance 
with airworthiness requirements. To do that, it 
provides a series of processes characterized by a set 
of objectives, activities and expected deliverables. 
Process planning is one of these processes. Among its 
expected deliverables we have: software development 
plan (SDP) and Plan for Software Aspects of 
Certification (PSAC). In the context of this paper we 
will focus on these two deliverables. SDP is a plan, 
which provides a detailed description concerning 
how the software should be developed. More 
specifically, SDP includes: a) the identification of 
standards, b) the software life-cycles (requirements 
process, design process, etc.), and c) the software 
development environment. Taken altogether, a-c 
detail the software process. SDP can be included 
within PSAC, which, as stated in [7], serves as the 
primary means for communicating the proposed 
development methods to the certification authority 
for agreement and defines the means of compliance 
with DO-178B/C. PSAC includes the software life-
cycle, the software life-cycle data, plus various other 
items that are not in focus in this paper. 

Within an SDP, a design process could be 
characterized by: 
Input: Software development plan, Software 
Requirements Data, Software Design Standards. 
Output: Design description. 
Roles: designers in charge of the design decision 
related to functional requirements and quality (safety) 
experts in charge of the design decision related to 
non- functional requirements. 
Guidelines: guidelines, defined in Section 5.2.2 of 
the standard, contain general as well as safety 
specific information. 



Tools (company-specific decision): Unified Modeling 
Language (UML) and a model-based development 
environment (e.g., SCADE Suite). 
This design process may vary due to the software 
level, whose variation constrains other variabilities, 
as specified in Annex A in [7]. 

Safety-oriented Process Lines Engineering 
Safety-oriented process lines [1] represent sets of 
safety-oriented processes that may exhibit: full 
commonalities (equal process elements), partial 
commonalities (structured process elements that are 
partially equal), and variabilities. Variabilities denote 
elements that may vary e.g., optional process 
elements or process elements that represent variants 
and can be chosen instead of others at specific 
variation points. The fundamental process elements 
to be interconnected to model processes are: tasks 
(which represent broken down units of work), work 
products (e.g., deliverables), roles, guidance, and 
tools.  

As recalled in [1], safety-oriented process lines can 
be engineered by adopting a three-phase approach 
consisting of a first phase aimed at scoping the 
process line, a second phase aimed at engineering the 
domain (i.e., modeling (partially) common and 
variable process elements) and a third phase aimed at 
engineering the single processes by selecting and 
composing reusable process elements to obtain the 
models related to single processes. To show the 
potential for intra as well as cross-domain reuse, in 
[2], we have engineered an automotive safety-
oriented process line constituted of development 
processes while in [3] we have engineered a cross-
domain safety-oriented process line constituted of 
tool qualification processes. 

Safety-oriented Process Line Modeling  
As we discussed in [1, 2], to model processes, 
various general-purpose languages are at disposal 
e.g., SPEM 2.0 [9]. However, currently, no language 
is available to model safety-oriented process lines. In 
[2], due to the necessity of having a tool at disposal, 
we proposed a methodological approach to model 
safety-oriented process lines in EPF-Composer [10] 
via some workaround solution. 

Recently, two relevant extensions of SPEM 2.0 have 
been proposed: vSPEM [11], to model process lines 
and S-TunExSPEM [12] to model and exchange 

safety-oriented processes (focus on DO-178B/C 
processes). However, no tool support exists for 
modeling by using these extensions. In our context, a 
combination of these two extensions could represent 
an interesting solution. S-TunExSPEM, for instance, 
could be extended with vSPEM constructs. Thus, in 
this subsection, we recall essential information 
related to these extensions. More specifically, with 
respect to S-TunExSPEM, we partially recall its 
safety-tunability, which is supported by the following 
language constructs:  

• Safety-related process elements e.g., SafetyRole, 
SafetyTask, etc. These elements are characterized 
by the presence of a safety hats.  

• An attribute to allow process engineers to set the 
safety level. Only four levels are at disposal since 
in case of negligible (e.g. no effect, level E in 
DO-178B/C) consequences related to the 
hazards, no specific safety-related process 
elements are needed. This attribute is 
syntactically concretized via the colour of the 
safety hat (i.e. red for the most critical safety 
level, followed by orange, yellow and bitter 
lemon). A red hat that decorates a role denotes 
high qualification (i.e., high level of proven 
experience and sufficient seniority to be 
considered competent and accountable for the 
actions the role is responsible for). 

The above language constructs are concretized via 
the icons given in Table 1. Table 1 mainly (except for 
phase) shows the icons that can be used to define 
statically the processes. To define processes 
dynamically, additional icons are available. These 
additional icons are obtained by decorating SPEM2.0 
inUse icons, in a similar way as for Definition icons. 

Table 1. Subset of S-TunExSPEM Icons 
Task  

 
Role 
 

Tool 
 

Work 
product 

Guidance Phase 

 

 

 

 

 

 

 

 

 

 

 

  
 

With respect to vSPEM, we recall its support for 
variability by focusing on the concrete syntax. As 
Table 2 shows, vSPEM basically introduces the 
possibility to model: 1) variation points, by 
decorating SPEM2.0 icons with empty circles; and 2) 
variants, by decorating SPEM2.0 icons with a V. 



Table 2. Subset of vSPEM Icons 
Concept  Variation point  Variant 

 
Task   

To connect a variant (optional/alternative/etc. 
process element) to a variation point, vSPEM 
provides the occupation relationship arrow, which is 
an arrow having a filled circle on the opposite side. 

Process Compliance 
Safety certification requires the applicant to 

show that the product (e.g., aircraft) behaves 
acceptably safe and that the development process 
meets the objectives. Despite the absence of scientific 
evidence concerning the real efficacy of the 
development processes defined within the standards 
[13, 14 and 15], compliance with those processes is 
required. To be compliant, in general, a company has 
two alternatives. The first alternative consists of the 
strict and almost literal implementation of the 
process. This entails:  

• the identification and assignment of 
roles/responsibilities. 

• the execution of all the activities according a 
specific order (if any) and/or grouping (if any);  

• the consumption/provision of all the required 
work products;   

• the application of specific guidance (if any);  

• the usage of specific tools (if any). 

Each of the above steps has to be performed with the 
stringency required by the software level. 

The second alternative consists of the execution of a 
tailored process obtained by applying tailoring rules 
(e.g. the usage of alternative methods/guidance if 
accepted by assessors) to the prescriptive one. 

In the context of objective-based standards (e.g., DO-
178B/C), processes are not prescriptive. The 
manufacturer has only to show that the objectives 
have been met. 

Process compliance documentation 
To document process compliance, two strategies 

may be adopted: single-process-centered, process-
line centered. To avoid re-inventing the wheel, 

whenever argumentation lines can be identified, the 
process-line centered alternative is preferable. 

To document/argue about process compliance, 
various means are at disposal [16]: textual languages 
(e.g. semi-structured natural language), graphical 
languages (e.g., Goal Structuring Notation (GSN) 
[17], Claim-Argument-Evidence (CAE) [18]), or a 
combination of both. These means are more generally 
used to document safety cases. Recently, an OMG 
standard, called SACM [19], has been provided to 
unify argumentation languages (namely, GSN and 
CAE). GSN is currently the only documentation 
means that offers constructs to argue about 
argumentation lines [4]. Thus, in this subsection, we 
briefly recall its concrete syntax. 

 
Figure 1. GSN Modeling Elements 

The GSN modeling elements can be composed to 
structure the argumentation into flat or hierarchically 
nested graphs (constituted of a set of nodes and a set 
of edges), called goal structures. Of particular interest 
in the context of this paper is the possibility to 
document extrinsic variability i.e., the variability 
within the goal structure due to the variability within 
the process line model. A choice during the 
configuration of a single process, will have an impact 
on the goal structure. The interested reader may refer 
to [4 and 17] for a complete introduction of GSN and 
its extension. 

Model-driven Engineering/Certification 
As we recalled in [5], Model-driven Engineering 

(MDE) is a model-centric software development 
methodology aimed at raising the level of abstraction 
in software specification and increasing automation 
in software development. MDE indeed exploits 
models to capture the software characteristics at 
different abstraction levels. These models are usually 
specified by using (semi) formal domain-specific 
languages. For automation purposes, model 



transformations are used to refine models (model-to- 
model transformations) and finally generate code 
(model-to- code transformations). A model 
transformation (e.g. Model- to-Model) transforms a 
source model (compliant with one meta-model) into a 
target model compliant with the same or a different 
meta-model. A standard transformation can be 
defined as a set of rules to map source to the target. 
Each rule describes how to transform source 
instances to the identical target. Besides vertical 
transformations for software development, horizontal 
transformations can be conceived for other purposes 
(semi-automatic generation of certification artefacts 
in the context of this paper). 

THRUST 
In this section we present our proposal, called 

THRUST. THRUST is a method that allows users to 
speed up the creation of process-related deliverables 
by combining safety-oriented process line 
engineering, process-based argumentation line 
engineering and model driven certification. Figure 2 
provides and overview of THRUST given by using 
S-TunExSPEM. As Figure 2 shows, THRUST 
consists of four phases: two process-centered phases 
and two process-based argumentation-centered 
phases. The red hat is meant to highlight that 
THRUST is highly critical. THRUST is expected to 
provide support for efficient creation and 
management of process-related deliverables 
compliant with the most stringent development 
assurance level, A, of DO-178B/C. 

 
Figure 2. THRUST Overview 

As Figure 3 shows, these phases can be partially 
ordered logically. Various executions are possible 
since concurrent phases can be serialized in various 
ways. At the end, however, the deliverables of both 
branches (left and right) have to be available to 
satisfy the certification authorithies.  

 
Figure 3. THRUST-high-level Activity Diagram 

Process-centered phases 
In this subsection, we focus on the left-hand 

branch of the activity diagram, shown in Figure 3, 
and we reveal the tasks that are embraced by the 
phases. As Figure 4 shows, the Domain (Process-
elements) Engineering phase consists of three tasks, 
which can be iterated if needed. The first task 
consists of the interpretation of the set of standards 
according to S-TunExSPEM i.e., identification of 
tasks, safety tasks, etc. Then, common and variable 
process elements are identified. Finally the process 
line is modeled by using S-TunExSPEM extension. 

 
Figure 4. Focus on the Process-related Phases 

Once the safety-oriented process line model is at 
disposal, single processes can be derived from it by 
selecting and composing the required process 
elements. This derivation is performed during the 
Process Engineering Phase. 



Process-based argumentation-centered phases 
In this subsection, we focus on the right-hand 

part of the activity diagram, shown in Figure 3 and 
we reveal the tasks that are embraced by the phases. 
As Figure 5 shows, similarly to the Domain (Process-
elements) Engineering phase, the Domain (Process-
based Argumentation elements/Fragments) 
Engineering phase consists of three tasks, which can 
be iterated if needed.  

 
Figure 5. Focus on the Process-based 
Argumentation Phases 

The first task consists of the interpretation of the 
set of standards according to SACM i.e., 
identification of goals (not a straightforward task as 
argued in [13]), evidence, etc. Then, common and 
variable process-based argumentation fragments are 
identified. Finally the process-related portion of the 
safety case line is modeled by using SACM 
extension. 

Once the safety case line model is at disposal, 
single process-based arguments can be derived from 
it by selecting and composing the required process-
based argumentation elements. This derivation is 
performed during the Process-based Argumentation 
Engineering Phase. 

Model-driven Process-related Certification 
The right-hand and the left-hand parts of the 

activity diagram can be combined via the model 
driven engineering approach. Model transformations 
can be performed either at the level of the individuals 
or at the level of the family/line. In [5], we have 
explored how model transformations could be 
performed at the level of individuals (single 
processes/single safety cases).  In [3], we have given 
an intuition on how pattern-based safety case lines 
could be derived from safety-oriented process lines. 
In this paper, we are interested in pioneering the 

research direction related to how model 
transformations could be performed at the line-level. 

 
Figure 6. M2M-Model-to-Model Transformation 

As Figure 6 shows, proper meta-models are 
needed. More specifically, two meta-models are 
needed: one Domain Specific Language (DSL) meta-
model for safety-oriented process lines (source space) 
and another DSL meta-model for safety case lines 
(target space). Once these meta-models are at 
disposal, via model transformations, it is possible to 
generate models in compliance with e.g., a SACM 
extension from a model in compliance with e.g., S-
TunExSPEM extension. 

Despite the current absence of these meta-
models, based on the background information (the 
not-yet formalized notations), we provide an intuition 
on how this could happen.  

Process-based argumentation at the line level is 
currently not applied. However, we can reasonably 
state that its goal is to show compliance with the 
family of safety processes, mandated by the 
standards. Reasonably, the top-level claim could state 
that the modeled process line is in compliance with 
the required standard(s). This claim could be 
decomposed into sub-goals to show that all the 
process activities (including its partial commonalities 
and variants) have been modeled. Then, in turn, for 
each activity new subgoals could be introduced to 
show that all the tasks have been modeled and so on 
until an atomic process-related work-definition unit is 
reached.  

In what follows, we sketch the rules for 
generating in output the task line-related sub-goal-
structure. For sake of simplicity, our task line is 
rather limited. Its tasks may only vary based on the 
software level and based on company-specific 
optional tools. All the other process elements are 
considered as commonalities. As mentioned in the 



introduction, various factors may play a role and may 
make a task vary. The purpose of this section, 
however, is not to show the entire spectrum of 
possible variations but simply to show what can be 
done to speed up the creation of process-related 
certification artefacts, if commonalities and 
variations are properly modeled.  

In input, the algorithm takes: a process structure 
(more specifically, a task line structure like the one 
shown in Figure 7), the in-progress goal structure, the 
connection points. The rules are given by following 
the same approach followed in [5 and 20]. We create 
a process-based argument-fragment for a process 
task-line tl by using the following rules: 

1. Create the top-level goal ID: G1 and 
statement: “The task line tl has been planned with 
adequate stringency in accordance with the software 
levels”. For sake of clarity, it should be stressed that 
software levels are derived from DALs, which define 
the assurance levels as product (system) line level. 
Once G1 is created, create the context to be 
associated to G1. Context ID: C1 and statement: 
“Standard(s) {x}”, where x is a variable denoting a 
set of standards (a singleton is also a valid value for 
x). Create an inContextOf link to relate G1 and C1. 

Develop the goal G1 further by creating:  

(a) either an alternative-related diamond plus an 
obligation element (connected to the diamond) 
stating the condition for the branching, in the case 
alternative tasks are present. 

(b) or an optional related arrow plus an 
obligation element (connected to the arrow) stating 
the condition for the option, in the case optional tasks 
are present. 

2. If the diamond exists, further develop it and for 
every alternative task: create a goal G1.ta “ta has 
been planned with adequate stringency”. Connect this 
goal to the diamond. Then, develop this goal further. 
At this point, other rules similarly to what presented 
in [5, 6] should be added to consider common and 
variable process elements that can be connected to a 
task: roles, tools, work products, guidance. 

3. If the optional related arrow exists, further develop 
it and for the optional task: create a goal G1.top “top 
has been planned with adequate stringency” and 
develop this goal further similarly to what presented 
in [5, 6]. 

Crosscutting constraints should also be defined. 

Applying THRUST: an intuition 
In this section we give an intuition concerning 

the application of THRUST at the line level. As 
mentioned previously, to apply THRUST various 
executions are possible. In [5], we have explored the 
execution of the bottom part of the activity diagram 
(Figure 3). More specifically, from single process 
models, we have manually obtained argumentation 
fragments related to single processes. In this paper, 
we focus on the upper part of the activity diagram 
and we focus on “lines” to show how a family of 
software development plans can be transformed into 
a family of arguments that show that the objectives 
stated in DO-178B/C are met. More specifically, we 
model a portion (focus on design) of the safety-
oriented process line constituted of the processes 
described in corresponding SDPs. From this model 
we manually derive a GSN fragment that can be used 
to show that the safety process line is in compliance 
with DO-178B/C. 

Modeling the design-related task line 
In this subsection, we model by using a 

combination of S-TunExSPEM and vSPEM a design-
related and safety-oriented task line (which was 
described in the background in natural language), 
part of a family of SDPs. For sake of simplicity, this 
task line is characterized by only 4 tasks. Figure 7 
shows our task line. The root element is a task since 
the family/line modeled in Figure 7 is constituted of 
tasks.  

 
Figure 7. Design-related Task Line 

As Figure 7 shows, our task line may vary due to 
the software level (which we assume can take only 2 
values in the context of this paper due to the assumed 
product line). Note that the rectangle with the empty 
circle is a language construct temporarily proposed to 
denote a safety hat-related variation point. Our task 



line also may vary at the company specific-level tool 
(SCADE is optional). Even if not shown in Figure 7, 
to the task, other process elements are associated: two 
roles (designer ro1 and safety manager ro2), three 
work-product in input (named wpi1, wpi2, wpi3), 
two guidance (named gu1 and gu2), and two tools 
(UML and SCADE, also named to1 and to2), one of 
which is optional. 

Generating the design-related process-based 
argumentation line 

 
Figure 8. Goal Structure Fragment 

On the basis of the information contained in the 
model (shown in Figure 7) related to the design-
related task line, by applying the transformation 
rules, the sub-goal-structure presented in Figure 8 can 
be obtained, which shows a fragment of a process-
based argumentation. This generated fragment does 
not pretend to be complete. Meaningfulness is also 
not one of its characteristics. The main intention is to 
show how the machinery could work. 

Lessons learned 
From the application of THRUST, despite the 

simplicity of our illustration, we can draw the 
following lessons. 

General soundness- The THRUST approach is 
sound since commonalities and manageable 
variabilities can be identified and modeled. THRUST 
is also beneficial since commonalities enable reuse. 
The semi-automatic generation is desirable. Anyway 
a lot of work is required to properly ponderate and 
achieve the right trade off between what can be 
automatized and trusted and what should remain 
manual work. Due to the current limitations in terms 
of modelling and meta-modelling a lot of work is also 
required to achieve proper modeling and meta-

modeling means and corresponding tool-support. 
Thus, currently, THRUST has a great potential but its 
applicability is far from being satisfactory and 
scalable in industrial settings.  

Related Work 
As far as we know, currently there are no other 

approaches that aim at reusing both process elements 
and process-based arguments within a “line” 
perspective. Thus, due to the novelty of our approach, 
we split the discussion of the related work by 
considering separately works that have tried to 
achieve reusable processes and work that have tried 
to semi-automatically generate information needed 
for certification purposes. To reuse process elements, 
process lines are not the only possibility. In [21], a 
model-driven-based tailoring method has been 
proposed.  Authors consider a generic process as a 
starting point and then propose to make it vary 
according to the needs via model transformations. 
With respect to our purposes and based on the current 
industrial needs (especially coming from product 
lines manufacturers), we believe that our method 
based on safety-oriented process lines is more 
suitable since the solution space (family-oriented) is 
closer to the problem space (also family-oriented). In 
[22], authors provide detailed guidelines useful to 
deal with legacy avionic software, which was 
certified by using a superseded version. Authors 
perform a comparative study between DO-178A and 
DO-178B and textually in natural language they 
describe what varies. Our approach builds on top of 
comparative studies (possibly performed by experts). 
Its ambition is however to enable semi-automatic 
generation and reuse thanks to (semi) formal 
machine-readable models. The relevance of 
organizing processes for reuse constitutes also a 
research theme in [23]. Some research questions 
proposed in [23] are also part of our research agenda. 

As we already discussed in  [5 and 20], 
currently, semi-automatic generation of certification 
artefacts is limited due to the limitations of the 
current status in terms of meta-models and 
formalized notations. Dialects of GSN are 
implemented and based on these dialects, mainly 
product-based GSN fragments are derived from 
verification analysis results. 



Conclusion and Future Work 

To ensure the safety of safety-critical systems, 
compulsory as well as advisory safety standards have 
been issued. Some of these standards define 
(prescriptive/objective-based) safety-oriented 
processes. Compliance with the standards is 
necessary to provide process-based evidence for 
certification purposes. To support efficient as well as 
cost-effective provision of safety-related process 
artefacts, we have introduced a new method, called 
THRUST. THRUST combines model-driven 
certification, safety-oriented process line engineering 
and process-based argumentation line engineering. 
Via this combination, THRUST enables reuse and 
semi-automatic generation and thus supports efficient 
and cost-effective provision of artefacts. For 
illustration purposes concerning the usage and 
effective potential, we have then applied THRUST 
for the provision of a small portion of DO-178B/C 
deliverables. From this application, we have drawns 
our lessons concerning the general soundness of 
THRUST. 

In the future, we aim at further developing 
THRUST. More specifically, in the short-term future, 
we intend to experimentally validate our approach. 
Based on the work done in the framework of SafeCer 
[6 and 25], the idea is to define a set of research 
questions (e.g. is our method (focus on MDSafeCer) 
less time-consuming? Is reuse really possible? Does 
our method increase quality e.g., by reducing the 
potential fallacies in compliance-related assurance 
case?) to be investigated based on a more complex 
case-study. The goal of the validation is to provide 
evidence that THRUST/MDSafeCer is sound, 
feasible and applicaple. Considered the complexity of 
the certification process, the concretization of 
THRUST will bring advantages in industrial settings. 
Then, in the medium-term future we aim starting 
contributing to the provision of adequate meta-
models to enable model driven certification at lines 
level. Our plan in this direction is to target the 
provision of a meta-model for safety-oriented process 
lines. Our intention is to build on top of S-
TunExSPEM and extend it by integrating the 
variability support proposed in vSPEM. 

References 
[1] Gallina, B., and I. Sljivo, and O. Jaradat, 2012, 

Towards a Safety-oriented Process Line for 

Enabling Reuse in Safety Critical Systems 
Development and Certification. Post-proceedings 
of the 35th IEEE Software Engineering Workshop 
(SEW-35), IEEE Computer Society, ISBN 978-
1-4673-5574-2, Heraclion, Crete (Greece).  

[2] Gallina, B., and S. Kashiyarandi, and H. Martin 
and R. Bramberger, 2014, Modeling a Safety- 
and Automotive-oriented Process Line to Enable 
Reuse and Flexible Process Derivation. 
Proceedings of the 8th IEEE International 
Workshop on Quality-Oriented Reuse of 
Software (QUORS), IEEE Computer Society, 
Västerås (Sweden). 

[3] Gallina, B., and S. Kashiyarandi, and K. 
Zugsbrati and A. Geven, September 8, 2014, 
Enabling Cross-domain Reuse of Tool 
Qualification Certification Artefacts. Proceedings 
of the 1st International Workshop on 
DEvelopment, Verification and VAlidation of 
cRiTical Systems (DEVVARTS), Springer, 
LNCS, Florence (Italy). 

[4] Habli, I., and T. Kelly, 2010, A Safety Case 
Approach to Assuring Configurable 
Architectures of Safety-Critical Product Lines. 
Proc. of the International Symposium on 
Architecting Critical Systems (ISARCS), Prague, 
Czech Republic, Springer, pp. 142-160. 

[5] Gallina, B., 2014, A Model-driven Safety 
Certification Method for Process Compliance. 2nd 
IEEE Workshop on Assurance Cases for 
Software-intensive Systems (ASSURE), Naples, 
Italy, 3-6 November, 2014. (under evaluation) 

[6] Gallina B. et al, 2014, nSafeCer, D121.1: Generic 
process model for integrated development and 
certification.  

[7] RTCA DO-178C (EUROCAE ED-12C), 
November 2011, Software Considerations in 
Airborne Systems and Equipment Certification. 

[8] RTCA DO-178B (EUROCAE ED-12B), 1992, 
Software Considerations in Airborne Systems 
and Equipment Certification,Washington DC. 

[9] OMG, 2008, Software & systems Process 
Engineering Meta-model (SPEM), v 2.0. Full 
Specification formal/08-04-01, Object 
Management Group. 



[10] Eclipse Process Framework www.eclipse.org/epf/  

[11] Martınez-Ruiz, T., and F. Garcia, and M. 
Piattini, 2014, Towards A SPEM v2.0 Extension 
to Define Process Lines Variability Mechanisms. 
Book Chapter, DOI: 10.1007/978-3-540-70561-
1_9.  

[12] Gallina, B., and K. R. Pitchai and K. 
Lundqvist, 2014, S-TunExSPEM: Towards an 
Extension of SPEM 2.0 to Model and Exchange 
Tuneable Safety-oriented Processes. 11th 
International Conference on Software 
Engineering Research, Management and 
Applications (SERA), SCI 496, Springer, ISBN 
978-3-319-00947-6, Prague, Czech Republic, 
August 7-9, 2013. 

[13] Rushby, J., 2011, New Challenges In 
Certification For Aircraft Software. Substantially 
revised version of the paper included in the 
Proceedings of the Ninth ACM International 
Conference On Embedded Software (EMSOFT), 
Taipei, Taiwan, October, pp. 211-218. 

[14] Daniels, D., May, 13, 2014, The Efficacy of 
DO-178B. Proceedings of the first workshop on 
Planning the Unplanned Experiment: Assessing 
the Efficacy of Standards for Safety Critical 
Software (AESSCS). 

[15] Fusani, M. and G. Lami, 2014, On the 
efficacy of safety-related software standards. 
Proceedings of the first workshop on Planning 
the Unplanned Experiment: Assessing the 
Efficacy of Standards for Safety Critical 
Software (AESSCS), Newcastle upon Tyne, 13 
May 2014. 

[16] Holloway, C., 2008, Safety case notations: 
Alternatives for the non-graphically inclined? In 
Proceedings of the 3rd IET International 
Conference on System Safety, IET Press, pp 1–6. 

[17] GSN. Community Standard Version 1. 
November, 2011, 
http://www.goalstructuringnotation.info/documen
ts/GSN Standard.pdf. 

[18] Emmet, L., and G. Cleland, 2002, Graphical 
notations, narratives and persuasion: A pliant 

systems approach to hypertext tool design. In 
Proceedings of the Thirteenth ACM Conference 
on Hypertext and Hypermedia, HYPERTEXT, 
New York, NY, USA, ACM, pp 55–64. 

[19] SACM http://www.omg.org/spec/sacm/1.0. 

[20] Sljivo, I., and B. Gallina, and J. Carlson, and 
H. Hansson, September 2014, Generation of 
safety case argument-fragments from safety 
contracts. In The 33rd International Conference 
on Computer Safety, Reliability and Security 
(SafeComp). 

[21] Hurtado Alegría, J. A., and M. C. Bastarrica, 
A. Quispe, S.F. Ochoa, 2014, MDE-based 
process tailoring strategy. Journal of Software: 
Evolution and Process, VL-26, IS-4, SN-2047-
7481, pp. 386-403. 

[22] Marquez, J. C., 2011, Modification to Legacy 
Software Developed per DO-178A Level 1 to 
DO-178B Level A: How to Organize Software 
Life Cycle Data for Software Approval in 
Aircraft Certification. In: Latin American 
Symposium On Dependable Computing (LADC), 
São José dos Campos. 

[23] Rombach, D., and R. Jeffrey, B. Peterson, M. 
D’Ambrosa, M. Fusani, H.-W. Jung, S. Ferber, 
J.Münch, and A. Ocampo, 2006, Process 
Engineering. In “A Process Research 
Framework”, Eileen Forrester ed., Software 
Engineering Institute, pp. 20-28. 

[24] SYNOPSIS-SSF-RIT10-0070: Safety 
Analysis for Predictable Software Intensive 
Systems. Swedish Foundation for Strategic 
Research. 

[25] ARTEMIS-JU- 295373 nSafeCer - nSafety 
Certification of Software-Intensive Systems with 
Reusable Components.  

Acknowledgements 
This work has been partially supported by the 

Swedish SSF SYNOPSIS project [24] and by the 
European ARTEMIS nSafeCer project [25]. 

33rd Digital Avionics Systems Conference 
October 5-9, 2014 


