
Optimizing Preemption-Overhead Accounting in
Multiprocessor Real-Time Systems ∗

Bryan C. Ward
Dept. of Computer Science

University of North Carolina at
Chapel Hill

Abhilash Thekkilakattil
Div. of Software Engineering

Mälardalen University,
Västerås, Sweden

James H. Anderson
Dept. of Computer Science

University of North Carolina at
Chapel Hill

ABSTRACT
There exist two general techniques to account for preemption-
related overheads on multiprocessors. This paper presents
a new preemption-related overhead-accounting technique,
called analytical redistribution of preemption overheads
(ARPO), which integrates the two previous techniques to
minimize preemption-overhead-related utilization loss. ARPO
is applicable under any job-level fixed priority (JLFP)
preemptive scheduler, as well as some limited-preemption
schedulers. ARPO is evaluated in a new experimental-
design framework for overhead-aware schedulability studies
that addresses unrealistic simplifying assumptions made
in previous studies, and is shown to improve real-time
schedulability.

1. INTRODUCTION
The widespread availability of multicore processors has

motivated their adoption in real-time systems. As a result,
numerous multiprocessor scheduling algorithms have been
proposed. Some of these algorithms, such as PFair [4], and
RUN [26], have been proven optimal1 under common analysis
assumptions. However, empirical results have demonstrated
that many of these algorithms are often impractical due
to high runtime overheads, despite their optimality (under
overhead-oblivious analysis assumptions) [9]. Overheads
are therefore an important consideration in the design,
development, and analysis of multiprocessor scheduling
algorithms, as they are a significant source of pessimism
in the associated schedulability analyses [6].
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1An optimal scheduler guarantees all deadlines are satisfied
for any feasible task system, i.e., one for which a correct
schedule exists.
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Arguably one of the most significant overhead sources in
multiprocessor real-time systems, and indeed the overhead
source that most affects the aforementioned optimal sched-
ulers, are preemption-related overheads. There are several
preemption-related overheads such as scheduling, context
switching, pipeline delays, and most significantly cache-
related preemption and migration delays (CPMDs). CPMDs
model the temporal overhead associated with the loss of cache
affinity as a result of a preemption or migration to another
processor, and are often the largest and most analytically
complex source of pessimism owing to multiple cache levels
on multicore chips. In the remainder of this paper, all of these
overhead sources are accounted for generally as preemption-
related overheads.

Consider the example depicted in Fig. 1 (a) in which task
τ2 is preempted by τ1 at time t = 4. When τ2 resumes at
t = 5, it may have lost cache affinity and therefore may
execute for longer than it would have if it was not preempted.
Because τ2 may have evicted all of τ1’s working set, or the set
of cache lines with which τ1 had affinity, the CPMD cost is
the working-set size (WSS ) multiplied by the cache-miss cost.
Note that in Fig. 1 (a), this overhead is modeled as occurring
between time t = 5 and t = 6, though in practice, τ2 executes
during this time—the overhead simply models the increase in
execution time of τ2 on account of the preemption overhead.

To ensure that deadlines are not missed on account
of preemption-related overheads, such overheads must be
incorporated into schedulability analysis. To do so, intuitively,
execution times must be inflated to account for the effects of
overheads. The inflated task system may then be analyzed
using overhead-oblivious schedulability tests, consequently
guaranteeing the absence of deadline misses even in the
presence of preemption-related overheads. There exist two
general techniques for inflating task execution times to
account for such overheads, which herein we call task- and
preemption-centric accounting, respectively [13, 21].

Under task-centric accounting [13, 21], each task’s exe-
cution cost is inflated by its worst-case preemption cost
multiplied by an upper bound on the number of times it may
be preempted. For example, in Fig. 1 (a), the preemption cost
of one time unit would be included in the execution time of τ2.
However, when more than two tasks are considered, a bound
on the number of times each task can be preempted, and thus
how many times the preemption cost is charged, is usually a
gross upper bound on the number of preemptions observed
in practice. The magnitude of such pessimism is further
amplified in globally scheduled multiprocessor systems (i.e.,
systems in which tasks are scheduled on multiple CPUs
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(a) Task-centric overhead accounting.
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(b) preemption-centric overhead account-
ing.
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(c) Proposed ARPO overhead account-
ing.

Figure 1: Example task system demonstrating different preemption-overhead accounting techniques.

from a single ready queue), which can support higher
task counts (and hence generally have higher preemption-
frequency estimates).

Perhaps motivated by this deficiency of task-centric
accounting, preemption-centric overhead accounting [13, 21]
uses an alternative charging scheme that is not based on
bounds on the number of preemptions. Fundamentally,
preemption-centric accounting is based on the idea of charg-
ing the overhead of preemptions to the relinquishing task,2

i.e., task that completes and allows a previously preempted
task to resume execution, instead of the preempted task, as
in task-centric accounting. In the example in Fig. 1 (b), under
preemption-centric accounting, the preemption cost of one
time unit would instead be included in the execution cost of
task τ1 instead of τ2.

There are also trade-offs associated with preemption-
centric overhead accounting. For example, consider a two-task
system with one task having a very small WSS, and the other
with a very large WSS. Under preemption-centric accounting,
the small-WSS task would be charged for the large-WSS
task’s preemption-overhead cost, which may significantly
increase the effective utilization of the small-WSS task, and
therefore cause the system to be unschedulable. Importantly,
based on these observations, neither task- nor preemption-
centric overhead accounting strictly dominates the other.

Contributions. In this paper, we present a hybrid
preemption-overhead accounting scheme that we call analyt-
ical redistribution of preemption overhead (ARPO). ARPO
incorporates ideas from both task- and preemption-centric ac-
counting through a linear-program optimization. Intuitively,
ARPO allows for the preemption overhead to be accounted for
in part by the preempted task and in part by the relinquishing
task, as depicted in Fig. 1 (c). Linear programming can be
used to determine what fraction of each preemption overhead
should be charged to the relinquishing task instead of the
preempted task. This allows the linear-program solver to
analytically redistribute preemption overheads among the
tasks to balance different sources of analysis pessimism and
thereby minimize utilization inflation due to preemption-
related overheads.

We also extend the experimental design of previous
overhead-aware schedulability studies (e.g. [6, 9]) to consider

2This overhead is sometimes described as being charged to
the preempting task in uniprocessor systems; however, in such
systems, the preempting task is also the relinquishing task.
In multiprocessor systems, the preempting and relinquishing
tasks may be different.

more realistic task systems. To our knowledge, no previous
overhead-aware multiprocessor schedulability study has
considered task systems with varying WSSs. We address such
issues in a schedulability study of ARPO and have devised
an improved experimental-design framework, which we claim
more accurately reflects characteristics of real systems.

Organization. In Sec. 2, we describe related work and
formalize our task model. In Secs. 3 and 4, we describe ARPO
in the context of fully preemptive and limited-preemption
schedulers, respectively. In Sec. 5, we discuss potential
extensions and applications of our work. In Sec. 6, we present
our new experimental-design framework for overhead-aware
schedulability studies, and evaluate ARPO using it. Finally,
we conclude in Sec. 7.

2. BACKGROUND
In this section, we describe our system model and

assumptions, describe relevant background material, and
place our work in the context of previous research.

2.1 Related Work
Previous work has shown that, depending on the platform,

CPMDs can be over 1 ms, and can increase execution times
by up to 33% [6, 10]. Furthermore, preemptions also increase
bus contention [7]. Consequently, there has been a large body
of work to reduce preemption-overhead-related utilization
loss. Specifically, two principal approaches have been taken:
(i) improved accounting techniques of preemption-related
overheads, and (ii) alternative scheduling policies that give
rise to fewer preemptions and thereby lesser preemption-
related overheads using existing accounting techniques.

To apply classic overhead-oblivious schedulability analysis
(e.g. [1, 3, 5, 18, 25]), tasks’ worst-case execution times
(WCETs) are inflated to account for overheads. For exam-
ple, Busquets-Mataix et al. [12] presented a preemption-
centric accounting technique that incorporates the effects of
instruction caches. Many others (e.g., [27, 28]) have applied
similar preemption-centric methodology to preemption-
related overheads. Lee et al. [19] proposed a task-centric
preemption-overhead accounting technique that calculates
the worst-case preemption overhead at each point in the task
code, and uses a mixed integer linear program to bound each
tasks’ worst-case response time. While all of the previously
mentioned papers focus on uniprocessors, recent work
(e.g., [31]) has focused on multi-core schedulability analysis
following either task- or preemption- centric strategies.



Others have addressed preemption-related utilization
loss by developing limited-preemption schedulers, which
reduce the number and cost of preemptions. Burns et
al. [11] introduced co-operative scheduling, in which tasks
cooperate to reduce preemptions. Baruah [2] introduced a
limited-preemption scheduling technique called floating non-
preemptive-region scheduling, which delays preemptions for
a bounded duration. There exist many other techniques to
reduce preemptions such as assigning preemption thresholds—
a detailed survey of limited-preemption scheduling on
uniprocessors is available in [14]. The advantage of limiting
preemptions is that, since the point of preemption is known
in advance, preemption overheads can be bounded less
pessimistically. Bertogna et al. [7] presented a method to
optimally place preemption points in the task code for
uniprocessors, and added the cost of preemptions to the
preempted tasks’ WCETs. Marinho et al. [24] presented
schedulability analysis for limited-preemption multiprocessor
global fixed-priority scheduling that extended their previous
work [15]. Thekkilakattil et al. [29] presented schedulability
analysis for global limited-preemption earliest-deadline-
first (EDF) scheduling, and quantified the cost of limiting
preemptions using resource augmentation.

We build upon both preemption-overhead accounting
techniques and propose a hybrid accounting technique that
is applicable under both preemptive and limited-preemption
scheduling.

2.2 System Model
We consider a system of n sporadic real-time tasks

Γ = {τ1, τ2, . . . τn} that execute on m globally scheduled
processors. Each τi is a potentially infinite sequence of jobs,
and is characterized by a minimum job inter-arrival time Ti, a
relative deadline Di (for simplicity of presentation, we assume
implicit deadlines, i.e., Di = Ti), and an execution time
(without overheads), Ci. The utilization of τi is ui = Ci/Ti
and the total task-system utilization is U =

∑n
i=1 ui.

We make the general assumption of a job-level fixed-priority
(JLFP) scheduler, i.e., each job’s priority is constant, but jobs
of the same task may have different priorities. For example,
both EDF and fixed-priority (FP) scheduling are JLFP. Since
job priorities affect preemption relations, we introduce the
following notation. We let Xi(τj) upper bound the number
of times a job of τi can be preempted by τj . For example,
under FP scheduling, if τj is of higher priority than τi, then
Xi(τj) = d Ti

Tj
e, and Xj(τi) = 0. The maximum overhead

incurred as a result of the preemption of a task τi is denoted
by ∆max

i and the maximum preemption overhead incurred
in the task set is given by ∆max = maxτi∈Γ{∆max

i }.
To account for preemption-related overheads, we derive an

inflated task set Γ′, which is assumed to be overhead-free, but
is at least as hard to schedule as Γ with overheads. Formally,
Γ′ is a safe hard-real-time approximation, which is defined
as follows.

Def. 1. (Def. 3.1 from [9]) A task set Γ′ is a safe
hard real-time approximation of Γ if and only if the following
assertion holds: If there exists a legal collection of jobs such
that a task in Γ misses a deadline in the presence of overheads,
then there exists a legal collection of jobs such that a task in
Γ′ misses a deadline in the absence of overheads.

For notational clarity, we use the prime symbol (as in Γ′)

to denote taskset parameters in the inflated taskset Γ′, i.e.,
C′
i is the inflated execution cost of τi. We assume that for

each τ ′i ∈ Γ′, D′
i = Di, and T ′

i = Ti. Determining smaller
but safe values of C′

i is the subject of this work.

2.3 Preemption-Overhead Accounting
Techniques

Using these definitions, we formally review task- and
preemption-centric preemption-overhead accounting, before
building upon them in Secs. 3 and 4. We will also illustrate
each of these approaches on the example task system
described in Tbl. 1. In these examples, for simplicity we
consider rate-monotonic fixed-priority scheduling, i.e., the
shorter-period tasks have higher priority. Consequently,
Xi(τj) is computed as described previously.

Example 1. Consider the example task set in Tbl. 1.
Under task-centric preemption-overhead accounting Γ′ is
computed as follows. τ1 is the highest priority and is therefore
never preempted. Thus C′

1 = C1 = 1. Both τ2 and τ3
however can be preempted, and thus their execution costs

are inflated as follows: C′
2 = C2 +

(⌈
T2
T1

⌉
×∆max

2

)
= 4, and

C′
3 = C3 +

(⌈
T3
T1

⌉
×∆max

3 +
⌈
T3
T2

⌉
×∆max

3

)
= 12. Therefore,

the total utilization of the resulting task set Γ′ is U ′ =
1/6 + 4/8 + 12/12 ≈ 1.66.

Task-centric preemption-overhead accounting, while a safe
approximation (recall Def. 1), is subject to two major sources
of analysis pessimism. First, Xi(τj) is an upper bound on the
number of preemptions that may occur, and depending upon
the scheduler or the actual task set, may not be very tight.
This is particularly true on globally scheduled multiprocessor
systems where the number of tasks can be large and the
release of a high-priority job only preempts one of up to
m running tasks. The second source of analysis pessimism
stems from how every task is assumed to be preempted by
every possible higher-priority job. When a job is released,
it may cause at most one preemption, but that preemption
is being accounted for by every task, instead of only one
task. This second source of pessimism motivates the design
of preemption-centric accounting.

Preemption-centric accounting. As shown in
Fig. 1 (b), under preemption-centric overhead accounting, the
relinquishing task effectively “pays for” for the preemption
overhead of the task that resumes upon its completion. To
do so, the execution time of each task is inflated to account
for the worst-case preemption overhead it may induce. This
can be modeled as follows

C′
i = Ci + ∆max. (1)

(∆max is used instead of ∆max
i , as τi is “paying for” the over-

head of another task.) Intuitively, this is a safe approximation
because it is accounting for the overhead at a higher priority.3

Task-centric accounting. As depicted in Fig. 1 (a),
under task-centric preemption-overhead accounting, the
execution time of every task is inflated to account for every
possible preemption that may occur in a valid schedule of

3An additional optimization is possible based on the observa-
tion that under preemption-centric accounting, a task need
not pay for its own preemption. Thus, maxτj∈Γ\{τi} ∆max

j

can be used instead of ∆max.



τi Ci Ti ∆max
i

τ1 1 6 0
τ2 2 8 1
τ3 4 12 2

Table 1: Example task set.

Γ [13, 21]. Therefore, since each task τj may preempt τi
Xi(τj) times and each preemption has an overhead of at
most ∆max

i time, C′
i can be computed as

C′
i = Ci +

∑
τj∈Γ

Xi(τj)∆
max
i . (2)

Example 2. Consider again the example task system
in Tbl. 1. The worst-case preemption overhead ∆max = 2,
is charged to each task. Therefore, C′

1 = C1 + ∆max = 3,
C′

2 = C2+∆max = 4, C′
3 = C3+∆max = 6, and the utilization

of the resulting task set Γ′ is U ′ = 3/6 + 4/8 + 6/12 = 1.5.

Note that preemption-centric accounting had a total
utilization of 1.5, while task-centric accounting had a total
utilization of 1.66. In this example (and indeed many systems,
as will be seen in Sec. 6), preemption-centric accounting less
pessimistically accounts for preemption overheads. However,
it is still subject to analysis pessimism, most significantly
due to the fact that every task has to “pay for” the largest
preemption overhead in the system. When the WSSs and
therefore CPMD overheads are highly variant from task to
task, preemption-centric accounting can be very pessimistic.

Comparison. These two examples demonstrate that
the overhead-accounting technique influences the task-set
utilization and therefore schedulability since each technique
is subject to different sources of analysis pessimism. Task-
centric accounting is more pessimistic when the number of
tasks is high, while preemption-centric accounting is more
pessimistic when the WSSs are highly variant. This motivates
our work, which is a hybrid of these two techniques that
balances these pessimism sources.

3. ARPO—FULLY PREEMPTIVE MODEL
In this section, we present ARPO, a hybrid preemption-

overhead accounting technique based on both task- and
preemption-centric accounting. Under ARPO, Γ′ is derived
from Γ by charging a part of the preemption overhead
to the relinquishing task and the rest to the preempted
task’s WCET. Such a charging scheme, combined with
an optimization framework, allows for different sources of
analysis pessimism to be balanced, which can improve task-
set schedulability. A simple example that illustrates the
intuition of ARPO is presented in Fig. 1 (c).

Under ARPO, the cost of preemption overheads is redis-
tributed or balanced between local per-task (i.e., task-centric)
charges, and global (i.e., preemption-centric) charges that
all tasks must “pay.” This balance is defined by the global
charge G that is added to all tasks in the system. To ensure
that every preemption overhead is fully accounted for, any
remaining overhead not accounted for by the global charge
G, must be accounted for locally. This is modeled by the

following execution-cost inflation equation

C′
i = Ci +

∑
τj∈Γ

Xi(τj) max(0,∆max
i −G) +G. (3)

To better illustrate this idea, we will consider the two
extremes. First, consider the case that G = 0. In this case,
it can be trivially shown that (3) reduces to (2), i.e., task-
centric accounting. Similarly, if G = ∆max, (3) reduces to
(1), i.e., preemption-centric accounting. ARPO also allows G
to be set between these two extremes to produce a hybrid of
task- and preemption-centric accounting that redistributes
how overheads are accounted to reduce task-set utilization.

Example 3. Recall the example from Tbl. 1, and
let G = 1. By (3), C′

1 = C1 + G = 2, C′
2 =

C2 +
(⌈

T2
T1

⌉
max(0,∆max

2 −G)
)

+ G = 3, C′
3 = C3 +(⌈

T3
T1

⌉
max(0,∆max

3 −G) +
⌈
T3
T2

⌉
max(0,∆max

3 −G)
)

+G =

9. Consequently, the total utilization of the task set Γ′ is
U ′ = 2/6 + 3/8 + 9/12 ≈ 1.46.

Note that under task- and preemption-centric overhead
accounting, the utilization of the task set is 1.66 and 1.5,
respectively. By using ARPO we further reduce the total task-
set utilization to 1.46. This demonstrates how ARPO can
balance different sources of pessimism to improve preemption-
overhead accounting.

Before showing how to choose the global overhead charge G,
we first fulfill our proof obligation to show that Γ′ produced
using (3) is a safe approximation of Γ (recall Def. 1).

Theorem 1. Γ′ computed by (3) is a safe hard real-time
approximation of Γ if G ≥ 0.

Proof. For contradiction, assume that Γ′ is not a
safe approximation. Then in the presence of preemption
overheads, a task τi ∈ Γ may miss a deadline but Γ′ is
schedulable, i.e., no task in Γ′ will ever miss a deadline
assuming no overheads. This implies that in the schedule
of Γ, which includes preemption overheads, there exists a
preemption whose overhead is not entirely accounted for by
Γ′. Without loss of generality, assume that the unaccounted
for preemption is of a job of task τi, and this preemption has
an overhead of ∆i ≤ ∆max

i .
Observe that

∑
τj∈ΓXi(τj) max(0,∆max

i ) ≥ 0. Thus, by

(3), ∀τ ′j ∈ Γ′, C′
j ≥ Cj + G. Therefore, by (1), and the

assumption that preemption-centric accounting results in
a safe hard real-time approximation, G time is accounted
towards every preemption. Thus, by the assumption that τi’s
preemption, ∆i, is not entirely accounted for, G < ∆i.

For each preemption, G has been accounted for by the
task that relinquished the processor to allow τi to execute.
Therefore, max(0,∆i − G) ≤ max(0,∆max

i − G) remains
unaccounted for. By definition, τi can be preempted at most∑
τj∈ΓXi(τj) times. By (3), C′

i includes max(0,∆max
i −G)

overhead for every possible preemption. Therefore, since
G + max(0,∆max

i − G) ≥ ∆i, ∆i is totally accounted for.
Contradiction.

After proving that ARPO is a safe approximation for any
value of G ≥ 0, and observing that ARPO can balance
different sources of analysis pessimism to reduce utilization,
the natural question is: what value of G is best? While
there may be several possible optimization criteria, which



are further discussed in Sec. 5, here we show how linear
programming can be used to minimize the utilization of Γ′.

Optimization formulation. In the construction of our
linear program, we identify a number of constants with
respect to the linear program. Specifically, all original (non-
inflated) task parameters, e.g., Ti,Di, Ci, ui, ∆max

i , and
Xi(τj) are constants. We assume G, and ∀τi ∈ Γ, C′

i are
variables in the linear program. Additionally, we add another
variable Li for each task τi ∈ Γ, which corresponds to the
max term in the summation in (3) and models how much of
the preemption overhead is charged locally by the preempted
task. Using these constants and variables, we can reformulate
(3) as a set of linear constraints with the objective to minimize
U ′.

First, we observe the max(0,∆max
i − G) is not a linear

expression. However, using well-known techniques, we can
model this term as follows.

Constraint Set 1. The linear constraints corresponding
to max(0,∆max

i −G) are given by

∀τi ∈ Γ : Li ≥ ∆max
i −G,

∀τi ∈ Γ : Li ≥ 0.

Intuitively, if max(0,∆max
i − G) > 0, then the first

constraint will limit how Li is set, otherwise the second
constraint will ensure Li ≥ 0.

After developing Constraint Set 1, we can model the rest
of (3) as follows.

Constraint Set 2. The linear constraints corresponding
to (3) are given by

∀τi ∈ Γ : C′
i ≥ Ci +

∑
τj∈Γ

Xi(τj)Li +G.

We note that for Constraint Set 2 to be linear, Xi(τj) must
be a constant. However, in most common JLFP schedulers,
such as EDF or FP scheduling, Xi(τj) is the ceiling of the

two tasks’ periods, dTj

Ti
e, if under FP τj has a higher priority

than τi, or under EDF if τj has a shorter period than τi.
Because task periods are assumed to be constants, Xi(τj) is
also a constant.

Constraint Set 3. The linear constraint corresponding
to the assumption that G must be positive (as required by
Thm. 1), is given by

G ≥ 0.

While Constraint Sets 1-3 are sufficient to correctly
model (3), we can also add the following constraint as an
optimization.

Constraint Set 4. The following linear constraints en-
sure that (if possible) after inflation no per-task utilization
overutilizes a single processor.

∀τi ∈ Γ : u′
i =

C′
i

T ′
i

≤ 1. (4)

Constraint Set 4 demonstrates the flexibility and power
of using linear programming to choose a global charge, G.
The LP solver can minimize the total utilization of the

τi Ci Ti bi Bi,k ∆i,k

τ1 1 5 1 1 0.00
τ2 10 15 7 3.00, 0.75,

2.25, 0.75,
1.50, 0.75,
1.00

0.25, 1.00,
0.00, 0.50,
0.25, 0.25,
0.00

Table 2: Example limited-preemption task set.

inflated task system, subject to the constraint that each
tasks’ utilization is at most one (if any per-task utilization
exceeds one, all of its deadlines may be missed, and thus the
system is unschedulable).

We note that minimizing system utilization, subject to
Constraint Set 4 does not necessarily imply an optimal setting
of G for hard real-time multiprocessor systems, for which
most schedulability tests are not utilization-based.4 In other
words, an alternative setting of G, which may increase system
utilization, may result in a schedulable task system. We
discuss this further in Sec. 5.

4. ARPO—LIMITED-PREEMPTION
MODEL

In this section, we describe the application of ARPO to
limited-preemption schedulers. While there exist a number
of different models for limited-preemption scheduling (de-
scribed in Sec. 2), they are all motivated by the desire to
reduce preemption-related overheads, and improve WCET
analysis [2, 7]. By limiting the number of preemptions,
for example, by enforcing that preemptions occur at a
limited number of preemption points in the code, bounds on
the number of preemptions can be improved. Furthermore,
tighter bounds on the preemption costs can be calculated
for each preemption point,5 and can be incorporated
more accurately into the analysis. For these reasons, it is
interesting and important to study ARPO in the context
of limited-preemption schedulers. Specifically, ARPO can
redistribute preemption overheads among the preempted and
relinquishing task differently than in the preemptive case,
because the bounds on the number of times a task may be
preempted are in many cases much tighter.

Limited-preemption task model. Before we present
ARPO in the context of limited-preemption schedulers, we
must first formalize our extended limited-preemption task
model. Unless stated otherwise, our limited-preemption task
model uses the same notation as the preemptive model
described in Sec. 2. Each tasks’ execution time is composed of
a set of bi non-preemptable blocks. The maximum execution
time of the kth block is given by Bi,k. It follows that the
overhead-oblivious WCET of a task τi is the sum of all of its

4In fact, we tried adding a constraint corresponding to
the utilization-based schedulability condition in [17], and
found the schedulability to be inferior to optimizing for
utilization and applying more expensive non-utilization-based
schedulability tests.
5Such bounds are derived through timing-analysis tools.
Tighter bounds are made possible by exploiting knowledge
about the state of the task at each preemption point, for
example, that certain cache lines may not be accessed again
before the completion of the job.
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Figure 2: Illustration of task-centric preemption-
overhead accounting applied to the limited-
preemption task system in Tbl. 2.
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Figure 3: Illustration of the preemption-centric
accounting applied to the limited-preemption task
system in Tbl. 2.

non-preemptable blocks, Ci =
∑bi
k=1 Bi,k. Under this model,

preemptions can only occur at block boundaries. The worst-
case overhead of a preemption after block Bi,k is denoted by
∆i,k (∆i,bi is always 0).

Example 4. We demonstrate the limited-preemption
scheduling model through the simple example task system
shown in Tbl. 2, assumed to be scheduled by EDF on
m = 1 processor. First, we apply task-centric preemption
accounting to Γ, which is depicted in Fig. 2. Under limited-
preemption scheduling, task-centric accounting is intuitive—
the execution time of each task is inflated to account for the
preemption overhead after each block. Thus, in the example
task system C′

2 is equal to C2 +
∑b2
k=1 ∆2,k = 12.25. The

WCET of task τ ′1 is equal to 1 since there is only a single
block, which can never be preempted. Consequently, the
total utilization of the task set Γ′ is U ′ = 1/5 + 12.25/15 ≈
1.02. Note that this task system is not schedulable on a
uniprocessor.

For the purpose of comparison, we briefly review
preemption-centric accounting in the context of limited-
preemptive scheduling.

Example 5. Under preemption-centric accounting, which
is illustrated in Fig. 3, each task’s execution cost is inflated by
∆max, just as under a preemptive scheduler. In the example
task set in Tbl. 2, the largest preemption cost is one time
unit. Thus, C′

1 = C1 + 1 = 2 and C′
2 = C2 + 1 = 11, and the

resulting utilization of Γ′ is U ′ = 2/5 + 11/15 = 1.133. Note
that Γ is also not schedulable in this case, and in fact, the
utilization under preemption-centric accounting is greater
than under task-centric accounting in contrast to the example
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preemption overhead 
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preemption overhead 
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Figure 4: Illustrate of ARPO applied to the limited-
preemption task system in Tbl. 2.

given in the previous section.

Observe that in this example, preemption-centric account-
ing does not use any of the limited-preemption-specific task-
system information, such as the number of preemptions
bi or the duration of specific preemptions ∆i,k. Under
ARPO, this information is incorporated into the overhead
accounting, while leveraging the benefits of preemption-
centric accounting. Specifically, equation (3), can be extended
as follows.

C′
i = Ci +

bi∑
k=1

max(0,∆i,k −G)G (5)

Example 6. Consider again the example task system
in Tbl. 2, which is depicted using ARPO in Fig. 4, and
assume that G = 0.25. In the resulting task set Γ′, the
C′

1 = C1 +G = 1.25 and the WCET of task τ ′2 is given by
C′

1 = C1+
∑bi
k=1 max(0,∆i,k−G)+G = 10+(1−0.25)+(0.5−

0.25) + 0.25 = 11.25. Therefore, the total task-set utilization
is U ′ = 1.25/5 + 11.25/15 = 1, which is schedulable under
EDF on a uniprocessor.

This example demonstrates how redistributing 0.25 time
units of overhead from τ2 to τ1 is safe and reduces overhead-
related analysis pessimism, while still producing a safe
approximation. Next, we show how the linear program from
Sec. 3 can be altered for limited-preemption schedulers.

Optimization formulation. To formulate ARPO as
applied to limited-preemption schedulers, the first two
constraints sets described previously must be replaced to
reflect (5). Constraint Sets 3 and 4 can be used without
modification. The constants and variables are largely the
same as in the previous formulation with the following
exception. Instead of introducing a single variable Li for
each task τi ∈ Γ, there is a variable to model the local
charge for each preemption point, Li,k for each τi ∈ Γ and
k ∈ {1, . . . , bi}.

Constraint Set 1 is replaced by the following.

Constraint Set 5. The linear constraints corresponding
to max(0,∆i,k −G) are given by

∀τi ∈ Γ, k ∈ {1, . . . , b} : Li,k ≥ ∆i,k −G,
∀τi ∈ Γ, k ∈ {1, . . . , b} : Li,k ≥ 0.

Similarly, Constraint Set 2 is replaced by the following.



Constraint Set 6. The linear constraints corresponding
to (5) are given by

∀τi ∈ Γ : C′
i ≥ Ci +

bi∑
k=0

Li,k +G.

These two constraints, in conjunction with Constraint
Sets 3 and 4 model ARPO under limited-preemptive sched-
ulers. The minimization objective of this linear program is
the same as before: minimize total task-set utilization. We
note that ARPO does not account for any blocking caused
by the effects of non-preemptive execution. Such blocking
must be incorporated separately in schedulability analysis.

5. DISCUSSION
Thus far, we have presented ARPO, a general preemption-

overhead accounting technique, and shown how linear
programming can be used to minimize the contribution of
preemption-related overhead to system utilization. While
minimizing utilization in most cases improves schedulability,
there are some task systems for which this is not the case.
Most often this is due to the presence of one or more tasks
with very large utilizations, which are more difficult to
schedule. In the remainder of this section, we discuss how G
can be optimally set, sometimes at the expense of increased
runtime complexity.

Soft real-time schedulability. It has been shown
that global EDF is optimal with respect to soft real-
time schedulability under the definition of soft real-time
correctness that requires the extent of any deadline tardiness
to be analytically bounded (i.e., finite). There exists a large
body of work on soft real-time scheduling (see [16] for recent
work and relevant citations). An important and relevant
result in soft real-time scheduling is that U ≤ m implies soft
real-time schedulability. So while deadline misses are possible,
the maximum tardiness of each job is bounded. Thus, when
ARPO is applied to soft real-time systems scheduled under
global EDF, the linear program described in Sec. 3 produces
an optimal setting of G. Specifically, if there exists a setting
of G that results in a system with bounded tardiness, then
the task system produced by the ARPO linear program will
also have bounded tardiness. This follows from the fact that
the linear program minimizes system utilization, and the
utilization-based soft real-time schedulability test is U ≤ m.

Minimizing response times. Ideally for hard real-
time system, we would like to include constraint(s) in our
ARPO linear program to ensure that the response time
of each task is at most its deadline. The result of such a
formulation would be that if the solver returned a feasible
solution, then the system would be schedulable. However,
most algorithms for computing response times are not of
polynomial time complexity (e.g., [8, 22]), and therefore
cannot be incorporated in a linear program, which can be
solved in polynomial time. For this reason, in this work we
have optimized for total task-set utilization, which we believe
is a close proxy for schedulability.

An alternative approach, which is more computationally
expensive, is to instead consider an integer linear program
(ILP). Lisper and Mellgren [20] demonstrated how classic
response-time analysis equations can be formulated as an
ILP. It may be possible to integrate ideas from ARPO into

such an ILP so that overhead-aware response times can be
minimized, thereby ensuring schedulability if it is feasible for
any setting of G. However, it has been previously noted [20]
that such an ILP can be very expensive to solve.

6. EVALUATION
In this section, we present a new experimental design

for overhead-aware schedulability experiments, and use
it to evaluate ARPO. To our knowledge, this is the
first multiprocessor overhead-aware schedulability study to
consider task systems with different per-task WSSs.

Experimental design. In this section, we evaluate
ARPO on the basis of hard real-time schedulability, which
we assess by determining the fraction of randomly generated
task systems that are schedulable. We randomly generated
task systems using a largely similar methodology to previous
studies [9]. We considered implicit-deadline task systems (i.e.,
Di = Ti) scheduled by global EDF on a 6-core processor.6

We considered short, moderate, and long periods, selected
uniformly over [3, 33)ms, [10, 100)ms, and [50, 250)ms, re-
spectively. Per-task utilizations were chosen either uniformly
over [0.001, 0.1] (light), [0.1, 0.4] (medium), [0.5, 0.9] (heavy);
exponentially with a mean of 0.1 (light), 0.25 (medium) and
0.5 (heavy); or bi-modally over either [0.001, 0.5) or [0.5, 0.9]
with respective probabilities of 8/9 and 1/9 (bimo-light),
6/9 and 3/9 (bimo-medium), and 4/9 and 5/9 (bimo-heavy).
For each design point, between 500 and 5, 000 task systems
were generated, or until the mean was estimated to within a
confidence interval of 0.05.

To the best of our knowledge, all previous overhead-
aware multiprocessor schedulability studies have assumed
that all tasks have the same WSS (non-constant WSSs
have been considered in uniprocessor schedulability studies,
e.g., [23]). While this assumption has proved useful in
studying multiprocessor overhead accounting techniques,
it is subject to two significant weaknesses. First, such an
assumption is rather unrealistic, as in practice different tasks’
cache usage may clearly differ within the same system, and
also pessimistic, as assuming the largest task’s WSS for
all tasks, though valid, is an over-approximation. Second,
by setting a task’s WSS without considering its execution
requirement (or vice versa), it is possible to create tasks
with unrealistic WSSs. Tasks with small execution times
cannot access as much memory during their execution, and
thus must have smaller WSSs in practice. This observation
motivates the WSS selection in our experimental design.

In our experiments, we randomly choose WSSs correspond-
ing to the maximum amount of data a task may access within
some fraction of its execution time. This process is based
on the assumption that longer-running tasks likely access
more memory than shorter-running tasks. Such fractions
were chosen as either a constant of 0.1 (light), 0.25 (medium),
or 0.5 (heavy); uniformly over [0.01, 0.1] (light), [0.1, 0.25]
(medium), or [0.25, 0.5] (heavy); or bi-modally over either
[0.01, 0.1] or [0.25, 0.5] with respective probabilities of 8/9 and
1/9 (bimo-light), 6/9 and 3/9 (bimo-medium), and 4/9 and
5/9 (bimo-heavy). Importantly, under all of these different
WSS distributions, the worst-case preemption overhead is no

6As suggested by [9], clustered scheduling improves schedu-
lability for higher core counts. We therefore focus on lower
core counts, or the schedulability within a cluster.
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Figure 5: Sample schedulability graphs.

greater than the task’s execution time.
Overhead measurements used in our schedulability study

were taken from previous experiments [9] on a 24-core 64-
bit Intel Xeon L7455 system with four physical sockets and
uniform memory access (UMA). We evaluated schedulability
assuming tasks were globally scheduled within each six-core
socket. Each socket has a shared 12 MB L3 cache.

Using this experimental design, we generated over 200
schedulability graphs, which can be found online [30]. Herein,
we present a representative sample of a few graphs in
Fig. 5, which depicts relevant trends. Each graph plots hard
real-time (HRT) schedulability against system utilization
under a specific choice of per-task period, utilization, and
WSS random distributions. The curves denoted TASK and
PREEMPTION represent task- and preemption-centric overhead
accounting, respectively. The curve denoted ARPO, represents
ARPO overhead accounting based on the linear program
described in Sec. 3. Finally, the curve denoted NONE, depicts
is a reference curve that depicts schedulability assuming no
overheads are accounted for, and is therefore an upper bound
on overhead-aware schedulability.

Obs. 1. ARPO can improve real-time schedulability, in
some cases providing more than half a processor’s worth of
additional processing capacity.

This observation is supported by Fig. 5 (a). This demon-
strates how redistributing preemption overheads can reduce
task-set utilization, and thereby have a significant positive
impact on schedulability.

Obs. 2. Choosing G in ARPO via the utilization-based
LP optimization can sometimes slightly decrease HRT schedu-
lability.

This observation is supported by Fig. 5 (b). This result
may seem surprising at first, given that ARPO generalizes
both preemption-centric accounting (G = ∆max) and task-
centric accounting (G = 0). However, because the LP solver
in ARPO minimizes total utilization, it is possible that by
redistributing the overheads to minimize utilization, some
tasks’ worst-case response time may be larger than using
task- or preemption-centric accounting, which may yield a
larger effective utilization. As discussed in Sec. 5, there may

be ways of setting G to improve schedulability, however, they
likely are more computationally expensive.

Obs. 3. ARPO provides a greater schedulability benefit
for task systems with fewer tasks (i.e., heavier-utilization
tasks).

This observation is supported by comparing insets (a) and
(b) of Fig. 5 in which per-task utilizations are heavy and
light, respectively. Note that in Fig. 5 (a), ARPO provides a
significant schedulability benefit. This is to be expected, as
task-centric accounting is most beneficial when the number
of tasks is small, because bounds on the number of times each
task can be preempted are less pessimistic. For task systems
in which the number of tasks is large, G is chosen by the LP
solver to charge the preemption overheads predominantly
to the relinquishing task, similarly to preemption-centric
accounting. Thus, in such cases, performance is very similar
to preemption-centric overhead accounting.

7. CONCLUSION
In this paper, we have presented a new preemption-

overhead accounting technique, ARPO, which is a hybrid of
classical task- and preemption-centric overhead accounting
techniques. In particular, preemption overheads can be
charged in part to the preempted task, and in part to the task
that relinquished the processor allowing the preempted task
to resume. We have demonstrated how to redistribute the cost
of such preemptions among all tasks in the system through
the use of a linear program, which minimizes the total task-set
utilization including overheads. ARPO is applicable to any
JLFP scheduler, and also some limited-preemption schedulers.
We also presented the first experimental-design framework
for multiprocessor schedulability experiments that considers
task systems wherein the WSS varies from task to task. We
evaluated ARPO using this experimental-design framework,
and demonstrated that ARPO can significantly benefit real-
time schedulability.
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