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Abstract. This paper describes a generic framework for explaining the
prediction of a probabilistic classifier using preceding cases. Within the
framework, we derive similarity metrics that relate the similarity between
two cases to a probability model and propose a novel case-based approach
to justifying a classification using the local accuracy of the most similar
cases as a confidence measure. As basis for deriving similarity metrics, we
define similarity in terms of the principle of interchangeability that two
cases are considered similar or identical if two probability distributions,
derived from excluding either one or the other case in the case base, are
identical. Thereafter, we evaluate the proposed approach to explaining
the probabilistic classification of faults. We show that with the proposed
approach, it is possible to find cases for which the used classifier accu-
racy is very low and uncertain, even though the predicted class has high
probability.

1 Introduction

Several papers from the last decades identify an intelligent system’s ability to
explain its predictions as a key factor for user acceptance [1–5]. Hence, a decision
support system is less likely to be accepted if a user does not understand or trust
its predictions or recommendations. For instance, in the medical domain, the
physicians will not trust a system only because of good prediction performance
but only if they understand the reasoning behind [6].

In a previous paper, we have proposed using case-based reasoning (CBR) as
an intuitive approach for justifying (explaining) the predictions of a probabilistic
model [7]. The idea is to support a non-expert user in assessing the system
reliability by querying a CBR system for justifying explanations in form of a
list of relevant, preceding cases, together with some sort of summary. While our
previous work addressed the problem of explaining regression, that is, numerical
predictions, this paper extends this approach to probabilistic classification, and
specifically, for explaining fault diagnosis.

Fault diagnosis is about detecting when a fault occurs, its location and there-
after identifying the fault type and severity [8, 9]. Both CBR and model-based
machine learning approaches have been applied to fault diagnosis [10–12]. Yet,



traditionally, CBR is not used when there is a sufficiently good model-based
solution to a problem. Still, CBR is conceptually simpler and arguable more in-
tuitive than many model-based approaches, and thus, a case-based explanation
facility can make the classification of faults more understandable.

This work is inline with previous work in CBR that uses cases to explain
model-based machine learning algorithms [13, 14]. The problem of explaining
model-based algorithms with cases is twofold. First, in order to relate cases to the
learned model, a similarity metric that measures the usefulness of a case relative
to the model is needed. Since in many cases the model was not defined with
this in mind, this is not a straightforward problem to solve. Second, a method
for explaining the prediction based on the cases must be developed. Considering
that the prediction is done with the learned model, it is also reasonable that
the explanation is closely related to the model. This work makes therefore two
contributions in order to solve this problem.

The first contribution of this paper is to use the generic, theoretically well-
defined approach to defining similarity metrics presented in [7] to probabilistic
classification. As basis for the definition of similarity, we have formulated the
principle of interchangeability that two cases are similar or identical if they can
replace each other with respect to the probability model and a statistical measure
of similarity [7]. In the previous paper, we modeled cases using log-normal linear
regression, while in this paper, we use logistic regression.

The second contribution is a novel approach for explaining classification pre-
dictions in form of the local accuracy. In [7], we used the local mean absolute
error to explain regression. The local accuracy is the fraction of the most similar
preceding cases that are correctly classified. We interpret the local accuracy as
an estimation of how likely it is that the system’s prediction is correct. The local
accuracy together with a list of preceding cases is then used as a justification of
the system performance.

The rest of the paper is organized as follows. Sect. 2 presents related work.
In Sect. 3, we give some background to similarity metrics, statistical metrics and
logistic regression. Sect. 4 presents the overall framework for explanation and
four derived similarity metrics. Sect. 5 describes the application of the proposed
approach to explaining classification of faults. In Sect. 6, we make concluding
remarks and describe future work.

2 Case-based Explanation

This section presents related work that – similarly to the proposed approach –
uses cases for explaining systems. This is a research field called case-based expla-
nation (CBE) [15–17, 4]. CBE can, similarly to CBR, be divided into knowledge
intensive and knowledge light CBE where the former makes use of explicit do-
main knowledge while the latter uses mainly knowledge already contained in
the similarity metric and the case base [18]. The current work is an instance of
knowledge light CBE with no explicit explanation model.



Furthermore, knowledge light CBE differs in how cases are explained. While
our work uses CBR to make explanations of model-based machine learning al-
gorithms, other work uses model-based methods to make explanations of CBR
systems. The ProCon system described in [19, 20] uses a naive Bayes classifier
trained on all cases to find which features of a case support or oppose a classifi-
cation. The system presented in [21] by the same author generates rules from the
nearest neighbors in order to explain the retrieved cases. Both of these systems
investigate and present information to the user on what in the preceding cases
support and oppose the classification. This is not considered in our approach.

A second type of research investigates which cases to present to a user as an
explanation. The similarity metric that was used for classification might not be
the best for explanation. In [22], the authors compare similarity metrics opti-
mized for explanation with those optimized for classification, while in [23], the
authors use the same similarity metric used for classification but explore different
rules for selecting which case to use as an explanation. In [24], logistic regression
is used to find cases, close to the classification border, that are assumed to better
explain a classification. In comparison, the current work does not use CBR for
classification, but for explanation, and we assume that the similarity metric that
is best for explanation is also the best for estimating the local accuracy.

The third type of knowledge light CBE research addresses – similarly to
our approach – the explanation of model-based machine learning methods using
cases [13, 25, 14, 26, 27]. The first knowledge light CBE for model-based learn-
ing algorithms was presented in [13]. In this paper, the author sketches ideas
on how to use the model of a neural network or a decision tree as a similarity
metric. In case of neural networks the activation difference between two cases
was proposed as a metric while the leaves in the decision tree naturally contain
similar cases. The neural network activation metric resembles our approach in
that model parts are compared, but in contrast to our approach, the metric is
not theoretically well-defined. A generic CBE framework for black-box machine
learning algorithms is presented in [14]. A neural network was locally approxi-
mated using a locally weighted linear model based on artificial cases generated
from the neural network. Then, the coefficients of the linear model were used
both as feature weights of a similarity metric and for identifying the important
features of a prediction. In case of our approach, there is no need to approximate
the machine learning model, since only probability distributions are compared.
In addition, the similarity metrics in our work are theoretically well-founded
[7], while there is no theoretical motivation in [14] to why the linear regression
weights can be used in a similarity metric.

3 Preliminaries

In this section, we define the notion of a true metric that is important in order to
index cases for fast retrieval and we discuss the relation between similarity and
a distance. In addition, we present the J-divergence that is a statistical measure
of similarity between probability distributions that we use in our definition of



similarity between cases. Last, we describe multinomial logistic regression that
we use as an example of a probabilistic classifier for classifying faults.

3.1 Similarity and True Metrics

In order to make fast retrieval of cases possible, similarity metrics should adhere
to the axioms of a true metric. Given a true metric, the search space can be
partitioned into smaller regions and organized so that there is no need to search
through all regions. A true metric is a distance or a dissimilarity metric, while in
CBR, we typically talk about the similarity between cases. However, similarity
and distance are coupled concepts in that a distance can easily be transformed to
a similarity or the other way around. So, we will not make a precise distinction
between distance metrics and similarity metrics in this work.

In this paper, we use the term metric informally as any function that makes a
comparison between two cases, while a true metric is a metric in a mathematical
sense. This means that a true metric is a function d that satisfy the following
three axioms where X denotes the case base with the set of all cases:

1. d(x,y) ≥ 0 (non-negative and identity) with d(x,y) = 0 if and only if x = y,
for all x,y ∈ X

2. d(x,y) = d(y,x) (symmetric) for all x, y ∈ X
3. d(x, z) ≤ d(x,y) + d(y, z) (triangle inequality) for all x,y, z ∈ X

There is a discussion in the CBR literature whether all of the above axioms are
required for useful similarity and distance metrics [28, 29]. Common true metrics
that we will use in this paper is the Manhattan distance and the Euclidean
distance. The definition of the Manhattan distance is

d(x,y) =
∑
k

|xk − yk|

where | . . . | denotes the absolute value function and k denotes a case attribute.
The Euclidean distance is defined as

d(x,y) =

√∑
k

|xk − yk|2

3.2 Statistical Metrics

A commonly used statistical metric for comparing two probability distributions
is the Kullback-Leibler divergence (KL) [30]. KL is also sometimes called the
relative entropy or the information gain, since it is closely related to the entropy
concept introduced by Shannon [31, 32].

The KL for the two probability distributions pi, pj , with parameter θ, that
are two probability density functions for continuous variables and probability
mass functions in case of discrete variables:

D(pi‖pj) =

∫
log

(
pi(θ)

pj(θ)

)
pi(θ)dθ (1)



In case of discrete parameters, the integral is replaced with a sum.
KL is not symmetric but it can be made symmetric by computing the KL

divergence in both directions and then add them together. This is an important
characteristic if we desire a true metric as described in Sect. 3.1. The symmetric
KL is often called Jeffreys divergence (J-divergence). The J-divergence will then
be:

J(pi, pj) = D(pi‖pj) +D(pj‖pi)

=

∫
log

(
pi(θ)

pj(θ)

)
pi(θ)dθ +

∫
log

(
pj(θ)

pi(θ)

)
pj(θ)dθ

=

∫
log

(
pi(θ)

pj(θ)

)(
pi(θ)− pj(θ)

)
dθ

(2)

In this paper, we use the J-divergence as basis for the similarity metrics,
because it is a commonly used measure and it has a clear information theo-
retical interpretation. Other statistical metrics for comparing distributions are
also available such as the total variation distance, the Euclidean distance and
the Jensen-Shannon divergence [33, 30, 34–36]. Later, we will see that there are
connections between the J-divergence and other types of distances between prob-
ability distributions.

3.3 Logistic regression

Logistic regression is a binary classifier that can be considered a discrete version
of linear regression [37]. Thus, it is a linear classifier that can only separate
between classes that are linearly separable. However, since no assumption is
made of the distribution of the independent variables it is less restrictive than
the related naive Bayes classifier [38]. Assuming a binary classification with
c ∈ {0, 1} and feature vector x, for logistic regression, we have:

p(c = 1|x) =
1

1 + exp(−ωTx)

p(c = 0|x) =
exp(−ωTx)

1 + exp(−ωTx)

(3)

where ω is a weight vector with K+1 weights assuming that x has K+1 features
including an extra feature that is 1 for all cases.

Logistic regression can be generalized to the multiclass situation, called multi-
nomial logistic regression, by training one classifier for each class – using one
class against all other classes - and then combine the classifiers’ predictions. The
probability of a class z ∈ {1, 2, . . . ,m} is computed as follows:

p(c = z|x) =
exp(ωT

z x)∑m
z′=1 exp(ωT

z′x)
(4)

where ωz is the fitted weight vector for each classifier and m is the number of
classes. Then, a new case is classified with the most probable class.



4 The Case-based Explanation Framework

This section applies the generic case-based explanation framework presented in
[7] to classification. The framework justifies the predictions by estimating the
system reliability case by case. By only considering probabilistic methods, we
can give the framework a good theoretical foundation, while the explanation part
can in principle be used for any classifier algorithm. The proposed approach for
explaining classification is as follows:

1. Classify a new case using the probabilistic model
2. Retrieve most similar previous cases using the defined similarity metric
3. For each previous case, classify the previous case using the probability model
4. Compute the local accuracy for the new case as the fraction of correctly

classified previous cases
5. Present predicted class and the local accuracy together with most similar

cases to the user

Sect. 5 presents an application of this framework to a real example where we
explain the predictions from a logistic regression model for diagnosing faults.
However, before that, we will describe a generic approach to defining similarity
metrics and derive metrics for comparing cases with respect to probabilistic
classification.

4.1 Statistical Measures of Similarity for a Probabilistic Classifier

In this section, we present the principled approach to defining similarity metrics
from probability distributions that was introduced in [7], and we apply it to
probabilistic classification. We start by defining a basis for comparing two cases
from a case base called the principle of interchangeability, and then, we derive
four possible metrics. The principle of interchangeability is defined as follows:

Definition 1. Two cases xi,xj in case base X are similar if they can be inter-
changed such that the two probability distributions Pi, Pj inferred from excluding
xi and xj respectively from the case base – X \ xi and X \ xj – are identical
with respect to some parameter(s) of interest.

As starting point for deriving similarity metrics, we use the discrete version of
J-divergence from Sect. 3.2. The J-divergence between two cases (ci,xi), (cj ,xj)
in case base X, with respect to the class distributions, is then:

d(xi,xj) = J(pi, pj) =
∑
c

log
pi(c|xi)

pj(c|xj)
(pi(c|xi))− pj(c|xj))) (5)

where c is the class parameter and pi(c|xi) and pj(c|xj) are probability distri-
butions of the class derived from the case base when excluding the cases xi and
xj respectively.

The resulting measure between two cases can then be interpreted information
theoretically as the sum of the information gain from including one over the other



case and the information gain from including the other case over the first case in
the case base. However, the resulting J-divergence distance is not a true metric,
so an additional step might be needed that turns it into a final distance that
fulfills the axioms of a true metric.

The Eq. 5 violates axiom 1 and axiom 3 of a true metric. However, by rewrit-
ing the Eq. 5, we can derive a lower and an upper limit that both are easily
transformed into true metrics with respect to the class probability space and the
class log-probability space respectively as follows

J(pi, pj) =
∑
c

∣∣ log(pi(c|xi))− log(pj(c|xj))
∣∣∣∣pi(c|xi)− pj(c|xj)|

Then, since |x− y| ≤ | log(x)− log(y)| and max(|x− y|) = 1 for all x, y ∈ (0, 1]
we have:∑

c

∣∣pi(c|xi)− pj(c|xj)
∣∣2 ≤ J(Pi, Pj) ≤

∑
c

∣∣ log(pi(c|xi))− log(pj(c|xj))
∣∣

(6)

So the J-divergence is greater than or equal to the square of the Euclidean
distance in the probability space and lesser than or equal to the Manhattan
distance in the log-probability space. Thus, the upper and lower limits results in
two more possible distances that we can use.

Notice that the metric in Eq. 5 assumes that the true classes for both cases
are known, but in this paper the goal is to predict the class of a new case. So,
assuming that ci is unknown for xi, we cannot estimate pj since (ci,xi) cannot
be included in the case base, and thereby, we cannot compute the J-divergence
exactly. Yet, if we have a large case base, then pi and pj would anyway be
approximately equal, and hence, this would not be a problem. So, with a large
enough case base, we can approximate pj ≈ pi.

If we do not want to approximate pi and pj as equal, we either have to
compute the J-divergence analytically, which might not be easy, or estimate
the probability distributions for each case in the case base, which might be
computationally heavy. Another, more pragmatic approach for managing this
problem is to consider that when the class is known for case xj , we can actually
model that as pj(cj |xj) = 1 and pj(c|xj) = 0 for all other classes c. But, for a
new case xi with an unknown class, we estimate pi(ci|xi) using a probabilistic
model from all known cases. Then, by assuming that pi(c|xi) > 0 for all classes
c, we have the following:

J(pi, pj) =
∑
c

log

(
pi(c|xi)

pj(c|xj)

)
(pi(c|xi)− pj(c|xj))

= log

(
pi(cj |xi)

1

)
(pi(cj |xi)− 1) +

∑
c 6=cj

log

(
pi(cj |xi)

0

)
(pi(c|xi)− 0)

= log (pi(cj |xi)) (pi(cj |xi)− 1) + ∞

Since we are only interested in comparing distances relatively each other to find
the closest cases, we can choose to ignore the infinity part and only compare the



first term. Thus, we will get yet an alternative distance between two cases as
follows:

d′(xi,xj) = log (pi(cj |xi)) (pi(cj |xi)− 1) (7)

However, this leads to a different definition of similarity, since we include (cj ,xj)
in the case base for estimating both pi, pj , and that we use two different distri-
butions conditioned on whether the class is known.

We have now derived four different distances for comparing the similarity
between cases relating to our definition of similarity and the J-divergence. The
four derived distances are listed in Table 1. From now, we assume a large case
base so that the distributions pi and pj are approximately equal.

Table 1. The four derived distances and two standard distances.

Name Distance From Equation

J-divergence
∑

c log pi(c|xi)
pj(c|xj)

(
pi(c|xi)− pj(c|xj)) Eq. 5

Approximate Prob
√∑

c

∣∣pi(c|xi)− pj(c|xj)
∣∣2 Eq. 6

Approximate Log-Prob
∑

c

∣∣ log(pi(c|xi))− log(pj(c|xj)
∣∣ Eq. 6

Pragmatic log (pi(cj |xi)) (pi(cj |xi)− 1) Eq. 7

5 Explaining Fault Diagnosis

We will in this section apply the proposed approach for explaining fault diagnosis.

In fault diagnosis, faults are classified so that correct actions can be taken in
order to minimize the cost of faults. Preferable, faults should be detected and
classified before they harm the system. A measure of the confidence of a classifi-
cation is also desirable so that no unnecessary actions are taken if the classifica-
tion is wrong. Assuming that the probability model is correct, a high probability
means a high confidence, while a low probability means a low confidence in the
predicted value. However, if the probability model is locally error-prone, the
probabilities cannot be trusted, as for instance, when the linearity assumption
of logistic regression does not hold in the whole feature space. As one remedy,
we propose to use the local accuracy as a complementing, and more intuitive,
confidence measure. The local accuracy is computed locally, directly from the
most similar cases, and thereby, it should be less affected by an error-prone prob-
ability model. Consequently, a high local accuracy should be able to justify a
classification, while a low local accuracy should invalidate a classification. Thus,
a user can use this approach to decide whether to trust a prediction case-by-case
regardless of the global prediction accuracy of the algorithm.



In the following, given an error-prone logistic regression model (Sect. 5.1), we
show that it is possible to train the k-nearest neighbor algorithm (kNN) to esti-
mate the local accuracy (Sect. 5.2). Then, by looking at a case with inconsistent
confidence measures – for instance, high probability and low local accuracy – we
can detect bad prediction performance that is otherwise overlooked when only
considering the class probability (Sect. 5.3). Last, we discuss how to interpret
the local accuracy in other cases (Sect. 5.4).

For all experiments, we have used the implementation of logistic regression
and kNN provided by the Scikit-learn Python module [39]. As example data set,
we use the Steel plate faults data set [40] from the UC Irvine Machine Learning
Repository [41]. The data set consists of more than 1900 cases with 7 types of
steel plate faults and 27 different dependent variables listed in Table 2.

Table 2. Attributes: 27 independent variables, and the last rows shows the 7 fault
classes.

X Minimum X Maximum Y Minimum Y Maximum

Pixels Areas X Perimeter Y Perimeter Sum of Luminosity

Min of Luminosity Max of Luminosity Length of Conveyer TypeOfSteel A300

TypeOfSteel A400 Steel Plate Thickn. Edges Index Empty Index

Square Index Outside X Index Edges X Index Edges Y Index

Outside Global Index LogOfAreas Log X Index Log Y Index

Orientation Index Luminosity Index SigmoidOfAreas

1. Pastry 3. K Scatch 5. Dirtiness 7. Other Faults

2. Z Scratch 4. Stains, 6. Bumps,

5.1 Fitting Logistic Regression

In this section, we fit multinomial logistic regression to classify faults. As learning
parameter, we use the l1-norm and the model regulation parameter is fine-tuned
using grid search with 5-fold cross validation. Fig. 1 shows the learning curve of
the overall accuracy for classifying faults. The learning curve was computed by
splitting the data set 10 times into 70% training set and a 30% testing, and the
results were then averaged. As can be seen, the training curve and validation
curve are converging, but at a low level just above 0.7. Thus, more features or a
more complex learning algorithm would be needed to improve on this. Hence, this
is an error-prone probability model that we will use as an example to illustrate
the proposed approach.



Fig. 1. The accuracy learning curve for classifying steel faults.

5.2 Estimating Local Accuracy with kNN

After fitting the multinomial logistic regression, we train the kNN algorithm
to estimate the local accuracy. So, in this case, instead of predicting the class
of a case, we use kNN to estimate a confidence in whether it will be classified
correctly. Therefore, the classification label is replaced with 1 if a case in the
training set was correctly classified and 0 otherwise. Then, kNN estimates the
local accuracy by averaging the ones and zeros from the k-nearest neighbors,
and then, the mean squared error (MSE) is used for evaluation:

mse(X) =
∑
x∈X

(C(x)−Ak(x))2 with Ak(x) =

∑k
i=1 C(x′

i)

k
(8)

where X is a set of cases, A(x) ∈ [0, 1] is the local accuracy for the k most
similar cases of x and C(x) = 1 and C(x) = 0 indicate correct and incorrect
classification of x respectively. Then, if Ak(x) > 0.5, it is more likely than
unlikely that the classification is correct. This also means that the local accuracy
can be interpreted as the probability of a correct classification.

For fine-tuning kNN, we split the data set 10 times into 60% training set, 20%
validation set, and 20% testing set. Thereafter, we compute the average MSE
over the validation and test sets. The distances in Table 1 were used together
with the Manhattan and Euclidean distances in combination with the derived
distances to weigh in the similarity between the cases directly. Notice that the
class probabilities are considered as additional features. For all distances but
J-divergence, we normalize so that each feature has a mean of 0 and a standard
deviation of 1. The results are shown in Table 3 where Approximate Log-Prob



distance has the lowest validation MSE. Fig. 2 plots the results for a varying
number of k-neighbors.

In Fig 2, we notice that k = 9 is the best number of neighbors for Approax-
imate Log-Prob, but we must also consider how convincing it is to support a
claim with only 9 neighbors. Thus, since there seems to be no larger differences
between the MSE of k ∈ [9, 15], we can at least use k = 10 as a more convincing
explanation.

Table 3. The mean squared error (MSE) for different distances (best is in bold font).

Distance Validation MSE Test MSE k neighbors

Manhattan 0.171 0.174 10
Euclidean 0.173 0.176 9
Pragmatic 0.214 0.215 60
Approximate Prob 0.175 0.173 17
Approximate Log-Prob 0.166 0.166 9
Approximate Log-Prob Euclidean 0.172 0.173 10
Approximate Log-Prob Manhattan 0.168 0.171 9
J-Divergence 0.176 0.173 19

5.3 Case-based Explanation Examples

Given a fitted logistic regression classifier and a fine-tuned kNN algorithm, we
will now demonstrate the approach using two example faults. Table 4 and Table
5 show two examples where the target case is the fault that is being diagnosed.

Table 4. Fault 1: Low local accuracy 20% (2 of 10) and low class probability 33.4%.

Attribute Target Case 1 Case 2 Case 3 Case 4 Case 5

X Minimum 57.0 127.0 205.0 843.0 23.0 282.0
. . .
SigmoidOfAreas 0.1753 0.2253 0.2359 0.215 0.2051 0.1954

True Class (6) 7 6 7 7 6
Predicted Class 7 7 7 6 3 7
Probability of Class 0.334 0.503 0.5 0.476 0.444 0.364

For both faults, the estimated local accuracy is very low: only 1 or 2 out of 10
of the most similar cases are correctly classified. However, for the first fault, the
probability of the predicted class is also low, and thus, it is consistent with the
local accuracy. So, we have no reason to believe that the estimated probability
is wrong. In contrast, for the second fault, the probability of the predicted class



Fig. 2. MSE for the kNN algorithm using different distances and various k.

is quite high, despite that the local accuracy is very low. Then, if we also look
at the probability of the predicted class for the five most similar cases shown in
Table 5, it is quite high for all of them, although the wrong class is predicted
in each case. So, we have good reason to doubt the prediction of the classifier,
even though the classifier is quite confident in being right.

Table 5. Fault 2: Low local accuracy 10% (1 of 10) and high class probability 73.4%.

Attribute Target Case 1 Case 2 Case 3 Case 4 Case 5

X Minimum 57.0 61.0 623.0 10.0 1067.0 1338.0
. . .
SigmoidOfAreas 0.1753 0.1659 0.2018 0.1753 0.215 0.2195

True Class (6) 6 1 6 1 6
Predicted Class 7 7 7 7 7 7
Probability of Class 0.734 0.663 0.636 0.826 0.493 0.86

5.4 Analyzing the Local Accuracy

In the previous section, we saw two examples where in the first example the
proposed approach justifies the probability model’s prediction but invalidates
the second example. Thus, we have shown that the proposed approach is able



to detect when the probability model does not perform well. However, two more
interesting situations to compare are when the prediction has high probability
with a high local accuracy and when the prediction has low probability with a
high local accuracy. In both cases, the local accuracy indicates that the predic-
tion can be trusted, although the second case has low probability. In the latter
case, this mean that the probability model does not make a good probability
estimation but that the model anyway makes a good prediction of the most
probable class. Clearly, the problem of deciding when to trust a prediction can
be viewed as a decision theoretical problem and the solution will likely depend
on the application domain, for instance, the cost of a misclassification. How-
ever, due to brevity, we will not further deal with the problem of how to decide
whether the local accuracy is high or low, or what to do when it is neither high
nor low, but leave that to future work.

6 Conclusions and Future Work

In this paper, we have extended the framework for knowledge light case-based
explanation proposed in [7] to probabilistic classification, and we have applied
it for explaining fault diagnosis. Thus, a major contribution of this work is a
principled and theoretically well-founded approach to defining similarity metrics
for retrieving cases relative to a probability model for classification.

A second contribution is a novel approach to justifying a prediction by com-
puting the local accuracy as the fraction of the most similar cases that are
classified correctly. Since the justification is based on real cases and not merely
on the correctness of the probability model, we argue that this is a more intuitive
justification of the reliability than only considering the estimated probability as
a measure of confidence. For instance, as noted in Sect. 5.3, with this approach,
the users can easily detect when the prediction uncertainty of the probability
model does not agree with the computed local accuracy, and therefore, judge for
themselves whether to trust a prediction or not. Since the accuracy is computed
locally, the proposed approach addresses the problem that a probability model
might not perform consistently over the whole feature space.

An interesting future development – as already noted in previous section – is
to further investigate the use of the local accuracy for deciding when to trust or
not trust a prediction. In addition, this approach can also be used for selecting
which classifier to use for a new case. Another future research direction is to
develop CBR applications where the main task is a case-based prediction and
not just as a complement to a probabilistic prediction.
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