
Haxcel: A Spreadsheet Interface to Haskell

Björn Lisper and Johan Malmström

Dept. of Computer Engineering, Mälardalen University, P.O. Box 883, SE-721 23 Västerås,
SWEDEN

bjorn.lisper@mdh.se , jom@mail.jcd.se

Abstract. The spreadsheet paradigm offers a fast interactive loop, where the ef-
fects of updates to definitions and data are immediately visible. This makes the
paradigm attractive for program development, where redefinitions can be imme-
diately tested and the results displayed. We have designed a simple, compiler-
independent spreadsheet interface to Haskell, where cells host Haskell definition-
s. Spreadsheets are also used for high-level array calculations. In order to meet
that demand we have designed and implemented an extended array library for
Haskell, which provides a number of typical array-language facilities. Together,
the interface and the array library provide an interactive environment that can be
used both for development of general Haskell code and for array-oriented spread-
sheet calculations.

1 Introduction

Spreadsheet systems are very popular. They are used for small calculations, but also
for serious application programming in areas like science and administration, when
there is a need to perform calculations where fast and visually comprehensible feedback
is more important than computational speed. A big reason for the popularity is the
very tight definition-eval-display loop, where the effects of a redefinition of an entity
are immediately seen. This makes the spreadsheet paradigm attractive, compared with
traditional compiled languages where the compile-eval-print loop is considerably more
tedious and where results are harder to present in a way that a human can grasp quickly.

Spreadsheets support an array-oriented style of computing. Sections of spreadsheets
can be selected, and collective operations like summation can be applied to these. This
makes it convenient to express many calculations. Without doubt, part of the popularity
of spreadsheets can be attributed to this. The spreadsheet languages are also typically
without side-effects. This provides a simple and intuitive evaluation model.

However, the common spreadsheet systems have weaknesses. The languages are
typically very restricted: for instance, recursion is invariably not allowed, and only a few
basic datatypes are usually supported. Some other common weaknesses are discussed
in Section 1.

One possible remedy is to put a spreatsheet interface on top of a full-fledged pro-
gramming language. Pure functional languages are prime candidates, since they are
side-effect free. We have made such an interface, tentatively named “Haxcel”, for Haskel-
l. The idea to have functional languages as formula languages in spreadsheets is not
new [7, 8, 10], but to our knowledge this has not been done for Haskell before (although

a Haskell-based interface has been outlined in [7]). We think Haskell is an interesting
candidate for this, both as a strong language in general, and since it is relatively easy
to define domain-specific sublanguages within it. We define an extended array library,
which provides a little array language within Haskell. Thus, Haxcel can be used as a
spreadsheet system with a more powerful language, but it can also be seen as a conve-
nient environment for Haskell programming. (Note that the extended array library and
the interface are independent: the library can be used without the interface, and vice
versa.)

Haxcel is a standalone component that useshmake to invoke the Haskell compiler
at hand. It can thus be seen as a more visual relative to purely text-based interfaces such
as hi [24].

The rest of this paper is organized as follows. In Section 2, we review the com-
mon spreadsheet model and identify some of its shortcomings. Section 3 describes the
current interface and the design objectives for it. In Section 4 we describe the imple-
mentation of the interface. Section 5 describes the extended array library. Section 6
contains a spreadsheet programming example. Section 7 presents some experimental
results. In Section 8 we give an account for related work, and Section 9 wraps up the
paper with conclusions and ideas for further investigation. A more in-depth description
of Haxcel and its implementation will be found in [18].

2 The Common Spreadsheet Model, And Some of Its Problems

In the typical spreadsheet model, a 2-D array of cells is used to visualize a set of in-
terrelated values. Each cell has a 2-D coordinate and a definition of its value, possibly
in terms of other values (referred to by their coordinates). A formula language is used
to define values. A value can also be undefined: the spreadsheet must thus give some
meaning to definitions involving undefined values. A definition or re-definition of a
value results in a prompt recalculation of all dependent values.

Apparently, this mix of textual definition and visual feedback is very attractive for a
range of tasks where calculations are done over and over again, on varying sets of data.
Small changes in input data can be rapidly simulated by altering some definitions: the
effects are immediately seen. Thus, the spreadsheet model has become very popular in
management and economics, where simple economical models can be easily simulated
under different assumptions. The two-dimensional layout encourages the organization
of data into tables, which is beneficial for the regular processing of larger data sets.
Therefore, spreadsheets are also popular for tasks like processing of measured data in
laboratories.

In the spreadsheet model described above, definitions are given to coordinates of
cells (e.g., “A2” in an Excel spreadsheet). This has some problems. A small problem
is that the names of these coordinates often are poor mnemonics. A bigger problem is
that the “tabular” and “definitional” uses of coordinates sometimes clash. “Tabular” use
of spreadsheets can, for instance, require that rows or column are inserted in order to
update a table that is embedded somewhere in the spreadsheet area. This will offset a
number of definitions, so they now are associated with new coordinates. Even though
most spreadsheets can update references to coordinates in definitions automatically,

to compensate for this, it provides a burden for the programmer to keep track of the
changing names of defined entities. Worse still is that insertion or deletion of rows
or columns, in order to update one embedded table, can interfere with other tables or
definitions that just happen to share the same rows or columns, see Fig. 1. In such a
situation, a very tedious re-editing of the spreadsheet can be necessary.

Fig. 1. Interference between tables when inserting a row for “Charlie” in the first table.

Another, related problem, observed also in [6, 8], occurs when spreadsheet defini-
tions are copied between cells. Very often, the copying is done to implement a similar
computation on, say, a different row of a table than the original one. A convenien-
t treatment of coordinates in the definition is then to let them “move”, so they have
the same positions relative to the new coordinate of the copied definition. Therefore,
spreadsheets tend to have this behaviour as default. But sometimes one would like to
keep coordinates “absolute”, so they don’t move but refer to the same entity before and
after copying. Spreadsheet systems like Excel provide a syntax that lets the program-
mer override the default behaviour, but the ambiguity of “copying semantics” is still a
source of many bugs in spreadsheet programming.

A solution to the problems mentioned above is to create a clear separation between
the use of spreadsheets to define entities and promptly visualize the results, and the use
of spreadsheets for tabular calculations. Cells can be given general names rather than
just coordinates, and one can have a separate cell for each name binding. Arrays can
be used for tabular data. A change to the index range for one array, for instance to ad-
d/delete a row or column, will then not affect other arrays. If the formula language is
sufficiently rich in array computing primitives, for instance to specify a similar compu-
tation being repeated over a range of array sections, then there will be less need to copy
and paste definitions. Haxcel was designed to provide a solution of this kind.

3 The Spreadsheet Interface

Our spreadsheet interface Haxcel makes it possible to create or update Haskell declara-
tions, and immediately view the results. It operates against a Haskell module at a time.
Once a module is opened, all the declarations in the module are available through a

list with one entry per declared name. Existing declarations can be edited or removed,
and new definitions are created through a pulldown menu that offers a choice of the
different kinds of Haskell declarations. Each declaration has anediting window, where
it can be changed through a simple text editor. A value binding can also have avalue
window, which displays its current value. These windows can be freely opened, closed,
and positioned. The evaluation of all open value windows, with the current declarations,
is triggered by a button. See Fig. 3, which shows a possible GUI state for the module in
Fig. 2. The GUI state of the module, including positioning information and information
about whether windows are open or not, is saved together with the module contents.
Thus, the user can persistently arrange the display of declarations and values for max-
imal clarity, similarly to how entities can be positioned in the grid of a conventional
spreadsheet. The user can select to keep open only those windows that matter for the
moment, thereby keeping the visual clutter to a minimum.

module Simpleex where

import Array -- standard Haskell array library

n = 3

data Fee = Foo | Fum deriving Show

f x | odd x = Foo
| even x = Fum

a = array (1,n) [(i,f i)| i <- [1..n]]

Fig. 2.Simple example module.

Having a value window for each value-binding declaration avoids the problem of
unwanted side-effects at updates that occurs in traditional spreadsheets, where all tables
and definitions reside in a single grid.

Most values are displayed with their standardshow function. Arrays of dimension
one and two can however be displayed as tables: one-dimensional arrays as linear tables,
and two-dimensional arrays as matrices. See Fig. 3. Haxcel does not have any knowl-
edge of types: therefore, the information needed to display arrays correctly (dimension-
ality, index ranges) is captured from the standard printout. Obviously, this mechanism
will break if theshow function for arrays is redefined.

Some values should not be printed, for instance if their types do not belong to the
Show class, or if they are very large or infinite data structures. An attempt to show a
value whose type has noshow function will give a runtime error. It is up to the user
avoid showing “harmful” values. A value is shown only if a “show value” box in the
edit window is checked.

Haxcel also has a console window. Any messages from the compiler are shown
there, including error messages. Haxcel itself does not perform any kind of syntax con-
trol or type checking of the definitions: all error handling is left to the compiler. In the
case of an error, any current values in the open value windows are kept.

Fig. 3. Screenshot of Haxcel for the simple example module. All editing windows are open, plus
the value window fora.

Haxcel saves its information about a module and its declarations in an internal for-
mat, with XML tags identifying the different properties. This is for two reasons: to save
non-Haskell information about the GUI state, and to provide for easy identification of
the declarations. In this way, no general parsing of the actual Haskell code is needed.
An example of the internal format is shown in Fig. 4. Haxcel can export Haskell files,
but currently it cannot import existing Haskell code.

4 Implementation

We designed Haxcel with the objectives in mind that it should be portable, and inde-
pendent of Haskell compiler. Furthermore, we had limited time to complete the imple-
mentation. Thus, we opted for a design where Haxcel simply assembles the given dec-
larations as they are into a module file, creates a Main module that imports the module,
and whosemain function prints the values of the identifiers with open value windows,
ships the modules to the compiler for compilation, reads back the results from running
main , and displays them in the proper windows. The compiler is invoked viahmake.
As mentioned, any other output from the compiler is displayed in the console window.

This design has the advantage that the GUI becomes fully independent from any
particular compiler. On the other hand, the turnaround time might be long, especially
if large source files have to be compiled: see Section 7 for some experimental results.
It is also hard to give the GUI any kind of syntactical or semantical knowledge of the

<?xml version=’1.0’ encoding=’utf-8’?>
<module>
<modid name="Simpleex"/>
<declarations><declaration deftype="import">
<windowdata ewrect="398,107,147,71"
ewvisible="1"
/>
<haskell haskellname="Array" valuetype=""> <![CDATA[import Ar-
ray]]></haskell>
</declaration>
<declaration deftype="eq">
<windowdata ewrect="370,239,126,94"
ewvisible="1"
/>
<haskell haskellname="n" valuetype=""> <![CDATA[n = 3]]></haskell>
</declaration>
<declaration deftype="data">
<windowdata ewrect="399,179,280,99"
ewvisible="1"
/>
<haskell haskellname="Fee" valuetype=""> <![CDATA[data Fee = Foo | Fum de-
riving Show]]></haskell>
</declaration>
<declaration deftype="eq">
<windowdata ewrect="403,355,126,111"
ewvisible="1"
/>
<haskell haskellname="f" valuetype=""> <![CDATA[f x | odd x = Foo

| even x = Fum]]></haskell>
</declaration>
<declaration deftype="eq">
<windowdata ewrect="354,14,192,94"
ewvisible="1"
vwrect="599,431,113,79"
vwvisible="1"
/>
<haskell haskellname="a" valuetype="array"> <![CDATA[a = ar-
ray (1,n) [(i,f i)| i <- [1..n]]]]></haskell>
</declaration>
</declarations>
</module>

Fig. 4. Internal format for simple example module.

code it processes: either this has to be implemented into the GUI itself, or somehow
the needed information has to be got from the compiler. The second approach will
make the GUI compiler dependent, since there are no standards for communicating type
information and similar from Haskell compilers. Also the first approach will probably
lead to some degree of incompatibility with some Haskell compilers: if a type checker is
implemented in the GUI, for instance, then it will most likely not be compliant with all
the extensions of Haskell’s type system that the different existing compilers implement.
Our design allows Haxcel to be used with any Haskell compiler while offering at least
some basic spreadsheet functionality.

Later versions of Haxcel might provide running modes that interface closer to cer-
tain Haskell implementations. This could give increased ability to report on types, han-
dle compilation errors, etc., for those implementations. Our current version of Haxcel
has a mode where it usesrunhugs to run the Hugs interpreter in batch mode, in order
to get faster response times. See Section 7.

Haxcel is written in java. This is for reasons of portability, and also since there are
many java libraries around for GUI development. The current implementation requires
java v. 1.3.1 or higher, preferrably v. 1.4.

The current version of Haxcel is available on the web1. It has been tested withghc
v. 5.00.2 andnhc98 v. 1.12 under Mac OS X, and withnhc98 v. 1.14 under Solaris
2.6.

5 The Extended Array Library

The extended array library,Xarray , is designed to embed high-level array-language
style programming into Haskell, with the purpose to support convenient array program-
ming rather than highly efficient array computing. It supports the kind of array language
features found in languages like Fortran 90 [2], including lifted numerical operations,
constant arrays, various operations to split, compose and select parts of arrays, and a
number of folds. The extended arrays provided by the library are essentially a simpli-
fied version of thedata fields[16, 17] of Data Field Haskell [13], stripped down to be
Haskell 98-compliant. The library can be used independently of the spreadsheet inter-
face. All ordinary array operations in Haskell are provided for the extended arrays, so
the library is backwards compatible. A list of the major new operations and type decla-
rations provided byXarray is found in Fig. 5. For their exact semantics, see the source
codeXarray.hs which is available from the Haxcel home page.

An extended array is either an ordinary Haskell array or aninfinite array. An infinite
array is a function together with a particular boundUniverse . Infinite arrays make
sense in a lazy language, where finite pieces of them can be evaluated when needed.
One particular reason to have them is that it is natural to overload numerical constants
as infinite, constant-valued arrays, see further below.

Bounds for extended arrays can be either pairs of index values (for ordinary arrays)
or Universe (for infinite arrays). The bounds form a lattice2 with Universe as top
element, and binary operationsjoin andmeet . See Fig. 6.
1 http://www.mrtc.mdh.se/projects/Haxcel/
2 There is no explicit representation for the bottom element, though.

data (Ix a) => Array a b = Arr (A.Array a b) | Inf (a -> b)
deriving ()

data Bounds a = B (a,a) | Universe deriving Eq

meet :: Pord a => Bounds a -> Bounds a -> Bounds a
join :: Pord a => Bounds a -> Bounds a -> Bounds a
inBounds :: Ix a => Bounds a -> a -> Bool
mkarray :: Ix a => Bounds a -> (a -> b) -> Array a b
finarray :: Ix a => (a,a) -> (a -> b) -> Array a b
infarray :: Ix a => (a -> b) -> Array a b
at :: (Ix a, Pord a) => Array a b -> (a,a) -> Array a b
when :: Ix a => (a -> Bool) -> Array a b -> b -> Array a b
proj_xx :: (Ix a, Ix b) => Array (b,a) c -> b -> a -> c
proj_1x :: (Ix a, Ix b) => Array (b,a) c -> a -> Array b c
proj_21 :: (Ix a, Ix b) => Array (b,a) c -> Array (a,b) c
...(etc)...
ifA :: (Ix a, Pord a) => (a -> Bool) -> Array a b -> Array a b

-> b -> Array a b
cols2matrix :: Ix a => [Array a b] -> Array (a,Int) b
rows2matrix :: Ix a => [Array a b] -> Array (Int,a) b
matrix2rows :: (Ix a, Ix b) => Array (b,a) c -> [Array a c]
matrix2cols :: (Ix a, Ix b) => Array (b,a) c -> [Array b c]
foldlA :: Ix a => (b -> c -> b) -> b -> Array a c -> b
foldlM :: Ix a => (b -> c -> b) -> b -> Array a (Maybe c) -> b
...(etc)...

Fig. 5.Selected declarations and defined functions of the extended array library. (Haskell’s usual
Array module is imported qualified asA. Pord is a partial order class with operationsglb ,
lub , andlt used byjoin andmeet .)

join andmeet are mostly used to compute bounds for arrays resulting from lift-
ed, elementwise applied operations. For an operation that is strict in all arguments, the
bounds for the array resulting from an application of the lifted version will be themeet
of the bounds of the array arguments.join is used to compute the bounds for arrays
obtained from lifted conditionals. This “datafield semantics” [16, 17] for elementwise
applied operations comes from the view of arrays as partial functions, where the bound
of an array represents (a possible overapproximation of) the domain of its partial func-
tion.

The extended array typeArray a b is defined as an instance ofNumandFrac-
tional whenb is an instance ofNumandFractional , respectively. The arithmetic
operations on arrays are the lifted, elementwise applied operations on the element type.
fromRational andfromInteger map numerical constants into infinite constant
arrays. This overloading provides some common array language syntax. In particular,
the datafield semantics for strict lifted operations makes it possible to have constants
“promoted” to arrays of the right size when used as arguments to such operations. This
works since infinite arrays have boundUniverse , and themeet of Universe and
b equalsb for any boundb. For instance, scaling the arrayx with the factor0.2 is
simply expressed as0.2*x .

meet join

Fig. 6. meet andjoin on array (matrix) bounds.

Sometimes it makes sense to have sparse arrays in spreadsheet calculations, even
thoughXarray does not provide sparse array representations. The undefined elements
must then be represented in some way, since we may want to perform operations like
summation over a sparse array without having an error when an undefined element is
encountered. This can be solved by using aMaybe type for the array elements, where
Nothing represents undefined elements. In order to provide convenient array opera-
tions also on such arrays,Maybe a is defined as an instance ofNumor Fractional
whena is an instance of the corresponding class.

Xarray provides an elementwise conditionalifA , which takes a predicate over
indices as condition and selects elements from two argument arrays depending on the
condition. The bound for the resulting array is thejoin of the argument array bounds.
This may yield an array where some elements are not given by the argument arrays
(see Fig. 6): a fourth argument specifies which value to use then. Often, it is natural to
useNothing , since these elements in a sense are undefined, but sometimes it can be
convenient to keep a non-Maybe element data type and use some value of that type.

Xarray defines tworestriction operationson arrays. These operations select parts
of arrays without changing the number of dimensions.at restricts with an array bound:
a ‘at‘ b is the subarray ofa with bounds(B b) ‘meet‘ (bounds a) . Thus,
a ‘at‘ ((2,2),(m,n)) selects the(2;m)� (2; n)-submatrix ofa. The other re-
striction,when, takes a predicate over indices and an array as arguments, and fills the
array with a third argument in the positions where the predicate is false. This can be
thought of as a masking operation. It does not change the array bounds. For instance,

when (i -> a!i /= Just 0) a Nothing

masks out the elementsi wherea!i is nonzero.
Xarray also provides a large number ofprojection operations. These operations

select various subplanes of arrays, in different directions, and can also swap dimensions.
A projection in a dimension means to fix the coordinate for that dimension. Projections
can be made in several dimensions: if all dimensions are projected, then only a single
array element remains. The unprojected dimensions are then mapped to the dimensions
in the resulting array in a way specified by the particular projection.

The syntax of the projection function names isproj_ c
n, where the symbols match-

ing c are either “x ” or a distinct number between 1 and the numberm of non-x -symbols
in the string.proj_ c

n maps ann-dimensional array onto anm-dimensional array. An
x in a certain position means that this dimension is projected, and a number that the
dimension is mapped to the dimension with the given number in the resulting array.

For instance,proj_1x a j selects columnj from matrixa, proj_x1 a i row i ,
proj_12 a returnsa itself, andproj_21 a the transpose ofa. Xarray provides
all projection operations on arrays up to dimension three. See Fig. 7 for an example.

j

a

proj_1x a jDimension 1

Dimension 2

Fig. 7. Projection that produces a column from a matrix.

It is sometimes convenient to assemble arrays from arrays of lower dimensions, for
instance to form a matrix from a number or vectors used as rows or columns. It is also
sometimes useful to be able to decompose an array into a list of subarrays.Xarray
provides operations to assemble matrices from vectors and split matrices into lists of
vectors:cols2matrix and rows2matrix build matrices from lists of vectors as
columns and rows, respectively, andmatrix2cols andmatrix2rows provide the
inverse operations.

Finally, Xarray has a number of folds over arrays. They are all analogous with
the usual folds for lists. There are two families: the first consists of “strict” folds that
take all elements of the array into account (given that the folded operation is strict), and
the second ignores array elements with the valueNothing . The second family is thus
intended for “sparse” arrays. The folds in the first family are named by appending “A”
to the name of the corresponding list fold, and those in the second family by appending
“M”.

6 A Simple Example

As a simple example of spreadsheet programming in Haskell with the extended array
library, we give a little cost budget for a fictious research group. This group has three
members. The costs are the salary costs plus a number of overheads, most of which are
calculated as certain percentages of the salary cost, the VAT however as a fraction of the
total cost (including the other overheads). We want to be able to maintain the budget
as smoothly as possible: the members in the group might change, new costs may be
charged the group, or the existing overhead ratios may change. We want to calculate the
total cost, and the cost per person, but also the cost broken down in different categories
(department overheads etc.).

Our solution is to put all costs in a matrix, whose first dimension is indexed by
a type with one constructor per member. The matrix is assembled from a number of
vectors, one per cost category. To keep overhead ratios easy to modify they are made
symbolic through simple definitions, which are simple to change if the need arises. The

definitions are given in Fig. 8, and a snapshot of the Haxcel screen is shown in Fig. 9.
(This snapshot shows a hypothetical situation where we want to play around with the
overhead factors in order to see the effects on the various parts of the budget. Thus, the
editing windows for the overhead factors are open, as well as the value windows for the
costs in the budget.)

module Budget where

import Ix

import Xarray

data Employees = John | Sarah | Albert
deriving (Eq,Ord,Ix,Show,Enum,Bounded)

instance Pord Employees

salaries :: Fractional a => Array Employees a
salaries = listArray (minBound,maxBound) [18000.0,18300.0,24900.0]

-- Overheads:
lkp, dept_OH, univ_OH, office_OH, vat :: Fractional a => a

lkp = 0.5
dept_OH = 0.1
univ_OH = 0.15
office_OH = 0.19
vat = 0.08

table = let l = [salaries,
lkp*salaries,
dept_OH*salaries,
univ_OH*salaries,
office_OH*salaries]

in cols2matrix (l ++ [(sum l)*vat])

-- sum of costs for each employee
person_costs = sum (matrix2cols table)

-- sum of costs for each cost category
category_costs = sum (matrix2rows table)

-- total cost
totcosts = sumA person_costs

Fig. 8. Haskell code for the budget example.

Note the explicit typingFractional a => a on the “scalar” numerical values
lkp etc. They are used to scale arrays. Without this typing they would not be lifted to
infinite arrays, and the scaling wouldn’t work. This problem is due to the monomor-
phism restriction in Haskell’s type system.

Fig. 9. Snapshot of the Haxcel screen for the budget spreadsheet.

Our simple example demonstrates some features that might be useful when pro-
gramming spreadsheet applications. Ordinary spreadsheets can be heterogenous, and
strings are often put into cells to tell what numerical fields, rows, or columns mean.
In Haskell, one can instead use simple algebraic data types likeEmployees to create
descriptive index sets for arrays. An advantage, besides the type-safety, is that several
arrays now can have their index sets given by the same data type. This is a win since one
often uses different arrays to describe different properties of the same set of items (like
the employees of the research group in our example). If this set changes (if, say, we hire
more people), then, if the arrays are defined in the right way, it will be very easy to up-
date the spreadsheet by simply changing the data type declaration and adding/removing
input data in the proper arrays. In the usual spreadsheet model, this kind of update can
be very error-prone.

It is not hard to imagine an interactive mechanism for defining arrays, where in-
dex sets can be created and copied between arrays, and the corresponding data type
declarations are automatically generated.

7 Experimental results

To get a grip on the turnaround time for evaluating spreadsheets, we did some simple
benchmarking. We ran the two examples presented here,simpleex (Section 3) and

budget (Section 6). We measured: the time to assemble the Haskell files for com-
pilation, the time for hmake/nhc98 to compile, the time for the generated program to
execute, and the time to parse and display the results. We ran the examples on two ma-
chines: a Power Mac G4 with a 400 MHz PowerPC G4 processor, 192 MByte RAM, and
1 MB cache, under Mac OS X 10.1.5 with the nhc98 v. 1.12 compiler, and a Sun Ultra
Enterprise 4000/5000 with six 167 MHz Sparc processors (whereof we used one), 256
MB RAM and 0.5 MB cache per processor, under Solaris 2.6 with the nhc98 v. 1.14
compiler. On the Power Mac we also ran both examples with runhugs rather than h-
make. Each example was run 5 times for each configuration. The results (mean values)
are presented in Table 1. Note that the different times were measured with different
resolution, due to the kind of timing tools we had available: the java-specific parts (as-
semble, parse & display) were measured with resolution1s, and the compilation and
execution were both measured with resolution0:01s on the Mac and0:1s on the Sun,
respectively. The variation in measured time between runs was low, except for the mea-
surements of the java-specific parts where the low resolution sometimes caused jumps
in the observed times.

Simpleex
AssembleCompile ExecuteDisplay Total

Mac/runhugs 0.0 N/A 0.60 0.0 0.60
Mac/hmake 0.0 5.44 0.06 0.0 5.50
Sun 0.2 7.4 0.0 0.0 8.2

Budget
AssembleCompile ExecuteDisplay Total

Mac/runhugs 0.0 N/A 0.79 0.4 1.19
Mac/hmake 0.0 7.37 0.29 0.4 8.06
Sun 0.2 10.3 0.7 0.4 11.6

Table 1.Measurements forSimpleex andBudget , in seconds.

Not surprisingly, the main time for Haxcel with hmake/nhc98 is spent compiling.
This yields a turnaround time of the order 10s on our systems. This is not readily accept-
able for an interactive environment. On the other hand, better compilation times might
be obtained on other platforms: for instance, Wallace [24] claim compilation times for
nhc98 in the order 1-2 seconds for medium-sized modules, on a PC with Linux and a
500 MHz pentium processor.

For Haxcel with runhugs on the Power Mac, we obtain much faster turnaround
times, of the order 1s for both examples. Although not instantaneous, this is a much
more acceptable response time.

Most of the display time forBudget can be attributed to the first run for each
experiment, where extra time is spent opening the value windows. Subsequent runs
mostly have lower display times.

8 Related Work

The first spreeadsheet application was VisiCalc [3] for Apple II. Since then, a myriad
of different commercial and experimental spreadsheet systems have been designed and
implemented. Here, we review the work on spreadsheets with functional formula lan-
guages, and spreadsheets that allow the kind of non-grid-confined cell concept that our
interface implements.

There have been many attempts to desing spreadsheet environments with a full func-
tional programming language as formula language. On Linux, there are several spread-
sheet systems available that use some interpreter for Scheme: an example is SIAG [10].
Davie and Hammond considered “functional hypersheets” based on Haskell [7], but we
do not know whether their design was ever implemented. De Hoon et. al. describe a
spreadsheet imlemented in Clean, which has a simple, list-based, untyped functional
formula language “FunSheet” with a rewrite semantics [8]. FunSheet uses a conven-
tional spreadsheet indexing scheme with letters for columns and numbers for rows.
However, columns are considered functions, so the function applicationA 1 refers to
cell A1 in conventional spreadsheet syntax. This indexing scheme is elegant, but from
an array processing point of view it has the disadvantage that it favours accesses by
columns whereas many matrix and table calculations require equally convenient ac-
cess to rows or other array subsections. An interesting feature of FunSheet is a limited
capability for symbolic processing, which is made possible by the rewrite semantics.

Clack and Braine describe a spreadsheet design based on the object-oriented func-
tional language CLOVER [6]. Their ideas to use higher order techniques for flexible
spreadsheet programming are similar to ours. Mini-SP, by Yoder and Cohn [26], is an
APL-like spreadsheet programming language, which has a concurrent evaluation mod-
el.

Spreadsheets with cells but without a grid have also been considered. An early ex-
ample is Nas, a simple visual language with this property [25]. Nas was however more
of an example of an advanced functional programming application, and was primarily
used to evaluate implementation techniques for lazy functional languages. Forms/3 [4]
is an attempt to create a spreadsheet programming environment for graphical applica-
tions: it has a first-order recursive functional formula language and free placements of
cells.

What we believe sets our work apart from other spreadsheet environments is the
following: Haskell as formula language, the view of the spreadsheet interface as a com-
ponent that can use different compilers as “evaluation engines”, and the extended array
library that combines array language functionality with higher order programming tech-
niques in a spreadsheet setting.

On the Haskell side, Haxcel is related to interactive Haskell interfaces such as
Hugs [14], GHCi [22, Ch. 3], and in particular hi [24]. In comparison with these, Haxcel
provides a less text-oriented interface that can help visualize results of program changes
faster.

The array-oriented programming style supported byXarray is found in array- and
data parallel languages such as Fortran 90 and HPF [15], and *lisp [23]. These lan-
guages are collection-oriented – a very good survey of such languages is found in [21].
It is also interesting to compare with functional array languages, notably the classical

data flow languages Id [9] and Sisal [11], as well as the later, Sisal-inspired SAC [19].
SAC is especially interesting since it has an array model that is inspired by APL. SAC
programs can have a high degree ofdimension-invariance, i.e., the same program works
with arrays of any dimensionality. These functional languages emphasise parallelisation
and speed of compiled code, however, and therefore have limitations in the array syntax
and the overall generality. For instance, they are all first-order and they do not have full
type-inference.

There are some other array extensions of Haskell. Chakravarty et. al. [5] have ex-
tended Haskell with nested data-parallel arrays, much in the style of NESL [1]. Hill [12]
extended Haskell with lazy, unbounded data parallel structures that can be seen as a kind
of sparse arrays. Both these attempts focus on expressing parallelism and achieving ef-
ficiency of implementation, rather than on arrays as a high-level concept for tasks like
spreadsheet calculations. Our own Data Field Haskell [13] is different in this respect,
in that it implements an extended array model that aims primarily at expressiveness and
swift denotation of array-like computations. It would not be hard to extend Haxcel with
support for Data Field Haskell.

9 Conclusions and Further Research

We have designed Haxcel, a compiler-independent spreadsheet interface for Haskell
programming, and the accompanying extended array libraryXarray . Together, they
demonstrate what a high-level programming environment can look like, which can be
used both for conventional Haskell programming and for spreadheet calculations. We
also think Haxcel overcomes some of the problems with the conventional spreadsheet
model, and it extends current spreadsheet languages to the full power of Haskell.

Clearly, many features can be added to Haxcel. The ability to import existing Haskell
modules has not been implemented only due to lack of time. Better means to define ar-
rays interactively would be nice for spreadsheet programmers: currently, they can be
defined only through textual Haskell expressions. Better graphical support to display
data structures like lists is desirable, as well as the possibility to link cells to external
viewers or players, and an ability to import data from the outside and convert into suit-
able Haskell values. The simple textual input of declarations could be enhanced into a
more visual programming environment. The current turnaround times for small exam-
ples are annoying for hmake/nch98 but acceptable when using runhugs. If still faster
turnaround times are needed, then one could add a mode where hugs runs in a parallel
thread rather than being invoked in batch mode. If this is still not enough, then one
could make a more elaborate dependency analysis to recalculate and update only those
values that have changed since the last evaluation. We believe all these features would
be fairly straightforward to implement.

The current lack of error handling in Haxcel is not satisfactory, but it is dictated
by our wish to keep Haxcel as a standalone GUI component that is compatible with
Haskell compilers in general. Also, the lack of knowledge about types is a limitation.
As mentioned earlier, a possible solution is to add modes to Haxcel where it interfaces
more closely to certain compilers. However, this complication could be avoided if there
were standard protocols for Haskell compilers to communicate type information and

error messages. Such protocols could then also be used by other Haskell tools. Also,
if parsers in Haskell compilers could be used as components to produce parsed code
in some standard format, then tools like Haxcel could take advantage of them. The
proposed Haskell Execution Platform [20] has addressed some of these issues, but we
don’t know to which extent it has materialised.

Do we think that Haskell is a good language for spreadsheet calculations? Yes, prob-
ably for someone who has a good grasp of modern functional programming. But we do
not think Haskell in its current form is the perfect spreadsheet language. Spreadsheet
calculations are best expressed in an array model, and while quite a few array language
primitives can be reasonably well embedded in Haskell we have also found some an-
noying limitations. For instance, the ability to overload numerical literals as infinite
constant arrays, but having to provide explicit type annotations for variables defined to
have the values of these literals, is a safe bet for tripping spreadsheet programmers not
well acquainted with Haskell’s type system. Furthermore, Haskell was designed with
lists rather than arrays in mind: thus, all the “good” operators and function names are
already taken for list operations. A good spreadsheet language, which suits the causal
user, should have obvious names for important functions over arrays, and it should
not require explicit type declarations for common spreadsheet programming. Some of
these problems could possibly be alleviated by providing a “simple spreadsheet mode”
to Haxcel, where assumptions about data types are made and explicit type declarations
are automatically generated, but this feature remains to be added and evaluated.

The large number of projection operations that we had to define is also a nuisance.
Array languages often have intuitive syntax to express these things: for instance, For-
tran 90 allows expressions likeA(3,2:N,:) to select fromA the submatrix with the
first coordinate fixed to3, the second varying in the range2:N , and the third inA’s
extents in the third dimension. Theforall statement of Data Field Haskell [13] can
also express these kinds of projections conveniently. However, such features cannot
be added to Haskell without a change in syntax. Thus, maybe the best solution for a
spreadsheet language would be to make a derivative of Haskell which is more oriented
towards high-level array processing.

References

1. G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha. Implementation
of a portable nested data-parallel language.J. Parallel Distrib. Comput., 21(1):4–14, Apr.
1994.

2. W. S. Brainerd, C. H. Goldberg, and J. C. Adams.Programmer’s Guide to FORTRAN 90.
Programming Languages. McGraw-Hill, 1990.

3. D. Bricklin and B. Frankston. VisiCalc: Information from its creators, 1999.
http://www.bricklin.com/visicalc.htm .

4. M. Burnett, J. Atwood, R. W. Djang, J. Reichwein, H. Gottfried, and S. Yang. Forms/3: A
first-order visual language to explore the boundaries of the spreadsheet paradigm.Journal
of functional programming, 11(2):155–206, Mar. 2001.

5. M. M. T. Chakravarty, G. Keller, R. Lechtchinsky, and W. Pfannenstiel. Nepal — nested
data parallelism in Haskell. In R. Sakellariou, J. Keane, J. R. Gurd, and L. Freeman, editors,
Proc. 7th International Euro-Par Conference, volume 2150 ofLecture Notes in Comput. Sci.,
pages 524–534. Springer-Verlag, 2001.

6. C. Clack and L. Braine. Object-oriented functional spreadsheets. InProceedings of the 10th
Glasgow Workshop on Functional Programming, GlaFP’97, September 1997.

7. A. Davie and K. Hammond. Functional hypersheets. InProc. 8th Int. Workshop on Imple-
mentation of Functional Languages, pages 39–48, 1996.

8. W. A. C. A. J. de Hoon, L. M. W. J. Rutten, and M. C. J. D. van Eekelen. Implementing a
functional spreadsheet in Clean.Journal of Functional Programming, 5(3):383–414, 1995.

9. K. Ekanadham. A perspective on Id. In B. K. Szymanski, editor,Parallel Functional Lan-
guages and Compilers, chapter 6, pages 197–253. Addison-Wesley, 1991.

10. U. Eriksson. Siag office - a free office package for unix, Mar. 2002.
http://www.siag.nu/ .

11. J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report on the Sisal language project.J. Parallel
Distrib. Comput., 10:349–366, 1990.

12. J. M. D. Hill. Data-Parallel Lazy Functional Programming. PhD thesis, Department of
Computer Science, Queen Mary & Westfield College, University of London, Sept. 1994.

13. J. Holmerin and B. Lisper. Data Field Haskell. In G. Hutton, editor,Proc. Fourth Haskell
Workshop, pages 106–117, Montreal, Canada, Sept. 2000.

14. M. P. Jones and J. C. Peterson. Hugs 98 user manual, Sept. 1999.
http://www.haskell.org/Hugs/downloads/hugs.pdf .

15. C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele, Jr., and M. E. Zosel.The
High Performance Fortran Handbook. Scientific and Engineering Computation. MIT Press,
Cambridge, MA, 1994.

16. B. Lisper. Data fields. InProc. Workshop on Generic Programming, Marstrand, Sweden,
June 1998.http://wsinwp01.win.tue.nl:1234/WGPProceedings/ .

17. B. Lisper and P. Hammarlund. The data field model. Technical report, Department of Com-
puter Engineering, Mälardalen University, Västerås, June 2001.
http://www.mrtc.mdh.se/publ.php3?id=0312 .

18. J. Malmström. A spreadsheet interface to Haskell. Technical report, Department of Computer
Engineering, Mälardalen University, Västerås, 2002. Forthcoming.

19. S.-B. Scholz. On Programming Scientific Applications in SAC - A Functional Language
Extended by a Subsystem for High-Level Array Operations. In W. Kluge, editor,Imple-
mentation of Functional Languages, 8th International Workshop, Bad Godesberg, Germany,
September 1996, Selected Papers, volume 1268 ofLecture Notes in Comput. Sci., pages 85–
104. Springer-Verlag, 1997.

20. J. Seward, S. Marlow, A. Gill, S. Finne, and S. P. Jones. Architecture of the Haskell Execution
Platform (HEP). Technical report, Microsoft Research, Cambridge, UK, July 1999.

21. J. M. Sipelstein and G. E. Blelloch. Collection-oriented languages.Proc. IEEE, 79(4):504–
523, Apr. 1991.

22. The GHC Team. The Glasgow Haskell Compiler user’s guide, version 5.02, 2002.
http://www.haskell.org/ghc/docs/latest/set/book-users-
guide.html .

23. Thinking Machines Corporation, Cambridge, MA.Getting Started in *Lisp, June 1991.
24. M. Wallace. hi — hmake interactive — compiler or interpreter? In M. Mohnen and P. Koop-

man, editors,Proceedings of the 12th International Workshop on Implementation of Func-
tional Languages, Aachener Informatik Berichte, pages 339–345. RWTH Aachen, 2000.

25. S. C. Wray and J. Fairbairn. Non-strict languages — programming and implementation.The
Computer Journal, 32(2):142–151, Apr. 1989.

26. A. G. Yoder and D. L. Cohn. Real spreadsheets for real programmers. InInternational
Conference on Computer Languages, pages 20–30. IEEE, 1994.

