
Variability Management in Product Lines of
Safety Critical Embedded Systems

Stephan Baumgart, Xiaodi Zhang
E&E System Architecture Department,

Volvo Construction Equipment,
Eskilstuna, Sweden

Email: (stephan.baumgart, xiaodi.zhang)@volvo.com

Joakim Fröberg, Sasikumar Punnekkat
School of Innovation, Design and Engineering,

Mälardalen University,
Västerås, Sweden

Email: (joakim.froberg, sasikumar.punnekkat)@mdh.se

Abstract—The product line engineering approach is a promis-
ing concept to identify and manage reuse in a structured
and efficient way and is even applied for the development of
safety critical embedded systems. Managing the complexity of
variability and addressing functional safety at the same time
is challenging and is not yet solved. Variability management is
an enabler to both establish traceability and making necessary
information visible for safety engineers. We identify a set of
requirements for such a method and evaluate existing variability
management methods. We apply the most promising method
to an industrial case and study its suitability for developing
safety critical product family members. This study provides
positive feedback on the potential of the model-based method
PLUS in supporting the development of functional safety critical
embedded systems in product lines. As a result of our analysis
we suggest potential improvements for it.

Keywords—Product Lines; Functional Safety; Commonality
and Variability; Model-Based Development; Embedded Systems

I. INTRODUCTION

Software has become the key enabler for new functionalities
in industrial products due to its vast potential, ease and cost
effectiveness for innovations and prototyping. The boundless
possibilities with software are also gradually making the
application software as well as the final products increasingly
complex. There is a high demand to get the products faster to
the market in order to be competitive. This leads to strong
requirements to achieve a sufficient high level of quality
in shorter time while the complexity of the products are
increasing. Industry attempts to solve this challenge by reusing
already developed parts or artifacts to the maximum extent
feasible. This strategy aims for faster time to market and
reduced development cost. But reuse itself may not always be
beneficial and may not always automatically lead to faster time
to market. Product lines and especially software product line
engineering concepts are dealing with identifying the artifacts
and components and evaluate the potential for reuse.

When developing safety-critical products, standards help
to establish confidence in the products developed. Functional
safety is a part of the overall product safety and is concerning
failures and faults in the products Electrical and Electronic
(E&E) system. Functional safety standards like IEC 61508

or the automotive standard ISO 26262 provide a set of
requirements and process steps to identify critical functions
and classify their criticality. The common approach among all
functional safety standards is to identify possible hazards that
are caused by malfunctioning of the embedded system and
classify the criticality of such a malfunctioning. All standards
state requirements on the safety life-cycle, i.e., how the critical
function or component should be developed. Throughout the
development phases, evidences need to be collected to be able
to argue for the safety of the system.

When developing safety critical products in product lines,
all product line members need to meet the safety goals if safety
critical functions are used in their configurations. Depending
on the configuration, different functional safety strategies may
be used. Today functional safety practitioners are facing the
problem of having limited information on possible variability
and configurations, to be able to assess the compliance of a
safety standard comprehensively. This leads to an uncertainty
when the design has not been analyzed thoroughly. Project
delays and higher cost when critical configurations are iden-
tified too late have been reported. It is important to find ways
to collect the relevant information and visualize the variability
of the system from the beginning.

The focus of this study is to identify an appropriate method
capable of visualizing the variability for product lines of safety
critical embedded systems and to evaluate its applicability.
Specifically, we investigate the appropriateness of Product
Line UML-based Software Engineering (PLUS) approach pre-
sented by Hassan Gomaa [1] in this context.

The main contributions of this paper are the identification
of specific requirements for variability management methods
for the development of safety critical embedded systems in
product lines, an investigation on the applicability of the PLUS
method by applying it on a typical industrial example, and
suggestions regarding potential improvements to PLUS for
addressing safety critical products.

Based on our experience and earlier studies we set up
requirements for variability management methods in section
II, followed by studying and evaluating existing variability
management methods in III. We describe a typical case from
the construction equipment domain in section IV. In section V978-1-4799-5026-3/14/$31.00 c© 2014 IEEE

we apply the PLUS method to the described case and present
results from our analysis. We review the identified require-
ments in VI and conclude the paper in VII.

II. REQUIREMENTS

Product line theory is focused on methods that capture
commonalities to achieve cost-efficiency. In this study, we are
also interested in capturing the variability aspects and their
relation to functional safety work products for assuring the
safety requirements. We envision a method that allows both
the commonality and the variability analysis to support a safety
centric development and analysis of product lines. For such a
method to be effective, several requirements are essential such
as general methodological requirements (G), reuse-centric
requirements (R) and safety-centric requirements (S). Based on
previous studies [2][3] and our industrial experience, we have
identified the following non-exhaustive list of requirements
(against each requirement we also indicate within parenthesis
their category):

(R1) Safety analysis techniques - An effective method
should be capable to support/integrate multiple safety anal-
ysis techniques as prescribed by the domain specific safety
standards. (S)

(R2) Variation points and configurations - In order to
perform an effective safety analysis a method must correctly
identify all variation points and relevant configurations. Multi-
ple configurations and modes will need to be supported. (S, R)

(R3) Life-cycle coverage - Because functional safety
regards the complete product life-cycle, i.e. development,
production, maintenance and decommissioning, the method
should be capable of supporting analysis throughout the life-
cycle phases of products to enable a mapping of functional
safety requirements. (G, S, R)

(R4) Visualization - The method would enable an effective
visualization and support communication and understanding,
e.g. to communicate requirements among designers or to
development partners more efficiently. (G, S, R)

(R5) Static and dynamic characteristics - The method
should support both static and dynamic views of the embed-
ded system including the system boundary description. This
information is necessary to trace design decisions, analyze the
impact of changes and perform safety analyses considering the
systems characteristic from different perspectives. (S)

(R6) Scalability A method must scale and support large
product lines and a large set of complex configurations. (G)

(R7) Commonality A method should exhibit the ability to
capture and depict commonality for product line members and
also for safety related concepts. (S, R)

(R8) Evolution Possibility to capture and trace new or
changed existing variation points and variations introduced
during evolution of the product line. This enables an impact
analysis to identify potential violations of the safety concepts.
(S)

(R9) Traceability The effects of changes should be trace-
able to show all affected parts of the systems and possible
configurations. (S, R)

III. LITERATURE STUDY

A. Introduction

The software product line engineering (SPLE) concept pro-
vides a paradigm for developing products with higher quality,
lower cost and faster time to market [4]. With this approach,
reusing components and development artifacts is planned and
managed, thus enabling companies to perform cost projections
and evaluate the reuse of components and development arti-
facts [5]. One key activity to be performed when developing
products using product lines is the commonality and variability
analysis, which provides the foundation for reuse [6]. A wide
range of variability management techniques has been proposed
in the past. Chen et al. [7] provide an overview on variability
management methods proposed in literature and explain the
challenges the different approaches aim to address. Variability
can either be adapted to existing development artifacts and
models or can be extracted and visualized in separate models.
In the following we provide an overview on typically used
variability management methods and discuss the fulfillment
of the requirements.

B. Variability Management - feature orientation

Many feature based modeling approaches are focusing on
modeling the characteristics of a system to improve commu-
nicating variability to customers. Kang et al. [8] propose the
Feature-Oriented Domain Analysis (FODA), which aims at
detecting the common and variable features and its potential
reuse between different products. The authors define the
term feature as a user-visible characteristic or quality of a
system. The feature tree method aims to ”bridge the gap
between requirements and technical design decisions” [9].
FODA uses a tree structure to visualize features, its relation
and depicts the product features covered by the product line
in a hierarchical and straightforward way. Features and their
relation are analyzed and documented during concept phase,
investigating the potential reuse of the features. The method
does not allow deeper analysis as it is proposed, once the
common and variable features are identified to a certain level.
Information about product related assets, e.g. hardware and
context information are not covered and extension have been
proposed to cover other development phases [10]. The feature
modeling itself is useful for designing a product line, but lacks
in covering the complete product life-cycle.

C. Variability Management - extraction to external models

Variability can be managed by adding a variability notation
to existing development artifacts and model-based approaches.
Some researchers argue that the resulting models are becoming
too complex and propose to extract information about vari-
ability into a specific model. Prominent examples of external
models for variability are the concept of Pohl et al. presented
in [11] and the concept COVAMOF presented by Sinnema
et al. in [12]. In COVAMOF the product family artifacts
are separated from the introduced ”variation point view” and
the ”dependency view”. The importance of this method is

Fig. 1. Mapping of requirements to categories of variability management
techniques

that development levels from concept phase until implementa-
tion are supported, which enables a uniform representation
of variability in some phases of the development process.
Furthermore dependencies and their tracing through different
abstraction levels and even interactions between dependencies
are represented.

D. Variability Management - life-cycle coverage

In comparison to FODA, model-based approaches based on
UML like PLUS [1] and the SysML-adaption presented in [13]
for product line development are proposed aiming to cover the
benefits from the feature tree concept and providing methods
to derive a product line at the same time. In the PLUS method
Gomaa is proposing techniques to design software product
lines by using standard UML diagrams that are extended by
new stereotypes for kernel, alternative and optional elements
and relations. A range of UML models for different devel-
opment phases covering requirements identification, domain
analysis and design are part of the approach. Supporting the
product life-cycle is important since variability is managed in
an uniform way, which enables considering functional safety
for the product line at the same time.

E. Pros and cons of different approaches

Many variability management approaches focus on rep-
resenting variability on a high abstraction level to commu-
nicate the variability to customers. These feature-modeling
approaches are lacking concepts for tracing variability through
the complete development process. The requirements de-
fined in section II help us to identify potential variability
management methods by reviewing the concepts and their
requirements fulfillment (Fig. 1). To our knowledge none
of the investigated techniques is considering safety analysis
techniques and supporting safety analysis techniques needs to
be shown first (R1).

1) Feature oriented variability management: The main
focus of the feature oriented variability management methods
is to communicate variability to the customers. Therefore the
methods do not aim to cover the whole life-cycle and not all
required safety analysis techniques can be related (R1) and
functional safety requirements cannot be mapped. Because of
just covering the concept phase of the development process,
only changes on feature level can be traced (R9). Different
systems characteristics are not being able to depict (R5).

2) External models for variability management: In this
category fall variability management methods which extract
information about variability and manage the information
separated from the other development artifacts. Tools and
methods are required to keep the links between development
artifacts and variability model consistent in order to be able to
trace changes (R9). Communicating the variability effectively
seems challenging (R4), when variability is separated from the
development artifacts. Different characteristics of the system
are not considered, if not explicitly managed in other de-
velopment artifacts (R5). Methods like COVAMOF explicitly
visualize variability. How well commonality is depicted needs
to be further investigated (R7). Even the covering of the
product life-cycle, as required in (R3), needs to be shown.

3) Life-cycle based variability management: The variability
management methods we group here, cover parts of the
development process and aim for example to identify a product
line architecture. Variability is not extracted and instead the
information on variability is added to development artifacts.
The concepts analyzed promise to fulfill most of the require-
ments we set up. Mapping the safety analysis methods (R1)
and how a complete product life-cycle is covered (R3) needs to
be shown. Generally the variability management methods that
apply a model-based approach seem to be capable manage
commonality and variability even for safety critical product
line members.

F. Other relevant approaches

Generally variability management concepts like FODA and
PLUS are not covering concepts or approaches to support the
development of safety critical systems. Nonetheless extensions
to safety analysis techniques like fault tree analysis (FTA)
and failure mode and effects analysis (FMEA) have been
proposed in literature [14] to be applicable for product lines.
The PL-FTA presented in [15] is adding information about
commonality and variability to the leaf nodes in the fault
tree, enabling product specific tree pruning during application
development depending on the product configurations. The
proposed techniques require already complete information
about identified commonality and variability, which are not
always available in the industrial cases. Before considering
applying product line safety analysis techniques such as PL-
FTA, visualizing the variability of the product line is necessary.

Out of available variability management methods, we
choose PLUS for this study. The rationale is that the PLUS
method is fulfilling many of the requirements and is therefore
most promising in terms of applicability and adaptability in
an industrial context. In the following we describe a typical
case from industry and apply the model-based concept PLUS
to it in order to gain insight information and reveal further
requirements and necessary extension to be applicable for the
development of safety critical products in product lines.

IV. CASE DESCRIPTION

In this section we describe an illustrative example from
the construction equipment domain and the potential config-

urations. We choose a steer-by-wire system in two different
configurations - Variant 1: using a lever for steering to left
and to right, and Variant 2: a joystick steering supporting both
forward and backward driving and the left-right steering.

A. Variant 1 - Left-right steering

The forward and backward movement of the machine is
realized through selecting the driving direction and by using
the gas-pedal for acceleration, while a lever can be used for
left-right steering. During operation or when driving on public
roads a wrong calculated or unintended steering may lead
to serious accidents. Transported goods might fall onto other
workers or other traffic might be hit when traveling on public
roads.

B. Variant 2 - Joystick Steering

The joystick steering is a more complex system that applies
on top of the above-described left-right steering function also
the forward-backward driving. Interfaces to the automatic
gearbox and the engine are necessary, where the first is
receiving inputs to select forward or backward gears and
the latter is receiving inputs on the targeted speed. Potential
failures might result in hazards like unintended acceleration
and unintended change in the direction of motion (forward to
backward). Higher safety goals involving more parts of the
embedded system need to be reached.

Both variants are implemented using safety concepts that
utilize different parts of the distributed embedded system e.g.
using an independent on-line monitoring on a different ECU.

C. Product line scenarios and impact on functional safety

Both variants seem to be easy to develop, manage and
configure. But in an industrial context those variants might be
implemented in different ways requiring different functional
safety concepts. In the following we list typical scenarios for
product lines of construction equipment machinery and their
impact on the implemented functional safety concepts.

Scenario 1: Market differences A machine type might be
sold in different configurations on different markets. Func-
tional safety concepts valid in one country might not be
applicable in others.

Scenario 2: Differences between product line members
Even though features might look similar, the architecture of
the embedded systems can differ. Larger machines utilize more
ECUs in comparison to smaller machines of the same product
line. This results in different functional safety concepts that
need to be applied.

Scenario 3: Product application Different usage scenarios
of product line members will result in different types of
hazards. While smaller machines may be used in public
areas are larger machines are often used off-road. Different
usage scenarios and hazards require different functional safety
concepts to meet the derived safety goals.

Scenario 4: Evolution The next generation of the product
line may require to remove the mechanical steering wheel for
the joystick variant. For those products rebooting the ECU

is no safe state and instead the joystick steering needs to be
implemented as a fail-safe system.

Scenario 5: Reuse across product lines Features that are
successfully implemented in one product line may be applied
in a different product line as well. Simply using a copy-paste
strategy may lead to unexplored safety goal violations in the
new product line.

We want to explore the variability and identify violated
safety goals already in early stages. In the following we apply
the PLUS method in the steer-by-wire case.

V. APPLICATION OF PLUS

Gomaa [1] proposes the Product Line UML-based Software
Engineering (PLUS), which is a method extending the standard
UML notation for capturing product line specific character-
istics in UML diagrams and in [16] the author describes
the PLUS process. Requirements for the product line are
specified and used as an input for the PLUS process. Gomaa is
foreseeing a Product Line Reuse Library, where product line
artifacts are stored. Those artifacts are reused and integrated
during application engineering phase. Through a feedback
loop, changes made in the application, will result in updates
of product line development artifacts in the library. The PLUS
concept is covering the development phases: requirements
identification, domain analysis and modeling the design. In the
course of this study we focus on the requirements identification
and domain analysis parts.

A. PLUS Requirements Model

The PLUS requirements model is aiming to capture the
requirements for the product line by applying use case models
and feature models.
(a) Use case model

Concept: The use case model depicts the functional
requirements, which are addressed in terms of actors and
use cases. To distinguish between common and variable
use cases, PLUS introduces use case stereotypes: kernel,
optional and alternative. The product line commonality is
captured by the kernel use cases, while the variability is
captured by the optional and alternative use cases.
Case: We applied the steer-by-wire example for the use
case model and extracted the necessary information from
existing documentation. The described use cases can
be applied for feeding the Preliminary Hazard Analysis
(PHA), because typical application scenarios of the final
products are specified. Highlighting the critical scenarios
in the use case models is not possible in the PLUS
concept as it is today. New stereotypes for the use cases
will make this possible.

(b) Feature model
Concept: A feature is a requirement or characteristic
that is provided by one or more product line members.
The PLUS approach extends the UML class diagrams
to create a feature tree adding feature groups and static
dependencies and relations. The feature model depicts the
commonality and variability of the software product line

system using either of the stereotypes, common, optional
or alternative. Features have many-to-many relationship
with the use cases. When a feature is mapped to a group
of use cases, those use cases have the potential to be
reused together. When many features are mapped to a
use case, those features relate to the use case variation
points.
Case: Applying the proposed feature tree concept to the
steer-by-wire case was demanding, since the required
information about variability and commonality and even
the grouping of features was not easy to derive from
existing documentation. The PHA results in identifying
safety critical features and according criticality levels
(e.g. SIL, ASIL). The safety critical features will lead to
specific architecture solutions and therefore this informa-
tion needs to be captured. Safety critical features might
depend on inputs from other features and both static and
dynamic dependencies will need to be captured. Espe-
cially dynamic dependencies are not defined in PLUS
yet.

(c) Feature-Use case dependencies
Concept: In order to be able to trace information from the
use case diagrams to the feature tree, a table is proposed
to map the different use cases to the features. For each
feature described in the feature tree, the according use
case including variation point is identified and mapped.
Case: We created the table mapping the use cases for the
steer-by-wire system to the identified features. For large
product lines, mapping features to use cases will require
tool support in order to both establish traceability and
to perform consistency checks when changes are made.
The safety critical use case are not yet highlighted and
therefore tracing to related features is not possible.

B. PLUS Analysis Model

In addition to the requirements model, the PLUS model
includes an analysis model, which is covering both static and
dynamic views of the system.

(a) Static model
Concept: The static model depicts the product line static
structure, describing both internal and external compo-
nents. Specifying the product line boundary is done
through identifying product line external components e.g.
external user, external device, external system or external
time, and their communication direction.
Case: In our study identifying the boundary of the system
has shown to be useful. It is of importance that the
interfaces of the embedded system to the environment
are up to date and changes in sensors or actuators can
be immediately traced to the according software parts in
the embedded system. Especially the complexity of large
scale product lines makes it more and more difficult to
oversee the impact of a change to all potential configura-
tions. This traceability helps performing functional safety
assessments and checking the safety arguments.

(b) Dynamic model
Concept: Objects are derived from the static models.
The dynamic interaction model addresses the interaction
between those objects, which satisfies the product line
functional requirements depicted in the use case model.
The interaction model has a one-to-one relationship to
the use case in the use case model. Furthermore the state
transition diagram depicts the finite state machine, being
referred to as statechart diagram in UML, which describes
the control and sequencing view of a system. The state
transition in the statechart is caused by input events, which
are identical with the messages in the dynamic interaction
diagram.
Case: Especially addressing the dynamic characteristics of
the product line has shown to be useful when functional
safety standard compliance needs to be achieved for prod-
uct lines. This information is necessary to trace and assess
the timing behavior of the distributed embedded system.
The flow of information can be analyzed thoroughly and
a clear representation of safety concepts for different vari-
ants is necessary. The concept of merging the statecharts
of different product family members is beneficial to get
an overview, which product variant is using which states.
The reachability of safe states can be checked and even
be simulated.

We also performed a detailed fault tree analysis to inves-
tigate the quality and availability of information provided in
the PLUS models, which confirmed the potential of the PLUS
method to be applied in developing safety critical products in
product lines [17].

VI. DISCUSSIONS

We have modeled the steer-by-wire system according to
PLUS procedures. Here we evaluate the outcome by discussing
the fulfillment of the requirements R1-R9.

(R1) Safety analysis techniques - Both PHA and FTA are
commonly used hazard analysis techniques in an industrial
context. The information captured in the diagrams of the PLUS
Requirements Model can be used for conducting a PHA. The
static and dynamic information specified in the analysis model
are useful for conducting a FTA. Generally adding the results
of the hazard analyses to the proposed diagrams can be useful
for the following developing stages.

(R2) Variation points and configurations - In the models
we applied in this study commonality and variability is ad-
dressed. Nonetheless we realized in our study that static and
dynamic dependencies between features and variation points
are necessary to capture in order to derive constraints for
deriving for example an architecture that shall support all
safety goals.

(R3) Life-cycle coverage In our case we did not explic-
itly perform any analysis on life-cycle phases like software
implementation, verification and maintenance. In order to test
applicability for life-cycle purposes, we will need to define
realistic scenarios covering more life-cycle phases to evaluate
the model. The main goal of the PLUS method is to provide

guidance to derive a product line architecture. Therefore the
PLUS model does not cover all product life-cycle phases.
Extensions of the PLUS model could help achieving this
requirement.

(R4) Visualization - When applying the PLUS method
it was challenging to find the right information in available
specifications. Information on commonality and variability is
managed by the experts and is partly hidden. This makes it
difficult to perform a thorough analysis. The PLUS method
is useful to communicate and discuss the characteristics of a
product line.

(R5) Static and dynamic characteristics - Both static and
dynamic characteristics of the product line members can be
captured by the PLUS method. Extending the diagrams to
manage even variability for functional safety work-products
to enable traceability even to those development artifacts is
necessary.

(R6) Scalability - As far as we can see from applying
PLUS to the case, the model is scaling well. A tool support
is needed in order to trace information between the different
diagrams and keep the different parts of the model consistent.
Especially when more properties are added to the different
diagrams aiming to address functional safety and dependencies
between features and variation points are also captured, the
diagrams become more complex.

(R7) Commonality - The PLUS method aims to manage
the commonalities as well. A potential extension would be, to
clarify the safety concepts that are commonly applied.

(R8) Evolution - We applied the PLUS method to a
simplified case. In order to evaluate how PLUS applies to
evolution a product line a more advanced case study is needed.

(R9) Traceability - The specific characteristics specified
in the different diagrams is traceable. The traceability is
established through tables, where elements of the different
diagrams are mapped and traceability is established.

Generally the PLUS method seems to be a good starting
point for investigating how functional safety can be achieved
in product lines. There is a range of potential extensions we
can foresee.

VII. CONCLUSIONS

The main goal of the product line engineering approach
is to identify commonality to achieve higher efficiency during
development. From the functional safety perspective the varia-
tion points among the product variants and their dependencies
are of higher interest. Inability to capture sufficient details
of the variability (planned, hidden and evolutionary) could
potentially result in faulty designs, costly development efforts
or even lead to unsafe products. It is important to have an
adequate method, which makes it easier to visualize and
analyze all possible configurations from a safety perspective.
In this paper, we have presented a non-exhaustiveness list of
key requirements for such a method and investigate the use
of PLUS, a model-based product line engineering approach
in this context. We describe a representative example from
industry and provide an analysis how PLUS will need to be

extended to be suitable for developing functional safety critical
embedded systems in safety critical product lines. We provide
pointers towards enhancing PLUS to be more relevant in the
analysis of safety critical products.

VIII. ACKNOWLEDGMENTS

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agreement
no 295373, Vinnova and the KKS-funded ITS-EASY Post
Graduate School for Embedded Software and Systems and
SSF funded Synopsis project.

REFERENCES

[1] H. Gomaa, Designing software product lines with UML. Addison-
Wesley Boston, USA, 2004.

[2] S. Baumgart, J. Froberg, and S. Punnekkat, “Towards efficient func-
tional safety certification of construction machinery using a component-
based approach,” in Product Line Approaches in Software Engineering
(PLEASE), 2012 3rd International Workshop on, June 2012, pp. 1–4.

[3] S. Baumgart, J. Froberg, and S. Punnekkat, “Industrial challenges to
achieve functional safety compliance in product lines,” in Software En-
gineering and Advanced Applications (SEAA), 2014 40th EUROMICRO
Conference on, Aug. 2014 (in publication).

[4] D. Weiss and C. Lai, Software Product-Line Engineering: A Family-
Based Software Development Process. Addison-Wesley Professional,
1999.

[5] P. Clements and L. Northrop, Software product lines. Addison-Wesley,
2001.

[6] J. Coplien, D. Hoffman, and D. Weiss, “Commonality and variability in
software engineering,” Software, IEEE, vol. 15, no. 6, pp. 37–45, Nov
1998.

[7] L. Chen, M. Ali Babar, and N. Ali, “Variability management in
software product lines: A systematic review,” in Proceedings of the
13th International Software Product Line Conference, ser. SPLC ’09.
Pittsburgh, PA, USA: Carnegie Mellon University, 2009, pp. 81–90.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1753235.1753247

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” DTIC
Document, Tech. Rep., 1990.

[9] M. Svahnberg, J. Van Gurp, and J. Bosch, “A taxonomy of variability
realization techniques,” Software: Practice and Experience, vol. 35,
no. 8, pp. 705–754, 2005.

[10] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “Form:
A feature oriented reuse method with domain specific reference archi-
tectures,” Annals of Software Engineering, vol. 5, no. 1, pp. 143–168,
1998.

[11] K. Pohl, G. Böckle, and F. Van Der Linden, Software product line
engineering: foundations, principles, and techniques. Springer-Verlag
New York Inc, 2005.

[12] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch, “Covamof: A
framework for modeling variability in software product families,” in
Software Product Lines. Springer, 2004, pp. 197–213.

[13] I. Habli, I. Ibarra, R. Rivett, and T. Kelly, “Model-based assurance
for justifying automotive functional safety,” in Proc. 2010 SAE World
Congress, 2010.

[14] Q. Feng and R. R. Lutz, “Bi-directional safety analysis
of product lines,” Journal of Systems and Software,
vol. 78, no. 2, pp. 111 – 127, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121205000105

[15] J. Dehlinger and R. Lutz, “Software fault tree analysis for product lines,”
in High Assurance Systems Engineering, 2004. Proceedings. Eighth
IEEE International Symposium on, March 2004, pp. 12–21.

[16] H. Gomaa, “Designing software product lines with uml 2.0: From use
cases to pattern-based software architectures.” IEEE Computer Society,
2006.

[17] X. Zhang, “Methods for modeling of product lines for safety-critical
systems,” Master’s thesis, School of Innovation, Design and Engineering,
Mälardalen University, 2013.

