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ABSTRACT 
In this paper, we connect the notion of software 
maintainability with the problem of software deterioration. 
We propose a model that incorporates both of these 
aspects, which gives us a vocabulary and a more formal 
tool than before, and allows us to discuss how to maintain 
software so as not to make it deteriorate. 

This paper describes the problem areas of software 
maintenance and software deterioration, describes the 
proposed model, and suggests ways of verifying it. 
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1. TWO PROBLEM AREAS 
Have you ever heard of a piece of software that at its initial 
release was considered perfect and was never subject to 
modifications? I daresay that the total experience from the 
software community strongly supports the opposite 
statement: if a piece of software is at all useful, it will 
become modified. The activity of modifying software that 
has once been put into use is called maintenance.  

It is also a general observation that, as a piece of software 
ages, it “deteriorates”, partly because it is being maintained. 
In this paper, we describe a model that connects the notions 
of software maintenance and that of software deterioration 
by saying that it is important to understand how to maintain 
software to keep it maintainable, i.e. so as not to make it 
deteriorate. 

The importance of constructing maintainable software is 
illustrated by the common observation that maintenance 
costs usually grows to more than the initial development 
cost [30], partly because of its deterioration as changes are 
made to it [38]. In this paper, we propose a model that 
captures and relates both of these problems: software 
maintenance and software deterioration. The model is by no 
means verified; we describe how it can be verified or 
falsified through experiments and case studies. 

There are many definitions of software maintainability, in 
essence very similar [3,4,16,42]. We here quote the IEEE 
Standard Glossary of Software Engineering Terminology 
[15]: 

maintainability. […] The ease with which a 
software system or component can be modified to 
correct faults, improve performance or other 
attributes, or adapt to a changed environment. 

The problem of “software deterioration” [3,5,29,37], also 
called “design erosion” [40], means that as a piece of 
software ages, and is being maintained, it becomes harder 
and harder to maintain. Its conceptual integrity [7] has been 
violated; it has become patched and mended beyond repair.  

We have felt that these issues needs to be formalized 
somewhat by establishing relationships between the terms 
used, to be able to explain long-term trends. In section 2 we 
propose a model combining these two notions (software 
deterioration and maintainability), and section 3 outlines 
how future research, through experiments and case studies, 
could support (or falsify) the model. 

2. THE MODEL 
Before we present the model, we should present the 
assumptions we build it on. 

2.1 Assumptions 
We build our model on two basic assumptions, one that is 
usually implicit in maintainability research literature, and 
one from literature on software deterioration. From 
“between the lines” in maintainability texts we can extract 
the following statement, very much in line with the earlier 
quote IEEE definition: 

Assumption 1: In a system that is easy to 
maintain, a change can be implemented with less 
effort than in a system that is harder to maintain 
(but in other respects equivalent). 

And from texts on software aging and deterioration we form 
our second assumption: 



Assumption 2: The typical observation is that 
software deteriorates because changes are not 
implemented careful enough; if the changes were 
implemented more carefully, the system would 
deteriorate at a much slower rate. 

With “not careful enough”, we mean that maintainers 
change the software somewhat careless, either because of 
time constraints, or due to too little knowledge about the 
initial concepts of the design, or merely because of, well, 
carelessness. If we accept these assumptions, we can now 
turn to the description of the model itself. 

2.2 The Model Itself 
In the model, we use three dimensions and define the 
relationships between them: “maintainability”, “effort”, and 
“change”. We will then use relatively simple mathematics 
to formulate the relationships between them. Before we 
continue, let us make some notes concerning these terms: 

• Maintainability. It is not obvious how to measure 
“maintainability”, but there are suggestions of such 
measures. We will return to this issue in section 3.1, 
but for the moment we assume that there is a way to 
measure “maintainability”. 

• Effort. The FEAST/1 project (Feedback, Evolution 
And Software Technology) used the number of 
modules “handled” during a change to approximate 
“effort” [25]. However, in the FEAST/2 project, this 
measure was exchanged for the number of 
programmers involved during each month [32]. 

• Change. The “change” dimension could be thought of 
as “discrete time”, with which we mean that a number 
of changes are implemented sequentially to a system. If 
the changes are implemented with a constant interval 
(say, one per day), the “change” dimension could thus 
be exchanged for “time”. 

Let us for a moment assume that there is a way to measure 
“maintainability” (we will return to this issue in section 
3.1). In our model, this means (quite intuitive) that the 
higher the maintainability, the less effort is required to 
implement a change. However, we distinguish between two 
approaches to implement changes: it is possible to choose 
between making a “fast hack” (the change is implemented 
with as little effort as possible) or a “controlled update” (to 
avoid system deterioration). The controlled update by 
definition requires more than, or at least equal to, the 
minimum effort to implement the change through a “fast 
hack” (see Figure 1). If each change is implemented using 
the “fast hack approach”, the system’s maintainability 
decreases over time, while controlled updates ideally 
preserve it (or even increase it), as Figure 2 describes; 
indeed, we could even use this observation as a definition 
and say that a controlled update is “an update using the 
minimum effort required to preserve the maintainability of 

the system” (but this would make it easy to forget that it is 
the long-term effects we want to capture). 
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Figure 1. The correlation between “maintainability” 

and effort required to implement a change1. 
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Figure 2. The system deteriorates (measured in 
maintainability) as changes are implemented. 

As the system deteriorates, i.e. its maintainability decreases; 
we can read from Figure 1 that each new change costs more 
and more to implement, leading to the graph in Figure 3. If 
we integrate over “change”, we get the graph presented in 
Figure 4, and it is easy to see that there is a change C at 
which the accumulated effort for “fast hacks” is equal to the 
effort for controlled updates; this point is marked in both 
Figures 2, 3, and 4. We read in the figures that if we have 
used the “fast hack” approach we have now locked 
ourselves in a trap: although we have spent the same 
amount of effort up to change C, the system has a lower 
degree of maintainability; consequently, each change after 
C will be more costly than if the system had been updated 
in a more structured way from the beginning.  
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Figure 3. The effort required per change increase as 
more and more changes are implemented. 

                                                           
1 It should be noted that the graphs in this section only describe 

trends and relations (“more than” or “less than”); they are not 
intended to predict any absolute values, nor are the shapes of 
the curves by any means exact. 
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Figure 4. The accumulated effort differs drastically 
between the two approaches. 

We should note that the graphs, as drawn here, are derived 
from the assumptions; if it is indeed true that the graph of 
Figure 1 is correct, and controlled updates counteract the 
deterioration of the software (while “fast hacks” rather 
speed up that process), the other graphs are just 
mathematical derivations from these “facts”. 

However, we must be careful when drawing conclusions: it 
is e.g. not necessarily true that by spending more effort on a 
change it is more controlled. Therefore, the model must be 
used with great care, and measurements supposed to 
support (or contradict) the model must be analysed 
thoroughly. We should be careful not to just accept the 
model: it has to be verified. 

2.3 Usability Of the Model 
But before turning into how to verify the model, we should 
ask ourselves of what use the model could be (if it turns out 
to be a reasonable description of reality); is it worthwhile 
trying to verify it or would that be just an intellectual 
exercise? We believe the model is useful since it makes the 
relationships between the dimensions explicit; we have a 
tool that can be used for reasoning about e.g. costs. The 
model provides a foundation for more research on details, 
like the formulas for maintainability that have been 
proposed (see section 3.1). Given some quantitative details, 
in particular about the correlations of Figure 1, the model 
may be used to answer questions like:  

• How do short-term and long-term costs affect each 
other? 

• What is an appropriate level of maintainability? 

It may be that a very high level of maintainability (which 
sounds intuitively appealing) is too costly; this partly 
depends on the difference between the correlations of 
Figure 1 – how much more costly is it to do a “controlled 
update”? However, if it is known that the system will be 
phased out before the critical change C, it will be 
advantageous to use the “fast hack” approach. For systems 
that are expected to live longer than change C, perhaps it is 
more advantageous to make a series of fast hacks, followed 
by a restructuring of the system at some well-chosen point 
in time (before this change C)? Given a good estimation of 
how costly a restructuring would be, our model could be 
used as a help when determining when the restructuring 

should optimally take place, taking the effort required to 
restructure the system into account. This strategy is shown 
in Figures 5, 6, and 7. 
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Figure 5, 6, and 7. The accumulated effort can be lower 
using a series of “fast hacks”. 

By introducing this model, we thus hope that it will be 
easier to decide how to maintain software in a cost-effective 
way, including dealing the risk of its long-term 
deterioration. However, we do not claim that we present a 
solution to this ultimate objective, but rather a tool that 
supports discussions about how to reach there.  

3. HOW TO VERIFY THE MODEL 
The model is not verified, but has been constructed through 
reading between the lines in literature on software 
maintainability and software deterioration, and by appealing 
to common sense. In this section we describe how we 
believe it is possible to verify it using scientific methods, 
and also somewhat quantify its unknown parameters. 

Since we want the results to be of interest for the industry, 
we would want to verify it in a real industrial environment. 
The ideal experiment would be using a setting where a 
series of change requests are implemented, using both “fast 
hacks” and more controlled updates in parallel (to the same 
system), while carefully keeping notes on the effort 
required for each change, and measuring maintainability 
before and after each change. Hopefully, with a data set 
large enough, it would be possible to analyse the data and 
construct the graphs we have described in section 2.2. 
However, it is not practically possible to perform such an 
experiment in a real industrial setting; rather, we will have 



to be content with some type of artificial experiment. It is 
then important to use a setting that resembles industry as 
much as possible. After an initial, somewhat artificial 
experiment, described in section 3.2, we would like to 
perform case studies, as described in section 3.3. 

3.1 Measuring Maintainability 
But let us first return to the issue of how to measure 
maintainability. If we cannot do that, the whole model and 
any attempt to verify it are in vain. 

3.1.1 Code-Level Measures 
Fortunately, many researchers have tried to quantify 
maintainability in different types of measures 
[1,2,9,27,28,42], of which the most noticeable probably is 
the Maintainability Index, MI [28,36], which includes 
McCabe’s cyclomatic complexity measure [33]. The 
Halstead source code measures proposed in the seventies 
[13,35] have also been used for describing maintainability 
[35,36]. However, none of these can be said to capture all 
aspects of maintainability as they focus on the code. As an 
example, the formula for calculating MI includes the term 
“average percent of lines of comments per module”; 
although this is to some extent reasonable it is impossible to 
know how well the comments describe the code: they might 
fail to describe the code on a higher level than the code 
itself, or they may simply be out-of-date, or wrong (the 
same goes for all documentation, which indeed is important 
when maintaining software in practice). 

We believe that these measures capture important aspects of 
maintainability, but they are typically validated using expert 
judgments about the state of the software [9,42], while we 
rather intend to investigate how the measures change as the 
software is maintained. The idea of performing such an 
evaluation before and after a change is implemented has 
already been discussed, although the objective of these 
studies has been to verify cost predictions [2,9,31]; we 
adopt this approach but pursue it even longer by 
investigating not only two subsequent changes, but a series 
of changes, in the case of case studies covering the 
complete evolution history (very long at least) of industrial 
systems. 

We should make some notes about other proposed 
“complexity measures”: the Function Point measure 
[10,34], the Object Point measure [10], and DeMarco’s 
specification weight metrics (“bang metrics”) [10]. All of 
these require human intervention (to e.g. grade items as 
“simple”, “average”, or “complex”) since not all parameters 
are measurable from source code, which makes them highly 
impractical when evaluating a large number of subsequent 
versions; there is also a high risk of mistakes in counting or 
unfairness in rating. These measures were also designed for 
cost estimations (before source code is available) rather 
than of performing measurements on existing code. 

3.1.2 Architecture-Level Measures 
Our research interests includes software architecture 
[3,5,14,37] and component-based systems [39]; in this 
section we therefore discuss the relation between the 
software maintenance field and that of software 
architecture. Within the software architecture literature, the 
terms “maintainability” and “modifiability” are often used 
informally as a desired feature [3,5,14,37] – indeed, it is 
one of the very goals with software architecture to make a 
system understandable, and thus maintainable, by providing 
abstractions on an appropriate level. 

One important goal for maintainability research is to make 
it possible to accurately estimate maintenance costs; such 
estimations should be done early in the development, i.e. 
during the architectural design. Such prediction models are 
often based both on the argument that maintainability must 
be discussed in the context of particular changes – one fault 
may be corrected by changing a few lines of code, while 
another may require the system to be re-architected. Thus, a 
system (or component) is always maintainable (or not) with 
respect to certain changes; the use of scenarios to evaluate 
maintainability has therefore been put forward, particularly 
on the architectural level [3-6,8,18-21]. The Software 
Architecture Analysis Method (SAAM) [3,20] and 
Architecture Trade-off Analysis Method (ATAM) [21] are 
general scenario-based evaluation techniques with which 
any quality attributes can be estimated on the architectural 
level; these have been reported useful in practice [3,19,22]. 
Bengtsson has suggested one cost estimation model where 
the type of change (new components, modified components, 
or new “plug-ins”) of each change scenario is taken into 
account to calculate the estimated change effort [4].  

The fields of software architecture and software 
maintenance clearly have much in common, and in our 
verification we will therefore investigate how architecture-
level measures relates to the code-level measures and our 
model. There are not as many measures proposed on the 
architectural level, but the most obvious aspect to 
investigate is the interdependencies between components. 
We have in literature found some variants of the number of 
calls into and number of calls from a component [24], also 
called “fan-in” and “fan-out” measures [12]. But it has been 
pointed out that such measures are not as simple as it may 
first look: from the maintainability point of view there is 
e.g. a great difference from a function call with only one 
integer parameter and one with many complex parameters; 
one must also consider to what extent we are interested in 
unique calls (to not penalize reuse). These issues are 
thoroughly discussed in [11]. In the FEAST projects, the 
researchers investigate the number of “subsystems” handled 
(i.e. changed, added, or deleted) at each change 
[25,26,31,32]. 



3.2 Experiment 
Some volunteers are gathered, possibly Computer Science 
students (who can be enticed into almost anything to an 
affordable price). They are initially assigned the task of 
studying and understanding a system, and are then given a 
set of identical change requests; half of the subjects are told 
to implement each change as fast as possible, while the 
other half are told to make the change as controlled as 
possible. After each change, the software is checked in into 
a revision control system so that we can perform 
measurements on the source code (see section 3.1). Of 
course, the time required to implement each change is 
carefully recorded. Through this setting, we will gather a set 
of data which reveals the relationships between the 
dimensions “Maintainability”, “Effort”, and “Change”; 
hopefully such an experiment should be able would be able 
to give an initial indication, or rule of thumb, of the 
correlation between “Maintainability” and “Effort/Change” 
for the two different approaches. The experiment would 
thus be a quantitative refinement of the now only qualitative 
model (which is not even verified). 

There are of course additional details to be considered 
when designing and performing the experiment [41]. For 
example, to avoid the threat that one of the groups turn out 
to be much better than the other, the experiment should be 
counter-balanced. This means that we use two different 
systems and repeat the experiment, but let the groups switch 
“treatments”, i.e. the group that are told to use the “fast 
hack” approach on the first system are told to do 
“controlled updates” to the second. That is: 

• System 1: 

− Group 1 gets Treatment 1 

− Group 2 gets Treatment 2 

• System 2: 

− Group 1 gets Treatment 2 

− Group 2 gets Treatment 1 

It may be that the collected data does not look at all as we 
have sketched in the figures, and we must then find reasons 
for this. Perhaps our experiment did not reflect the full 
complexity of the problem: our volunteers might have been 
too inexperienced in carrying out controlled maintenance 
tasks (as opposed to fast hacks, which they might be used to 
from course assignments), they might have had too little 
understanding of the software where supposed to maintain, 
the systems might have been misrepresentative, or the set of 
change requests might have been too artificial; we have to 
make everything we can to eliminate such error sources. Or, 
perhaps either the model or the assumptions were simply 
wrong: if the experiment seems to contradict the model (or 
the assumptions), this would be an interesting starting point 
for future research to explain why. But if the results of such 

an experiment are encouraging, we believe that there is 
more to learn from industrial case studies, even though 
these are much less controlled. 

3.3 Case Studies 
We have been promised access to several large industrial 
software systems, where all earlier revisions are available 
together with change descriptions for each revision. This 
allows us to validate the experimental results (performed in 
a more or less artificial setting) in a real industrial situation. 
However, although we will be able to accurately plot the 
“maintainability” and “change” dimensions, it will be 
substantially harder to know the effort spent on each 
change. And we will not be able to know whether a “fast 
hack” approach was used or the maintainer believed enough 
time was spent to make the update controlled, since there is 
no parallel system to compare with. However, we might 
find rules of thumb from the experiment that can be tested 
in such an industrial case study. We might for example find 
changes performed that seem to be “fast hacks” or 
“controlled updates”, and through interviews or 
questionnaires find whether the maintainers agree or not, to 
validate the model’s predictions. We also intend to 
investigate whether it is possible to use the data gathered in 
the FEAST projects [25,26,31,32]. 

Just by measuring how the maintainability of the system has 
changed throughout its history, we can easily describe 
whether the system has deteriorated or not (measured in 
maintainability, as our starting point have been). Maybe we 
will find changes that contradict the general trend, which is 
an interesting for more thorough analysis. A similar 
investigation has been carried out before, but only a few 
versions of a rather small system were used [17]. We have 
presented this objective earlier [23], but not yet carried out 
the measurements. We believe that such case studies will 
benefit from performing an experiment beforehand, and 
therefore intend to carry out the experiment first. 

3.4 Valid Verification? 
We clearly face a delicate problem: our model could be 
used as one type of verification for maintainability 
measures, but we will have to verify it using these measures 
– there seems to be a sort of circular verification. However, 
these measures have been shown to make at least some 
sense, so with data sets large enough, it might be possible to 
achieve a sort of mutual support for the model and the 
measures, which need not be scientifically wrong: if both 
the measures and the model intuitively make sense and they 
can be shown to support each other, we can be more 
confident in both. 

And we should not forget that any attempt to describe 
complex realities in simple models or formulas always must 
be approximate and never universally valid. This goes for 



the existing maintainability measures we have described as 
well as for the model we propose. 

4. CONCLUSION AND FUTURE WORK 
We have proposed a model that connects the notion of 
software maintainability with the problem of software 
deterioration. The model gives us a vocabulary and a tool 
that allows us to discuss how to maintain software so as not 
to make it deteriorate. We also noted that although we 
believe it appeals to common sense, the model is by no 
means verified. We have described how experiments and 
case studies could support (or falsify) the model, and yield 
approximate values of the unknown parameters of the 
model. 
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