
Software Deterioration And Maintainability – A Model Proposal
Rikard Land

Mälardalen University
Department of Computer Engineering

Box 883
SE-721 23 Västerås, Sweden

+46 (0)21 10 70 35
rikard.land@mdh.se

http://www.idt.mdh.se/~rld

ABSTRACT
In this paper, we connect the notion of software
maintainability with the problem of software deterioration.
We propose a model that incorporates both of these
aspects, which gives us a vocabulary and a more formal
tool than before, and allows us to discuss how to maintain
software so as not to make it deteriorate.

This paper describes the problem areas of software
maintenance and software deterioration, describes the
proposed model, and suggests ways of verifying it.

Keywords
Software aging, software architecture, software deterio-
ration, software maintainability, software measurement.

1. TWO PROBLEM AREAS
Have you ever heard of a piece of software that at its initial
release was considered perfect and was never subject to
modifications? I daresay that the total experience from the
software community strongly supports the opposite
statement: if a piece of software is at all useful, it will
become modified. The activity of modifying software that
has once been put into use is called maintenance.

It is also a general observation that, as a piece of software
ages, it “deteriorates”, partly because it is being maintained.
In this paper, we describe a model that connects the notions
of software maintenance and that of software deterioration
by saying that it is important to understand how to maintain
software to keep it maintainable, i.e. so as not to make it
deteriorate.

The importance of constructing maintainable software is
illustrated by the common observation that maintenance
costs usually grows to more than the initial development
cost [30], partly because of its deterioration as changes are
made to it [38]. In this paper, we propose a model that
captures and relates both of these problems: software
maintenance and software deterioration. The model is by no
means verified; we describe how it can be verified or
falsified through experiments and case studies.

There are many definitions of software maintainability, in
essence very similar [3,4,16,42]. We here quote the IEEE
Standard Glossary of Software Engineering Terminology
[15]:

maintainability. […] The ease with which a
software system or component can be modified to
correct faults, improve performance or other
attributes, or adapt to a changed environment.

The problem of “software deterioration” [3,5,29,37], also
called “design erosion” [40], means that as a piece of
software ages, and is being maintained, it becomes harder
and harder to maintain. Its conceptual integrity [7] has been
violated; it has become patched and mended beyond repair.

We have felt that these issues needs to be formalized
somewhat by establishing relationships between the terms
used, to be able to explain long-term trends. In section 2 we
propose a model combining these two notions (software
deterioration and maintainability), and section 3 outlines
how future research, through experiments and case studies,
could support (or falsify) the model.

2. THE MODEL
Before we present the model, we should present the
assumptions we build it on.

2.1 Assumptions
We build our model on two basic assumptions, one that is
usually implicit in maintainability research literature, and
one from literature on software deterioration. From
“between the lines” in maintainability texts we can extract
the following statement, very much in line with the earlier
quote IEEE definition:

Assumption 1: In a system that is easy to
maintain, a change can be implemented with less
effort than in a system that is harder to maintain
(but in other respects equivalent).

And from texts on software aging and deterioration we form
our second assumption:

Assumption 2: The typical observation is that
software deteriorates because changes are not
implemented careful enough; if the changes were
implemented more carefully, the system would
deteriorate at a much slower rate.

With “not careful enough”, we mean that maintainers
change the software somewhat careless, either because of
time constraints, or due to too little knowledge about the
initial concepts of the design, or merely because of, well,
carelessness. If we accept these assumptions, we can now
turn to the description of the model itself.

2.2 The Model Itself
In the model, we use three dimensions and define the
relationships between them: “maintainability”, “effort”, and
“change”. We will then use relatively simple mathematics
to formulate the relationships between them. Before we
continue, let us make some notes concerning these terms:

• Maintainability. It is not obvious how to measure
“maintainability”, but there are suggestions of such
measures. We will return to this issue in section 3.1,
but for the moment we assume that there is a way to
measure “maintainability”.

• Effort. The FEAST/1 project (Feedback, Evolution
And Software Technology) used the number of
modules “handled” during a change to approximate
“effort” [25]. However, in the FEAST/2 project, this
measure was exchanged for the number of
programmers involved during each month [32].

• Change. The “change” dimension could be thought of
as “discrete time”, with which we mean that a number
of changes are implemented sequentially to a system. If
the changes are implemented with a constant interval
(say, one per day), the “change” dimension could thus
be exchanged for “time”.

Let us for a moment assume that there is a way to measure
“maintainability” (we will return to this issue in section
3.1). In our model, this means (quite intuitive) that the
higher the maintainability, the less effort is required to
implement a change. However, we distinguish between two
approaches to implement changes: it is possible to choose
between making a “fast hack” (the change is implemented
with as little effort as possible) or a “controlled update” (to
avoid system deterioration). The controlled update by
definition requires more than, or at least equal to, the
minimum effort to implement the change through a “fast
hack” (see Figure 1). If each change is implemented using
the “fast hack approach”, the system’s maintainability
decreases over time, while controlled updates ideally
preserve it (or even increase it), as Figure 2 describes;
indeed, we could even use this observation as a definition
and say that a controlled update is “an update using the
minimum effort required to preserve the maintainability of

the system” (but this would make it easy to forget that it is
the long-term effects we want to capture).

M
ai

nt
ai

na
bi

lit
y

Effort/Change

Controlled update

"Fast hack"

Figure 1. The correlation between “maintainability”

and effort required to implement a change1.

Change

Controlled update

"Fast hack"

M
ai

nt
ai

na
bi

lit
y

C

Figure 2. The system deteriorates (measured in
maintainability) as changes are implemented.

As the system deteriorates, i.e. its maintainability decreases;
we can read from Figure 1 that each new change costs more
and more to implement, leading to the graph in Figure 3. If
we integrate over “change”, we get the graph presented in
Figure 4, and it is easy to see that there is a change C at
which the accumulated effort for “fast hacks” is equal to the
effort for controlled updates; this point is marked in both
Figures 2, 3, and 4. We read in the figures that if we have
used the “fast hack” approach we have now locked
ourselves in a trap: although we have spent the same
amount of effort up to change C, the system has a lower
degree of maintainability; consequently, each change after
C will be more costly than if the system had been updated
in a more structured way from the beginning.

E
ffo

rt
/C

ha
ng

e

"Fast hack"

Controlled update

ChangeC

Figure 3. The effort required per change increase as
more and more changes are implemented.

1 It should be noted that the graphs in this section only describe

trends and relations (“more than” or “less than”); they are not
intended to predict any absolute values, nor are the shapes of
the curves by any means exact.

E
ffo

rt

"Fast hack"

Controlled update

ChangeC

Figure 4. The accumulated effort differs drastically
between the two approaches.

We should note that the graphs, as drawn here, are derived
from the assumptions; if it is indeed true that the graph of
Figure 1 is correct, and controlled updates counteract the
deterioration of the software (while “fast hacks” rather
speed up that process), the other graphs are just
mathematical derivations from these “facts”.

However, we must be careful when drawing conclusions: it
is e.g. not necessarily true that by spending more effort on a
change it is more controlled. Therefore, the model must be
used with great care, and measurements supposed to
support (or contradict) the model must be analysed
thoroughly. We should be careful not to just accept the
model: it has to be verified.

2.3 Usability Of the Model
But before turning into how to verify the model, we should
ask ourselves of what use the model could be (if it turns out
to be a reasonable description of reality); is it worthwhile
trying to verify it or would that be just an intellectual
exercise? We believe the model is useful since it makes the
relationships between the dimensions explicit; we have a
tool that can be used for reasoning about e.g. costs. The
model provides a foundation for more research on details,
like the formulas for maintainability that have been
proposed (see section 3.1). Given some quantitative details,
in particular about the correlations of Figure 1, the model
may be used to answer questions like:

• How do short-term and long-term costs affect each
other?

• What is an appropriate level of maintainability?

It may be that a very high level of maintainability (which
sounds intuitively appealing) is too costly; this partly
depends on the difference between the correlations of
Figure 1 – how much more costly is it to do a “controlled
update”? However, if it is known that the system will be
phased out before the critical change C, it will be
advantageous to use the “fast hack” approach. For systems
that are expected to live longer than change C, perhaps it is
more advantageous to make a series of fast hacks, followed
by a restructuring of the system at some well-chosen point
in time (before this change C)? Given a good estimation of
how costly a restructuring would be, our model could be
used as a help when determining when the restructuring

should optimally take place, taking the effort required to
restructure the system into account. This strategy is shown
in Figures 5, 6, and 7.

C' Change

Controlled update

"Fast hack"

M
ai

nt
ai

na
bi

lit
y

Change

"Fast hack"

Controlled
update

C'

E
ffo

rt
/C

ha
ng

e

E
ffo

rt

"Fast hack"
Controlled update

ChangeC'

Figure 5, 6, and 7. The accumulated effort can be lower
using a series of “fast hacks”.

By introducing this model, we thus hope that it will be
easier to decide how to maintain software in a cost-effective
way, including dealing the risk of its long-term
deterioration. However, we do not claim that we present a
solution to this ultimate objective, but rather a tool that
supports discussions about how to reach there.

3. HOW TO VERIFY THE MODEL
The model is not verified, but has been constructed through
reading between the lines in literature on software
maintainability and software deterioration, and by appealing
to common sense. In this section we describe how we
believe it is possible to verify it using scientific methods,
and also somewhat quantify its unknown parameters.

Since we want the results to be of interest for the industry,
we would want to verify it in a real industrial environment.
The ideal experiment would be using a setting where a
series of change requests are implemented, using both “fast
hacks” and more controlled updates in parallel (to the same
system), while carefully keeping notes on the effort
required for each change, and measuring maintainability
before and after each change. Hopefully, with a data set
large enough, it would be possible to analyse the data and
construct the graphs we have described in section 2.2.
However, it is not practically possible to perform such an
experiment in a real industrial setting; rather, we will have

to be content with some type of artificial experiment. It is
then important to use a setting that resembles industry as
much as possible. After an initial, somewhat artificial
experiment, described in section 3.2, we would like to
perform case studies, as described in section 3.3.

3.1 Measuring Maintainability
But let us first return to the issue of how to measure
maintainability. If we cannot do that, the whole model and
any attempt to verify it are in vain.

3.1.1 Code-Level Measures
Fortunately, many researchers have tried to quantify
maintainability in different types of measures
[1,2,9,27,28,42], of which the most noticeable probably is
the Maintainability Index, MI [28,36], which includes
McCabe’s cyclomatic complexity measure [33]. The
Halstead source code measures proposed in the seventies
[13,35] have also been used for describing maintainability
[35,36]. However, none of these can be said to capture all
aspects of maintainability as they focus on the code. As an
example, the formula for calculating MI includes the term
“average percent of lines of comments per module”;
although this is to some extent reasonable it is impossible to
know how well the comments describe the code: they might
fail to describe the code on a higher level than the code
itself, or they may simply be out-of-date, or wrong (the
same goes for all documentation, which indeed is important
when maintaining software in practice).

We believe that these measures capture important aspects of
maintainability, but they are typically validated using expert
judgments about the state of the software [9,42], while we
rather intend to investigate how the measures change as the
software is maintained. The idea of performing such an
evaluation before and after a change is implemented has
already been discussed, although the objective of these
studies has been to verify cost predictions [2,9,31]; we
adopt this approach but pursue it even longer by
investigating not only two subsequent changes, but a series
of changes, in the case of case studies covering the
complete evolution history (very long at least) of industrial
systems.

We should make some notes about other proposed
“complexity measures”: the Function Point measure
[10,34], the Object Point measure [10], and DeMarco’s
specification weight metrics (“bang metrics”) [10]. All of
these require human intervention (to e.g. grade items as
“simple”, “average”, or “complex”) since not all parameters
are measurable from source code, which makes them highly
impractical when evaluating a large number of subsequent
versions; there is also a high risk of mistakes in counting or
unfairness in rating. These measures were also designed for
cost estimations (before source code is available) rather
than of performing measurements on existing code.

3.1.2 Architecture-Level Measures
Our research interests includes software architecture
[3,5,14,37] and component-based systems [39]; in this
section we therefore discuss the relation between the
software maintenance field and that of software
architecture. Within the software architecture literature, the
terms “maintainability” and “modifiability” are often used
informally as a desired feature [3,5,14,37] – indeed, it is
one of the very goals with software architecture to make a
system understandable, and thus maintainable, by providing
abstractions on an appropriate level.

One important goal for maintainability research is to make
it possible to accurately estimate maintenance costs; such
estimations should be done early in the development, i.e.
during the architectural design. Such prediction models are
often based both on the argument that maintainability must
be discussed in the context of particular changes – one fault
may be corrected by changing a few lines of code, while
another may require the system to be re-architected. Thus, a
system (or component) is always maintainable (or not) with
respect to certain changes; the use of scenarios to evaluate
maintainability has therefore been put forward, particularly
on the architectural level [3-6,8,18-21]. The Software
Architecture Analysis Method (SAAM) [3,20] and
Architecture Trade-off Analysis Method (ATAM) [21] are
general scenario-based evaluation techniques with which
any quality attributes can be estimated on the architectural
level; these have been reported useful in practice [3,19,22].
Bengtsson has suggested one cost estimation model where
the type of change (new components, modified components,
or new “plug-ins”) of each change scenario is taken into
account to calculate the estimated change effort [4].

The fields of software architecture and software
maintenance clearly have much in common, and in our
verification we will therefore investigate how architecture-
level measures relates to the code-level measures and our
model. There are not as many measures proposed on the
architectural level, but the most obvious aspect to
investigate is the interdependencies between components.
We have in literature found some variants of the number of
calls into and number of calls from a component [24], also
called “fan-in” and “fan-out” measures [12]. But it has been
pointed out that such measures are not as simple as it may
first look: from the maintainability point of view there is
e.g. a great difference from a function call with only one
integer parameter and one with many complex parameters;
one must also consider to what extent we are interested in
unique calls (to not penalize reuse). These issues are
thoroughly discussed in [11]. In the FEAST projects, the
researchers investigate the number of “subsystems” handled
(i.e. changed, added, or deleted) at each change
[25,26,31,32].

3.2 Experiment
Some volunteers are gathered, possibly Computer Science
students (who can be enticed into almost anything to an
affordable price). They are initially assigned the task of
studying and understanding a system, and are then given a
set of identical change requests; half of the subjects are told
to implement each change as fast as possible, while the
other half are told to make the change as controlled as
possible. After each change, the software is checked in into
a revision control system so that we can perform
measurements on the source code (see section 3.1). Of
course, the time required to implement each change is
carefully recorded. Through this setting, we will gather a set
of data which reveals the relationships between the
dimensions “Maintainability”, “Effort”, and “Change”;
hopefully such an experiment should be able would be able
to give an initial indication, or rule of thumb, of the
correlation between “Maintainability” and “Effort/Change”
for the two different approaches. The experiment would
thus be a quantitative refinement of the now only qualitative
model (which is not even verified).

There are of course additional details to be considered
when designing and performing the experiment [41]. For
example, to avoid the threat that one of the groups turn out
to be much better than the other, the experiment should be
counter-balanced. This means that we use two different
systems and repeat the experiment, but let the groups switch
“treatments”, i.e. the group that are told to use the “fast
hack” approach on the first system are told to do
“controlled updates” to the second. That is:

• System 1:

− Group 1 gets Treatment 1

− Group 2 gets Treatment 2

• System 2:

− Group 1 gets Treatment 2

− Group 2 gets Treatment 1

It may be that the collected data does not look at all as we
have sketched in the figures, and we must then find reasons
for this. Perhaps our experiment did not reflect the full
complexity of the problem: our volunteers might have been
too inexperienced in carrying out controlled maintenance
tasks (as opposed to fast hacks, which they might be used to
from course assignments), they might have had too little
understanding of the software where supposed to maintain,
the systems might have been misrepresentative, or the set of
change requests might have been too artificial; we have to
make everything we can to eliminate such error sources. Or,
perhaps either the model or the assumptions were simply
wrong: if the experiment seems to contradict the model (or
the assumptions), this would be an interesting starting point
for future research to explain why. But if the results of such

an experiment are encouraging, we believe that there is
more to learn from industrial case studies, even though
these are much less controlled.

3.3 Case Studies
We have been promised access to several large industrial
software systems, where all earlier revisions are available
together with change descriptions for each revision. This
allows us to validate the experimental results (performed in
a more or less artificial setting) in a real industrial situation.
However, although we will be able to accurately plot the
“maintainability” and “change” dimensions, it will be
substantially harder to know the effort spent on each
change. And we will not be able to know whether a “fast
hack” approach was used or the maintainer believed enough
time was spent to make the update controlled, since there is
no parallel system to compare with. However, we might
find rules of thumb from the experiment that can be tested
in such an industrial case study. We might for example find
changes performed that seem to be “fast hacks” or
“controlled updates”, and through interviews or
questionnaires find whether the maintainers agree or not, to
validate the model’s predictions. We also intend to
investigate whether it is possible to use the data gathered in
the FEAST projects [25,26,31,32].

Just by measuring how the maintainability of the system has
changed throughout its history, we can easily describe
whether the system has deteriorated or not (measured in
maintainability, as our starting point have been). Maybe we
will find changes that contradict the general trend, which is
an interesting for more thorough analysis. A similar
investigation has been carried out before, but only a few
versions of a rather small system were used [17]. We have
presented this objective earlier [23], but not yet carried out
the measurements. We believe that such case studies will
benefit from performing an experiment beforehand, and
therefore intend to carry out the experiment first.

3.4 Valid Verification?
We clearly face a delicate problem: our model could be
used as one type of verification for maintainability
measures, but we will have to verify it using these measures
– there seems to be a sort of circular verification. However,
these measures have been shown to make at least some
sense, so with data sets large enough, it might be possible to
achieve a sort of mutual support for the model and the
measures, which need not be scientifically wrong: if both
the measures and the model intuitively make sense and they
can be shown to support each other, we can be more
confident in both.

And we should not forget that any attempt to describe
complex realities in simple models or formulas always must
be approximate and never universally valid. This goes for

the existing maintainability measures we have described as
well as for the model we propose.

4. CONCLUSION AND FUTURE WORK
We have proposed a model that connects the notion of
software maintainability with the problem of software
deterioration. The model gives us a vocabulary and a tool
that allows us to discuss how to maintain software so as not
to make it deteriorate. We also noted that although we
believe it appeals to common sense, the model is by no
means verified. We have described how experiments and
case studies could support (or falsify) the model, and yield
approximate values of the unknown parameters of the
model.

5. ACKNOWLEDGEMENTS
I would like to thank professor Ivica Crnkovic and my
fellow Ph.D. student Andreas Sjögren for the discussions
that led to this paper.

REFERENCES
 [1] Aggarwal K. K., Singh Y., and Chhabra J. K., “An

Integrated Measure of Software Maintainability”, In
Proceedings of Annual Reliability and
Maintainability Symposium, IEEE, 2002.

 [2] Ash D., Alderete J., Yao L., Oman P. W., and
Lowther B., “Using software maintainability models
to track code health”, In Proceedings of
International Conference on Software Maintenance,
IEEE, 1994.

 [3] Bass L., Clements P., and Kazman R., Software
Architecture in Practice, Addison-Wesley, 1998.

 [4] Bengtsson P., “Architecture-Level Modifiability
Analysis”, Ph.D. Thesis, Blekinge Institute of
Technology, Sweden, 2002

 [5] Bosch J., Design & Use of Software Architectures,
Addison-Wesley, 2000.

 [6] Bosch, J. and Bengtsson, P., An Experiment on
Creating Scenario Profiles for Software Change,
report ISSN 1103-1581, Department of Software
Engineering and Computer Science, University of
Karlskrona/Ronneby, 1999.

 [7] Brooks F. P., The Mythical Man-Month - Essays On
Software Engineering, 20th Anniversary Edition,
Addison-Wesley Longman, 1995.

 [8] Clements P., Kazman R., and Klein M., Evaluating
Software Architectures: Methods and Case Studies,
Addison Wesley, 2000.

 [9] Coleman D., Ash D., Lowther B., and Oman P.,
“Using Metrics to Evaluate Software System
Maintainability”, IEEE Computer, volume 27, issue
8, 1994.

 [10] Fenton N. E. and Pfleeger S. L., Software Metrics -
A Rigorous & Practical Approach, PWS Publishing
Company, 1997.

 [11] Ferneley E.H., “Design Metrics as an Aid to
Software Maintenance: An Empirical Study”,
Journal of Software Maintenance: Research and
Practice, volume 11, issue 1, 1999.

 [12] Grady R.B., “Successfully Applying Software
Metrics”, IEEE Computer, volume 27, issue 9, 1994.

 [13] Halstead M. H., Elements of Software Science,
Operating, and Programming Systems Series
Volume 7, Elsevier, 1977.

 [14] Hofmeister C., Nord R., and Soni D., Applied
Software Architecture, Addison-Wesley, 2000.

 [15] IEEE, IEEE Standard Glossary of Software
Engineering Terminology, report IEEE Std 610.12-
1990, IEEE, 1990.

 [16] ISO/IEC, Information technology - Software product
quality - Part 1: Quality model, report ISO/IEC FDIS
9126-1:2000 (E), ISO, 2000.

 [17] Jaktman C. B., Leaney J., and Liu M., “Structural
Analysis of the Software Architecture - A
Maintenance Assessment Case Study”, In
Proceedings of The First Working IFIP Conference
on Software Architecture (WICSA1), Kluwer
Academic Publishers, 1999.

 [18] Kazman R., Abowd G., Bass L., and Clements P.,
“Scenario-Based Analysis of Software Architecture”,
IEEE Software, volume 13, issue 6, 1996.

 [19] Kazman R., Barbacci M., Klein M., and Carriere J.,
“Experience with Performing Architecture Tradeoff
Analysis Method”, In Proceedings of The
International Conference on Software Engineering,
New York, 1999.

 [20] Kazman R., Bass L., Abowd G., and Webb M.,
“SAAM: A Method for Analyzing the Properties of
Software Architectures”, In Proceedings of The 16th
International Conference on Software Engineering,
1994.

 [21] Kazman R., Klein M., Barbacci M., Longstaff T.,
Lipson H., and Carriere J., “The Architecture
Tradeoff Analysis Method”, In Proceedings of The
Fourth IEEE International Conference on
Engineering of Complex Computer Systems
(ICECCS), IEEE, 1998.

 [22] Land R., “Improving Quality Attributes of a
Complex System Through Architectural Analysis - A
Case Study”, In Proceedings of 9th IEEE
Conference on Engineering of Computer-Based
Systems (ECBS), IEEE, 2002.

 [23] Land R., “Measurements of Software
Maintainability”, In Proceedings of ARTES
Graduate Student Conference (neither reviewed nor
officially published), ARTES, 2002.

 [24] Lanning D.L. and Khoshgoftaar T. M., “Modeling
the Relationship Between Source Code Complexity
and Maintenance Difficulty”, IEEE Computer,
volume 27, issue 9, 1994.

 [25] Lehman M. M., Perry D. E., and Ramil J. F.,
“Implications of evolution metrics on software
maintenance”, In Proceedings of International
Conference on Software Maintenance, IEEE, 1998.

 [26] Lehman, Meir M. and Ramil, Juan F., FEAST
project, URL: http://www.doc.ic.ac.uk/~mml/feast/,
2001

 [27] Oman P. and Hagemeister J., “Metrics for Assessing
a Software System's Maintainability”, In
Proceedings of Conference on Software
Maintenance, IEEE, 1992.

 [28] Oman, P., Hagemeister, J., and Ash, D., “A
Definition and Taxonomy for Software
Maintainability”, report SETL Report 91-08-TR,
University of Idaho, 1991.

 [29] Parnas D. L., “Software Aging”, In Proceedings of
The 16th International Conference on Software
Engineering, IEEE Press, 1994.

 [30] Pfleeger S. L., Software Engineering, Theory and
Practice, Prentice-Hall, Inc., 1998.

 [31] Ramil J. F. and Lehman M. M., “Metrics of Software
Evolution as Effort Predictors - A Case Study”, In
Proceedings of International Conference on
Software Maintenance, IEEE, 2000.

 [32] Ramil J. F. and Lehman M. M., “Defining and
applying metrics in the context of continuing
software evolution”, In Proceedings of Seventh
International Software Metrics Symposium
(METRICS), IEEE, 2001.

 [33] SEI Software Technology Review, Cyclomatic
Complexity, URL: http://www.sei.cmu.edu/, 2002

 [34] SEI Software Technology Review, Function Point
Analysis, URL: http://www.sei.cmu.edu/, 2002

 [35] SEI Software Technology Review, Halstead
Complexity Measures, URL:
http://www.sei.cmu.edu/, 2002

 [36] SEI Software Technology Review, Maintainability
Index Technique for Measuring Program
Maintainability, URL: http://www.sei.cmu.edu/,
2002

 [37] Shaw M. and Garlan D., Software Architecture:
Perspectives on an Emerging Discipline, Prentice-
Hall, 1996.

 [38] Sommerville I., Software Engineering, Addison-
Wesley, 2001.

 [39] Szyperski C., Component Software - Beyond Object-
Oriented Programming, Addison-Wesley, 1998.

 [40] van Gurp J. and Bosch J., “Design Erosion:
Problems & Causes”, Journal of Systems &
Software, volume 61, issue 2, 2002.

 [41] Wohlin C., Runeson P., Höst M., Ohlsson M. C.,
Regnell B., and Wesslén A., Experimentation in
Software Engineering: An Introduction, Kluwer
Academic Publishers, 1999.

 [42] Zhuo F., Lowther B., Oman P., and Hagemeister J.,
“Constructing and testing software maintainability
assessment models”, In Proceedings of First
International Software Metrics Symposium, IEEE,
1993.

